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Abstract

Echo planar imaging (EPI) is widely used in functional and diffusion-weighted MRI,

but suffers from significant geometric distortions in the phase encoding direction

caused by inhomogeneities in the static magnetic field (B0). This is a particular chal-

lenge for EPI at very high field (≥7 T), as distortion increases with higher field

strength. A number of techniques for distortion correction exist, including those

based on B0 field mapping and acquiring EPI scans with opposite phase encoding

directions. However, few quantitative comparisons of distortion compensation

methods have been performed using human EPI data, especially at very high field.

Here, we compared distortion compensation using B0 field maps and opposite phase

encoding scans in two different software packages (FSL and AFNI) applied to 7 T gra-

dient echo (GE) EPI data from 31 human participants. We assessed distortion com-

pensation quality by quantifying alignment to anatomical reference scans using Dice

coefficients and mutual information. Performance between FSL and AFNI was equiv-

alent. In our whole-brain analyses, we found superior distortion compensation using

GE scans with opposite phase encoding directions, versus B0 field maps or spin echo

(SE) opposite phase encoding scans. However, SE performed better when analyses

were limited to ventromedial prefrontal cortex, a region with substantial dropout.

Matching the type of opposite phase encoding scans to the EPI data being corrected

(e.g., SE-to-SE) also yielded better distortion correction. While the ideal distortion

compensation approach likely varies depending on methodological differences across

experiments, this study provides a framework for quantitative comparison of differ-

ent distortion compensation methods.
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1 | INTRODUCTION

Geometric fidelity is critical for high quality brain imaging. It is essen-

tial for accurate interpretation of functional MRI (fMRI) data based on

anatomical landmarks and is necessary for precise quantification of

structural and functional connectivity. It is also relevant for clinical

brain imaging applications, such as neurosurgery and the placement of

deep brain stimulation electrodes (Menuel et al., 2005; Sumanaweera

et al., 1995; Sumanaweera, Glover, Binford, & Adler, 1993). However,

currently popular MRI techniques suffer from a number of common

artifacts that degrade spatial fidelity, including gradient nonlinearities

and geometric distortion due to static magnetic field (B0) inhomoge-

neity (Bakker, Moerland, Bhawandien, & Beersma, 1992; Jezzard &

Clare, 1999). A number of methods to correct for these geometric

artifacts have been established (Bakker et al., 1992; Esteban

et al., 2014; Gholipour, Kehtarnavaz, Scherrer, & Warfield, 2011; Gra-

ham, Drobnjak, Jenkinson, & Zhang, 2017; Holland, Kuperman, &

Dale, 2010; Hong, To, Teh, Soh, & Chuang, 2015; Hutton et al., 2002;

Jezzard & Clare, 1999; Wang et al., 2017). To select an appropriate

method for distortion correction, quantitative comparisons between

methods are essential.

Echo planar imaging (EPI) is among the most commonly used MRI

techniques in human neuroscience. Rapid acquisition times enable

studies of functional brain activation (i.e., fMRI; often ≤1 s per whole-

brain image) and efficient measurement of white matter tractography

via diffusion-weighted MRI (dMRI; on the order of 5 s per image). This

temporal efficiency comes at the cost of relatively low pixel band-

width in the phase encoding (PE) direction, which results in severe

geometric distortions in regions of B0 inhomogeneity (Gholipour

et al., 2011; Hutton et al., 2002; Jezzard & Clare, 1999). Lower band-

width (i.e., longer effective echo spacing) makes distortion more

severe; distortion of some regions in EPI data in the PE direction often

reaches 5–10 mm (Jezzard & Clare, 1999). B0 inhomogeneities and the

resulting distortions are greatest at the interface of different tissue

types (e.g., brain, bone, air) in regions such as the orbitofrontal cortex

and temporal lobes. Inhomogeneities also scale linearly with B0 field

strength, such that geometric distortions can be more severe at 7 Tesla

than at 3 Tesla (Dymerska, Poser, Barth, Trattnig, & Robinson, 2018).

A number of methods for minimizing and correcting geometric

distortion in EPI data exist. Prospectively, geometric distortion can be

limited by reducing B0 inhomogeneity via B0 shimming, and con-

firming shim quality during a scan by measuring the linewidth of the

water signal. Geometric distortion can also be limited by shortening

read-out time. Methods for this include: (1) using multishot or seg-

mented EPI (Feinberg & Oshio, 1994; McKinnon, 1993; Moeller, Van

de Moortele, Goerke, Adriany, & Ugurbil, 2006) (rather than single-

shot sequences, at the cost of longer TRs and increased physiological

noise sensitivity), (2) using a higher parallel imaging acceleration factor

(R; at the cost of reduced signal-to-noise ratio [SNR]), (3) increasing

receiver bandwidth (e.g., reducing echo spacing, or using stronger or

faster head gradients, at the cost of reduced SNR), (4) decreasing the

field of view in the PE direction (at the cost of reduced spatial cover-

age) (Olman, Davachi, & Inati, 2009). Although one might be tempted

to think that distortion would also be attenuated by reducing the sam-

pling of k-space data in the PE direction using partial Fourier

approaches, this is not the case because partial Fourier does not

change the pixel bandwidth. Finally, it is worth noting that when using

spiral acquisition sequences (Glover & Law, 2001) in place of EPI, B0

inhomogeneity produces blurring rather than geometric distortion,

which may be preferable for some applications that do not require

high spatial specificity.

It is also possible to correct geometric distortion in an EPI dataset

retrospectively, which has been shown to improve registration

between EPI and T1-weighted anatomical data (Hutton et al., 2002). A

number of different methods for retrospective distortion compensa-

tion have been introduced, including:

1. B0 field mapping by measuring phase differences from two gradi-

ent echo (GE) images with different echo times (TEs) (Hunsche

et al., 2004; Hutton et al., 2002; Jezzard & Balaban, 1995),

2. calculating a distortion field based on two EPI scans with opposite

PE directions (i.e., forward & reverse, often anterior–posterior

(AP) and posterior–anterior (PA); hereafter, referred to as opposite

PE [oppPE] field mapping), for which the geometric distortion will

be equal but in opposite directions (Andersson, Skare, &

Ashburner, 2003; Embleton, Haroon, Morris, Ralph, &

Parker, 2010; Morgan, Bowtell, McIntyre, & Worthington, 2004),

3. nonrigid registration (e.g., affine or spline fitting) of the distorted

EPI to a minimally distorted anatomical reference (Gholipour

et al., 2006; Li et al., 2006; Li et al., 2007; Li, Xu, Fitzpatrick, &

Dawant, 2008; Studholme, Constable, & Duncan, 2000),

4. mapping the EPI point-spread function (In, Posnansky, &

Speck, 2017; Robson, Gore, & Constable, 1997; Zaitsev, Hennig, &

Speck, 2004; Zeng & Constable, 2002),

5. methods based on forward and inverse modeling of the distortion

(Andersson, Hutton, Ashburner, Turner, & Friston, 2001; Munger,

Crelier, Peters, & Pike, 2000),

6. multireference scan methods (Wan, Gullberg, Parker, &

Zeng, 1997),

7. hybrid methods (e.g., B0 or oppPE field mapping plus nonrigid reg-

istration) (Gholipour et al., 2011; Hong et al., 2015; Hunsche

et al., 2004), and

8. dynamic methods for correcting time-varying geometric distortions

due to factors such as head movement (Andersson et al., 2001;

Barry et al., 2010; Dymerska et al., 2018).

Of these, the first two (B0 and oppPE field maps) are arguably the

most popular and are currently implemented in various forms across

many widely used MRI analysis software packages (e.g., FSL (Smith

et al., 2004), AFNI (Cox, 1996), SPM (Friston et al., 1994),

BrainVoyager (Goebel, Esposito, & Formisano, 2006)). Thus, we chose

to focus on quantitative comparisons between B0 and oppPE field

map approaches in the current study.

With regard to oppPE field maps, it has been suggested that spin

echo (SE) EPI scans may offer an advantage over GE sequences in

mapping the distortion field (Holland et al., 2010), as the former
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minimizes signal dropout from through-slice dephasing due to the

180� refocusing pulse at TE/2. This suggests that a pair of SE EPI

scans with opposite PE directions should give a more complete map

of field inhomogeneities than a GE oppPE pair. However, this theoret-

ical motivation has not, to our knowledge, been tested empirically.

Alternatively, one may consider whether other factors could limit the

utility of SE oppPE field maps for the correction of geometric distor-

tion in GE EPI data. For example, there may be increased opportunity

for subject motion due to added scan time, as two additional SE scans

must be acquired (forward and reverse PE) versus only one additional

GE scan (reverse) to correct GE EPI data (which itself can serve as the

forward image in the GE oppPE pair). Further, when using SE oppPE

field maps to correct distortion in GE data, image contrast differences

between SE and GE could lead to incorrect mapping of voxel shifts in

regions of local signal compression (Embleton et al., 2010; Graham

et al., 2017). Thus, in the current study, we sought to directly and

quantitatively compare the performance of different distortion com-

pensation methods that are currently standard in the field, to explore

which method would perform best in our GE fMRI dataset, and

whether we might find empirical evidence for the theorized superior-

ity of SE oppPE methods (Holland et al., 2010).

Previous studies that have compared different methods for geo-

metric distortion compensation have generally focused on data col-

lected at field strengths of 1.5–3 T, for which geometric distortion

may be less extreme as compared to very high field (≥7 T). The prolif-

eration of very high field imaging methods (Olman & Yacoub, 2011),

due in part to efforts such as the Human Connectome Project (HCP;

Van Essen et al., 2013; Vu et al., 2015; Glasser et al., 2016; Vu

et al., 2017; Benson et al., 2018), makes it increasingly important to

achieve effective geometric distortion compensation of high field EPI

data. Therefore, in the current study we examined this issue using 7 T

EPI data that we have collected as part of the Psychosis HCP at the

University of Minnesota's Center for Magnetic Resonance Research.

Prior investigations of geometric distortion compensation

methods have not, generally, included correction for additional gradi-

ent nonlinearities (Glasser et al., 2013). Gradient nonlinearities are

unrelated to distortion due to B0 inhomogeneity, are present in all

three dimensions (PE, readout, and through-slice), and are sequence

independent (Bakker et al., 1992). These gradient nonlinearities can

be on the order of 1–2% (Bakker et al., 1992; Jezzard & Clare, 1999)

and will vary between scanners due to differences in gradient hard-

ware. Distortions due to gradient nonlinearities may therefore con-

found efforts to achieve high spatial fidelity in EPI data, and are

particularly important to consider when trying to unify datasets

acquired on different scanners (e.g., a T1 anatomy acquired at 3 T, and

GE EPI fMRI data acquired at 7 T, as in the current study) or during

different scanning sessions.

In this study, we compared the methods noted above (i.e., GE and

SE oppPE as well as B0 field maps) for the correction of geometric dis-

tortion due to B0 inhomogeneity in GE EPI data collected at very high

field (7 T), following a separate initial step to correct for distortion due

to known gradient nonlinearities. We sought to answer the following

question: which current standard distortion compensation method(s)

would perform best for our 7 T GE fMRI data? This study presents a

framework within which to answer this question for a given dataset.

We do not intend to prescribe one method as definitively superior

over another in all cases, as relative performance is expected to

depend on acquisition parameters, order and timing of the acquisition

of EPI and field map scans, scanner and radiofrequency coil hardware,

the brain regions being examined, and the details of the processing

pipeline that is used. Our results suggest that all of the examined

methods improved correspondence between GE EPI and T1 anatomi-

cal data, with the best performance across the whole brain being

observed for GE oppPE field map methods in our dataset.

2 | METHODS

2.1 | Participants

We recruited 31 participants for the current study from a larger sam-

ple as part of the Psychosis HCP. This included 12 patients with a

diagnosed psychotic disorder (e.g., schizophrenia), 9 first-degree bio-

logical relatives of patients with psychosis (i.e., parents, siblings, or

children), and 10 healthy controls. Group differences were not exam-

ined in this particular study, as a subject's mental health status was

not deemed relevant to the assessment of geometric distortion com-

pensation methods. We chose to study a diverse population

(i.e., including patients and controls, not expert MRI subjects) in order

to make our results more broadly applicable to the type of MRI data

that would be obtained in clinical populations such as adults with psy-

chosis. Subject demographics were as follows: 20 female and 11 male

participants, mean age was 45 years (SD = 11 years).

Inclusion criteria for the Psychosis HCP were as follows: age 18–

65 years, English as primary language, the ability to provide informed

consent, no legal guardian, no alcohol or drug abuse within the last

2 weeks, no alcohol or drug dependence within the last 6 months, no

diagnosed learning disability or IQ less than 70, no current or past

central nervous system disease, no history of head injury with skull

fracture or loss of consciousness longer than 30 min, no electrocon-

vulsive therapy within the last year, no tardive dyskinesia, no visual or

hearing impairment, no condition that would inhibit task performance

such as paralysis or severe arthritis. All patients had a history of

bipolar I, schizophrenia, or schizoaffective disorder and were not

adopted. Relatives had a biological parent, sibling, or child with a his-

tory of one of these disorders and were not adopted. Controls had no

personal or family history (parents, siblings, children) of these disor-

ders. Additional inclusion criteria for this particular study included the

ability to fit comfortably within the scanner bore (60 cm diameter)

and the radio frequency head coil (head circumference less than

62 cm), weight less than 440 pounds, and corrected Snellen visual

acuity of 20/40 or better. Further, all participants had completed two

3 T fMRI scanning sessions prior to 7 T scanning and did not exceed a

limit of 0.5 mm of head motion across greater than 20% of TRs from

all 3 T fMRI runs (approximately 2 hr of scanning). Finally, participants

included in this study had all 7 T MRI scans acquired in the prescribed
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order (see below) and did not exceed a limit of 0.5 mm of head motion

on greater than 20% of TRs during 7 T fMRI scans (1.25 hr of

scanning).

All participants provided written informed consent prior to partic-

ipation and were compensated for their time. All experimental proce-

dures complied with the regulations for research on human subjects

described in the Declaration of Helsinki and were approved by the

Institutional Review Board at the University of Minnesota. All subjects

were found to have sufficient capacity to provide informed consent,

as assessed by the University of California Brief Assessment of Capac-

ity to Consent (Jeste et al., 2007).

2.2 | Experimental protocol

7 T MRI data were acquired on a Siemens MAGNETOM scanner (soft-

ware version: VB17). This scanner was equipped with an 8-kW radio

frequency power amplifier and body gradients with 70 mT/m maxi-

mum amplitude and 200 T/m/s maximum slew rate. We used a Nova

Medical (Wilmington, MA) radio frequency head coil with 1 transmit

and 32 receive channels for all 7 T MRI data acquisition. Subjects

were provided with head padding inside the coil and instructed to

minimize head movements during scanning. We placed 5 mm thick

dielectric pads (3:1 calcium titanate powder in water) under the neck

and beside the temples, as this has been shown to improve transmit

B1 homogeneity in the cerebellum and temporal lobe regions during

7 T MRI (Vu et al., 2015).

MRI data were acquired using sequences and scan parame-

ters that followed the original Young Adult HCP (Benson

et al., 2018; Glasser et al., 2016; Van Essen et al., 2013; Vu

et al., 2015; Vu et al., 2017). Parameters for the different MR

scans are listed in Table 1. Additional scan parameters include a

multiband acceleration factor of 5 for GE and SE fMRI, and

GRAPPA parallel imaging acceleration factor (R) of 2 for all

scans except the B0 field map (no acceleration). The delta TE for

the B0 field map scan was 1.02 ms. Single-band reference scans

were acquired with each multiband EPI scan (GE and SE). Data

were acquired with an oblique-axial orientation using Siemens

Auto Align to standardize the orientation and positioning of the

imaging field of view.

7 T MRI data in this study were acquired in a fixed scan order:

1. auto-align scout and localizer,

2. GE EPI with PA PE direction (3 TRs; Figure 1b),

3. first GE EPI with AP PE direction (324 TRs; Figure 1a),

4. second AP GE scan (297 TRs),

5. B0 field mapping scan (Figure 1d,e),

6. AP SE scan (3 TRs; Figure 1g),

7. PA SE scan (3 TRs; Figure 1h),

8. third AP GE scan (468 TRs).

Inhomogeneity in the B0 field was minimized prior to 7 T fMRI

data acquisition using the Siemens automated B0 shimming procedure

(256 � 256 � 256 mm field of view). Shim currents were calculated

to minimize field variation within a 130 � 170 � 120 mm3 region

(i.e., the adjust volume) with an oblique-axial orientation centered on

the brain (standardized by Auto-Align). To assess shim quality, the

linewidth of water (full width at half-maximum [FWHM]) was mea-

sured in the Siemens Interactive Shim tab during each scanning ses-

sion before fMRI data were acquired (for this study, mean linewidth

across subjects = 60 Hz, SD = 11 Hz). Shim values were stored and

applied across all scanning runs using a third-party stand-alone pro-

gram (shimcache), to prevent any accidental loss of the B0 shim

between scans.

3 T structural MRI data were acquired on a Siemens MAG-

NETOM Prisma scanner (software version: VE11C). This scanner was

equipped with two RF power amplifiers with a combined power of

40 kW, and body gradients with 80 mT/m maximum amplitude and

200 T/m/s maximum slew rate. Data were acquired using a Siemens

32 channel radio frequency head coil. T1- and T2-weighted anatomical

scans (parameters listed in Table 1) were acquired in the first of two

3 T MRI scanning sessions.

TABLE 1 Scan parameters.

Scan Field TR (ms) TE (ms)
Echo
spacing (ms)

Flip
angle (�) Resolution Partial Fourier Slices FOV (mm)

GE EPI 7 T 1,000 22.2 0.64 45 1.6 mm

iso.

7/8 85 208 � 208

B0 field

map

7 T 642 4.08/5.1 — 32 1.6 mm

iso.

6/8 85 208 � 208

SE EPI 7 T 3,000 60 0.64 90/180 1.6 mm

iso.

7/8 85 208 � 208

T1 anat. 3 T 2,500 ms 1.81/3.6/5.39/7.18 11.2 8 0.8 mm

iso.

Off (phase) and 6/8

(slice)

208 256 � 256

T2 anat. 3 T 3,200 564 3.86 Variable 0.8 mm

iso.

Allowed (phase) and

off (slice)

208 256 � 256

Abbreviations: anat., anatomical; EPI, echo planar imaging; GE, gradient echo; FOV, field of view; iso., isotropic; SE, spin echo; TE, echo time; TR,

repetition time.
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2.3 | Data analysis and statistics

Our data processing pipeline is summarized in Figure 1j. All data

processing steps were performed using either AFNI (Cox, 1996) (version

18.2.04) or FSL (Smith et al., 2004) (version 5.0.9), as noted below. Data

were converted from DICOM to compressed (g-zipped) NIFTI format

using AFNI's to3d program. We acquired at least three TRs for all EPI

scans in order to allow the signal to reach steady state. To obtain a single

time point for all EPI scans for the sake of computational efficiency, we

took the temporal median of 3 TRs at the beginning or end of each scan

(i.e., the time points closest to the respective field map scan[s], see below)

using AFNI's 3dTstat. Averaging was done to improve signal-to-noise; we

used the median to prevent non-steady-state signals at the beginning of

a scan from biasing the average.

In order to remove known geometric distortions due to gradient

nonlinearities, we then performed gradient nonlinearity unwarping

using gradunwarp (version 1.0.3; github.com/Washington-University/

gradunwarp), with the warp field (also known as voxel displacement

map) applied using AFNI's 3dNwarpApply. This step is comparable to

the correction for static gradient nonlinearities available within the

HCP pipeline (Glasser et al., 2013). In Supplemental Figure 1, we show

examples of voxel shift maps from gradient nonlinearity unwarping

from a single subject. In Supplemental Table 1, we quantify the magni-

tude of gradient nonlinearity correction across all subjects. This shows

that gradient nonlinearity distortion is often small for many voxels

within the brain, but can be quite significant (up to about 4 mm) for

some voxels. In our typical analysis path (i.e., in other studies), we

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

F IGURE 1 Data and processing
pipeline. (a,b) Gradient echo (GE) data
with opposite (anterior–posterior
[AP] and posterior–anterior [PA],
respectively) phase encoding directions.
White box in (a) indicates that the GE AP
data were the base dataset to which all
distortion compensation methods were
applied. All brain images are examples

from the same parasagittal section in the
same subject, after gradient nonlinearity
correction was applied. (c) GE data
corrected for geometric distortion using
GE opposite phase encoding (oppPE) field
map. (d,e) B0 field map magnitude and
phase data, respectively. (f) GE data with
B0 field map distortion compensation
applied. (g,h) Spin echo (SE) oppPE data
(AP and PA, respectively). (i) GE data after
SE oppPE field map distortion
compensation. (j) A summary of our data
processing pipeline steps and software
(italics). Arrows indicate the sequence in
which processing steps were performed
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apply all geometric corrections within a single resampling step to mini-

mize blurring. In the current study, we first applied gradient non-

linearity correction and then separately applied B0 inhomogeneity

distortion compensation, which allowed us to specifically examine the

performance of B0 inhomogeneity distortion correction methods

implemented in AFNI versus FSL.

2.3.1 | Distortion compensation

We then performed corrections for geometric distortion due to B0

inhomogeneity on our 7 T GE EPI data using each of the following five

methods:

1. GE oppPE field map correction (Andersson et al., 2003; Embleton

et al., 2010; Morgan et al., 2004) via AFNI's 3dQwarp.

2. GE oppPE correction with FSL's topup. Distortion correction in

each of the two GE oppPE methods was applied to the median of

TRs 1–3 from the first AP GE EPI scan (i.e., the scan closest in time

to the GE oppPE field maps scans).

3. B0 field map correction (Hunsche et al., 2004; Hutton et al., 2002;

Jezzard & Balaban, 1995) in FSL's fugue, applied to the median of

TRs 295–297 from the second AP GE scan (the closest to the B0

field map scan in time).

4. SE oppPE field map correction using AFNI's 3dQwarp.

5. SE oppPE correction with FSL's topup. Distortion correction for

both SE oppPE methods was applied to the median of TRs 1–3

from the third AP GE scan (the closest in time to the SE oppPE

field maps scans).

Example brain images for GE oppPE correction using 3dQwarp

(Figure 2a) and topup (Figure 2b), B0 field map correction using fugue

(Figure 2c), and SE oppPE correction using 3dQwarp (Figure 2d) and

topup (Figure 2e) are provided, as well as uncorrected data (Figure 2f).

We also present example images showing the difference between GE

EPI data before and after distortion compensation in Supplemental

Figure 2. The average voxel-wise difference between uncorrected and

corrected data across subjects is shown for each method in Supple-

mental Figure 3.

The goal of our analysis was to facilitate comparisons of data

quality between these five approaches for distortion compensation,

which are current standards in the field. The details of each distortion

compensation method are provided below (see Section 2.4 for a link

to our published code for full details). Note that these methods are all

(a) (b) (c)

(d) (e) (f)

F IGURE 2 Distortion corrected echo planar imaging (EPI) data. Brain images are shown following distortion compensation using gradient
echo (GE) opposite phase encoding (oppPE) data in AFNI's 3dQwarp (a) or FSL's topup (b), B0 field map data via FSL's fugue (c), and spin echo
(SE) oppPE data in AFNI's 3dQwarp (d) or FSL's topup (e), or without distortion correction (f). Green lines show the smoothed white matter

surface model from FreeSurfer derived from the T1 anatomical data, which illustrates good co-registration with the EPI data overall. Colored
arrows indicate regions of interest with notable distortion (red: ventromedial prefrontal cortex [vmPFC], yellow: dorsomedial prefrontal cortex
[dmPFC], blue: posterior regions), which are examined in subsequent analyses. All images show the same sagittal section from the same example
subject, after gradient nonlinearity correction and alignment to the T1 anatomical data. Note that the EPI data in this image exhibit greater
blurring than those in Figure 1c,f,i (which reflect our true data quality), as the data here have undergone an additional resampling step to
transform them into the space of the T1 anatomy, to permit visualization of the smoothed white matter surface. Across panels, differences in
distortion compensation and alignment are visible between methods
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designed to correct geometric distortions in the PE direction only

(on the order of several millimeters); distortions in the readout and

through-slice directions (generally less than 0.1 mm) (Jezzard &

Balaban, 1995) are not corrected by these methods and are not con-

sidered further in the present study.

For the GE and SE oppPE methods using AFNI's 3dQwarp, both

the AP and PA scans were independently masked using AFNI's

3dAutomask to remove nonbrain image regions. Next, the warp field

for distortion compensation was calculated using 3dQwarp with the

-plusminus flag (indicating that the desired undistorted brain image is

“in between” the AP and PA scans). This program iteratively calculates

the difference in distortion between AP and PA data by fitting cubic

polynomials within corresponding three dimensional rectangular

image regions of progressively smaller size, starting with the entire

volume, down to a minimum region size in our study of 9 mm. Pro-

gressive blurring was applied to the patches in each iteration using a

spatial median filter. 3dQwarp allows for progressive blurring to avoid

matching fine spatial details in early iterations when attempting to cal-

culate distortion across large image regions. On the first iteration

(whole volume), data were median filtered within a radius of 1.6 mm.

In subsequent iterations, the median filter radius was set to be 5% of

the patch size, such that less blur was applied to smaller image

regions. Distortion compensation of the GE EPI scan was then per-

formed by applying the resulting warp field using AFNI's

3dNwarpApply with sinc interpolation for the final resampling step.

For full details on 3dQwarp, see afni.nimh.nih.gov/pub/dist/doc/

program_help/3dQwarp.html.

For distortion based on GE and SE oppPE field maps using FSL's

topup (Andersson et al., 2003), the warp field was calculated using

the default topup parameters (i.e., those provided by FSL within the

b02b0.cnf file). The topup method involves calculating the difference

in geometric distortion between AP and PA scans across multiple

iterations, with progressively finer resolution fits using B-splines. The

resolution (knot spacing) for the splines varied across iterations from

19.2 to 3.2 mm in our study. Data were progressively blurred across

iterations using a Gaussian kernel with an FWHM ranging from 8 to

0 mm (i.e., no smoothing) for lower to higher resolution fits. Similar

to 3dQwarp, progressive blurring helps to prevent topup from

matching fine details in early iterations when calculating distortion

across larger image regions. Here, data in the first five iterations

(i.e., fit with lower resolution) were sub-sampled by a factor of two,

to speed up computation time. Prior to topup, both the AP and PA

scans were zero padded with one additional slice in the superior

direction, to obtain an even number of slices (as required for the

voxel subsampling). Geometric distortion within the GE EPI scan was

corrected based on the calculated warp field using FSL's applytopup,

with the Jacobian modulation method for intensity restoration and

cubic B-spline interpolation. The added empty slice was removed

after distortion compensation. This step is analogous to the oppPE

method for geometric distortion compensation of fMRI data

implemented in the HCP minimal preprocessing pipeline (Glasser

et al., 2013). For more details on topup, see fsl.fmrib.ox.ac.uk/fsl/

fslwiki/topup/TopupUsersGuide.

For the B0 field map method using FSL's fugue, nonbrain regions

of the magnitude portion of the B0 field map were removed using

FSL's bet. The difference between the phase portions of the B0 field

map scans with different TEs were exported by the scanner automati-

cally. This phase difference map was then masked within the

extracted brain region, converted from scanner units to radians per

second using FSL's fsl_prepare_fieldmap tool (which also includes

phase unwrapping), and then blurred (i.e., median filtered,

radius = 1.6 mm) using AFNI's 3dMedianFilter. This blurring step was

done in order to reduce noise in the field map, especially in regions

near the outer edge of the brain. Distortion compensation of the GE

EPI data was then performed using this phase map via FSL's fugue. For

comparison with oppPE methods, we converted phase difference

maps to voxel shift maps by multiplying by total readout time and

dividing by 2π. We note that unlike 3dQwarp and topup, the fugue

method produces a voxel shift map in which the values are zero out-

side of the brain (Figure 5). For full details on fugue, please see fsl.

fmrib.ox.ac.uk/fsl/fslwiki/FUGUE/Guide.

Our primary analysis (reported in the Analysis #1: main study

section of the Results) assumes there was no head motion between

each field map and the corresponding GE EPI scan, and that any dif-

ference between oppPE scan pairs is caused by geometric distortion

and not head motion (Hutton et al., 2002). Thus, no alignment

between field map and GE EPI scans was performed prior to distor-

tion compensation, in order to avoid any spurious 'correction' of dif-

ferences between scans that was in fact caused by geometric

distortion (rather than head motion). We performed an additional

analysis that included an initial alignment between EPI and field map

data, described below as Analysis #2, in order to examine the impact

of this methodological decision.

2.3.2 | Alignment

Following distortion compensation, we aligned GE EPI data and T1

anatomical scans using AFNI's align_epi_anat.py function (Figures 2

and 3c). This alignment method uses a local Pearson correlation (lpc)

cost function (Saad et al., 2009), which seeks to co-register brain

structures based on correlations between voxels within a small neigh-

borhood (several millimeters). This alignment procedure is similar to

boundary-based registration (Greve & Fischl, 2009), such as is

implemented in the HCP minimal preprocessing pipeline (Glasser

et al., 2013). We performed rigid body alignment (six-parameter: x, y,

z, roll, pitch, yaw) to the T1 for EPI data from each of the five distor-

tion compensation methods above. We used a rigid body alignment

procedure in order to preserve the geometric properties of the GE EPI

datasets, to facilitate clear comparison between the various distortion

compensation methods. While others, including the original Young

Adult HCP (Vu et al., 2015), have used 9- or 12-parameter alignment

methods to co-register 7 T fMRI and 3 T anatomical data, in the cur-

rent study, we chose to use a six-parameter alignment method along

with a separate gradient nonlinearity correction step. In this way, we

omitted arbitrary scaling of our 7 T EPI data to match the 3 T
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anatomy, and instead focused on quantifying the correction of geo-

metric distortions based on first principles.

In addition to the five distortion-compensation conditions, we

included two further alignment-only analysis conditions in which the

GE EPI data were aligned with the anatomical scans without any initial

distortion compensation. In the six-parameter alignment-only condi-

tion, EPI data without distortion compensation were aligned with the

T1 anatomy using six-parameter (rigid-body) registration with the lpc

cost function, as above. In contrast, the 12-parameter alignment only

condition used 12 parameter affine alignment (six additional parame-

ters for scaling and shearing). We were motivated to include the

12-parameter alignment method to determine the extent to which

the addition of the six scaling and shearing parameters would mirror

geometric distortion compensation performed with oppPE or B0 field

mapping methods.

This procedure yielded a total of seven GE EPI datasets per sub-

ject for our analyses (five distortion compensated versions detailed

above, plus 6- and 12-parameter alignment-only versions). We refer

to these as the seven different analysis conditions below, as they form

the basis of our comparison of different approaches for geometric dis-

tortion compensation.

Prior to alignment, the T1 and T2 anatomical data were processed

using the HCP minimal preprocessing pipeline (Glasser et al., 2013)

(version 3.22.0), including gradient nonlinearity correction with

gradunwarp and skull stripping. Note that no correction for geometric

distortion due to B0 inhomogeneity was performed for these anatomi-

cal data, as any such distortions are expected to be minimal (<0.1 mm)

(Studholme et al., 2000). Although T2-weighted scans have a more

similar intensity profile to the GE EPI data, T1 anatomical scans are

currently more widely used in the field of human functional

neuroimaging, and robust approaches for aligning EPI and T1 data

have been developed (Saad et al., 2009). Thus, we chose to use the

T1-weighted scan as our anatomical reference in our primary analysis

in order to increase the generalizability of our results. We also con-

ducted an additional analysis (Analysis #4 below) using the T2-

weighted scan as our anatomical reference, for comparison purposes.

We corrected intensity inhomogeneities across the brain in the T1

anatomical data using AFNI's 3dUnifize.

2.3.3 | Tissue segmentation

In order to facilitate a more detailed analysis of how different distor-

tion compensation methods performed in gray matter and white mat-

ter regions, we next segmented different tissue types within our T1

and EPI data, with the goal of obtaining brain tissue masks with CSF

regions excluded. We performed tissue segmentation for each subject

using the T1 and T2 anatomical scans to define individual white matter

and pial surfaces in FreeSurfer (Dale, Fischl, & Sereno, 1999; Dale &

Sereno, 1993) (version 5.3.0) as part of the HCP minimal

preprocessing pipeline (Glasser et al., 2013) (Figure 3a,b). For each of

the seven analysis conditions in each subject, we then transformed

both the T1 and FreeSurfer's segmentation data (wmparc) into the

space of the GE EPI scan using the alignment information (obtained

above) via AFNI's 3dAllineate. Individual binary masks for gray matter

and white matter were defined from the transformed wmparc file

based on FreeSurfer's anatomical labels (surfer.nmr.mgh.harvard.edu/

fswiki/FsTutorial/AnatomicalROI/FreeSurferColorLUT). To define

binary masks for cerebrospinal fluid (CSF), we summed the gray and

white matter masks, blurred the summed data using AFNI's 3dmerge

F IGURE 3 Alignment and
segmentation of T1 (a–c) and echo planar
imaging (EPI) data (c–e). Transparent
colored overlays in (b,e) show binary
masks for gray matter (blue), white matter
(red), and cerebrospinal fluid (CSF; green)
as a result of tissue segmentation. Yellow
lines in (c) show edges from 7 T gradient
echo (GE) EPI (using AFNI's 3dedge3)

overlaid on T1 data, to show alignment. All
brain images are examples from the same
axial section in the same subject, after
gradient nonlinearity correction,
geometric distortion compensation, and
co-registration
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(FWHM = 0.5 mm), and then masked the blurred data at a value of

0.2 to create a binary mask that included the region surrounding the

brain (putative CSF). We then summed this mask with a binary mask

of the ventricles from FreeSurfer's wmparc file, and subtracted the

gray and white matter masks to obtain a CSF mask. Gray matter,

white matter, and CSF masks from the T1 anatomy were used to aid

segmentation of the 7 T GE EPI data (below).

To segment the 7 T GE EPI data into gray matter, white matter,

and CSF regions (Figure 3d,e), we first corrected spatial inhomogenei-

ties in the GE EPI data using AFNI's 3dUnifize, and then derived a

whole-brain mask using AFNI's 3dAutomask. We then segmented the

7 T fMRI data from each analysis condition in each subject into gray

matter, white matter, and CSF using AFNI's 3dSeg function, with the

gray matter, white matter, and CSF masks from the T1 scan (above) as

seed data (cset file). Tissue masks from the 7 T fMRI data were median

filtered with a radius of 1.6 mm using AFNI's 3dMedianFilter to reduce

noise.

2.3.4 | Dice coefficients

To quantify alignment between T1 anatomical and GE EPI data (and

thus the effectiveness of distortion compensation), we calculated the

overlap between each subject's T1 and fMRI data in each of the seven

analysis conditions using Dice coefficients via AFNI's 3ddot function.

The Dice coefficient is a measure of how well two binary datasets

overlap in three-dimensional space. This metric varies between zero

(no overlap) and one (identity) and is calculated by taking the inter-

section of the two datasets, multiplying by two, and then dividing by

the total number of voxels in both scans. Dice coefficients were calcu-

lated using two different types of binary masks of the 3 and 7 T data:

(a) a whole-brain mask (including some CSF) using AFNI's 3dAutoMask,

and (b) a CSF-excluded mask based on the segmented T1 and fMRI

data (i.e., including white matter [red] and gray matter [blue], but not

CSF [green] regions, as shown in Figure 3b,e). Note that the EPI masks

were generated from the distortion corrected EPI data themselves,

and not from the corresponding field map scans. We also note that

both residual distortion and signal loss due to through-slice dephasing

will result in lower Dice coefficient values, indicating poorer agree-

ment with the corresponding T1 scan.

2.3.5 | Mutual information

We also quantified alignment quality by calculating mutual informa-

tion between the T1 and fMRI data for each of the seven analysis con-

ditions in each subject. This metric, which comes from the information

theory literature, reflects the similarity of two datasets by quantifying

how much is learned about the second dataset from knowing a value

in the first. Mutual information is often used to assess multimodal

brain image registration (Studholme, Hill, & Hawkes, 1999), and

should be maximal for two identical datasets that are perfectly

aligned. Specifically, mutual information is defined as the difference

between the joint entropy and the sum of the marginal entropies for

two datasets. Compared to Dice coefficients, mutual information is

more sensitive to differences in alignment in internal brain structures.

Prior to calculating mutual information, we excluded nonbrain regions

of the T1 and EPI data using the whole-brain masks described above

(intensity values for regions outside the mask were set to zero). We

computed mutual information using the mutInfo function in MATLAB

(mathworks.com/matlabcentral/fileexchange/35625-information-

theory-toolbox).

2.3.6 | Region of interest analyses

To examine the effect of different distortion compensation methods

within specific regions of interest (ROIs), we created spherical binary

masks in ventromedial prefrontal cortex (vmPFC; radius = 26 mm;

Figure 6d), dorsomedial prefrontal cortex (dmPFC; radius = 21 mm;

Figure 7d), and a large posterior region encompassing the occipital

pole and posterior cerebellum (referred to as the posterior ROI;

radius = 34 mm; Supplemental Figure 10). In each subject, we took

the intersection of each of these ROIs with the whole-brain masks

from the T1 and EPI scans for each of the seven analysis conditions

to create whole-ROI masks; in Supplemental Figure 4, we show

examples of whole-ROI masks from both vmPFC (a and b) and

dmPFC (e and f). We also took the intersection between each of

the spherical ROIs and the CSF-excluded masks for the T1 and EPI

data in each condition to define CSF-excluded ROI masks

(Supplemental Figure 4c,d,g,h). We then computed the Dice coeffi-

cient between these T1 and EPI ROI masks, as described for the

whole brain above. Finally, we took the intersection between each

spherical ROI mask and the T1 anatomical and EPI scan data them-

selves, and then computed mutual information between the T1 and

EPI data within each ROI for each analysis condition in each subject,

excluding nonbrain regions as in our whole-brain mutual information

calculation above.

2.3.7 | Additional analyses

In addition to our main study (Analysis #1), we conducted six further

analyses focused on the following: (a) prealigned data, (b) single-band

reference data, (c) using a T2 reference anatomy, (d) PA PE data,

(e) Young Adult HCP data, and (f) correcting SE data. Methodological

details for these analyses are presented in the Supplemental

methods.

2.3.8 | Statistics

Statistical analyses were performed in MATLAB (version 2017b). Ana-

lyses of variance (ANOVAs) were performed using the anovan func-

tion, with subjects treated as a random effect, and the seven analysis

conditions (i.e., the five different distortion compensation methods,
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plus the 6- and 12-parameter alignment-only data) as a within-

subjects factor. Normality and homogeneity of variance were

assessed by visual inspection of the data (e.g., Supplemental Figure 6).

Post hoc comparisons between analysis methods were performed

using paired two-tailed t tests, with false discovery rate (FDR) correc-

tion for 21 multiple comparisons (pair-wise comparisons between the

seven analysis conditions).

Because the effects of interest (i.e., differences between distor-

tion compensation methods) were within- rather than between-sub-

jects, we used within-subjects error bars (Morey, 2008) to visualize

the variance in each analysis condition, thereby excluding the

between-subjects variance for display purposes. To do so, we used an

established method (Morey, 2008) that involved subtracting the mean

value for each subject (across all analysis conditions) from all data

points for that individual, and then adding the grand mean (across all

subjects and conditions).

Across all analyses, data were visualized in AFNI using default set-

tings for display purposes (i.e., image histograms are scaled so that

black ≤2%, white ≥98%), unless otherwise noted. Brain images are

shown in neurological convention (i.e., left is left).

2.4 | Code and data availability

We have made our analysis code publicly available on GitHub (github.

com/mpschallmo/DistortionCompensation). Our imaging data are

available from the HCP Connectome Coordination Facility (intradb.

humanconnectome.org; first Psychosis HCP data release planned for

third quarter, 2021).

3 | RESULTS

3.1 | Analysis #1: Main study

3.1.1 | Whole-brain analysis

To compare different distortion compensation methods, we first

examined the overlap between whole-brain masks obtained from 7 T

GE EPI data that had been corrected for geometric distortion and T1-

weighted anatomical data (T1 hereafter), following co-registration

(Figure 2; Figure 3c). Data from seven different conditions (i.e., paths

F IGURE 4 Main whole-brain results. (a) Overlap (Dice coefficient) between gradient echo (GE) echo planar imaging (EPI) and T1 whole-brain
masks, across different distortion compensation methods. Gray lines indicate conditions that do not differ significantly (post hoc paired t tests,
threshold p < .05, false discovery rate [FDR] corrected). X-axis labels: GE oppPE = GE opposite phase encoding field map (red), B0 FM = B0 field
map (green), SE oppPE = spin echo opposite phase encoding field map (blue), Align only = alignment-only (no explicit geometric distortion
compensation). (b) Same, but for binary whole-brain masks with regions of cerebrospinal fluid (CSF) excluded, following tissue segmentation.
(c) Mutual information between GE EPI and T1 scan data, within the respective whole-brain masks. Squares show data corrected using AFNI,
triangles show data from FSL, and circles show alignment-only data. Error bars are SEM calculated within subjects (Morey, 2008). (d) Example T1
anatomical image with overlaid whole-brain masks: T1 (teal), EPI (yellow), and T1-EPI overlap (red). The Dice coefficient analysis in (a) quantified
the agreement between EPI and T1 masks (i.e., red vs. teal and yellow), whereas (b) did the same after excluding CSF regions. EPI and T1 masks do
not overlap perfectly; midline CSF may be included in the automated EPI whole-brain mask (yellow, dorsal), which prompted us to examine CSF-
excluded masks (b). Further, through-slice dephasing leads to EPI signal loss in orbital frontal cortex (cyan, ventral), which prompted examination
of the ventromedial prefrontal cortex (vmPFC) region of interest (ROI) in Figure 6. All of the tested distortion compensation methods improved
agreement between functional MRI (fMRI) and T1 datasets. For our particular dataset, GE oppPE field maps (red) tended to produce the best
results
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to EPI-T1 registration) were examined (Figure 1j), including those

obtained using five different distortion correction methods, and two

alignment-only datasets (6- and 12-parameter alignment). Example

brain images corrected using GE oppPE (3dQwarp and topup), B0 field

map (fugue), and SE oppPE methods (3dQwarp and topup), as well as

uncorrected data, are shown in Figure 2. Binary masks were gener-

ated from both the EPI data and the co-registered T1 anatomy in each

of the seven analyses separately, in each of our 31 subjects. Overlap

between EPI and T1 masks (Figure 4d) was quantified using the Dice

coefficient; higher Dice coefficients reflect more-effective distortion

compensation.

Dice coefficients for the whole-brain masks were significantly dif-

ferent across analysis conditions (F6,30 = 42.7, p = 4 � 10�32), as

shown in Figure 4a (see also Supplemental Figure 6 for a visualization

of all data points). This indicates that the method of distortion com-

pensation significantly affected the degree to which whole-brain

masks from EPI and T1 anatomical scans overlapped. Post hoc paired

t tests (FDR corrected for 21 comparisons between conditions) rev-

ealed that the overlap between EPI and T1 anatomical masks was

highest and comparable for the two GE oppPE methods using AFNI's

3dQwarp and FSL's topup (red symbols). Dice coefficients were lower

when using the B0 field map (using FSL's fugue; green triangle) and SE

oppPE (via 3dQwarp; blue square). Note that in Figure 4, gray lines

indicate conditions that do not differ significantly based on post hoc

tests (i.e., conditions that do differ significantly are not linked by gray

lines; all significant paired t30 values ≥2.82, FDR-corrected p-values

≤.042). Lower Dice coefficients were observed for the SE oppPE data

corrected using topup (blue triangle), which did not differ from the

uncorrected data using only a six-parameter alignment (white circle).

Dice coefficients for whole-brain masks were lowest for the data

using a 12-parameter alignment only (gray circle).

Next, we examined overlap of tissue masks with CSF regions

excluded (see Section 2), in order to more closely examine how differ-

ent distortion compensation methods performed in regions of gray

matter and white matter. Dice coefficients for CSF-excluded masks

differed significantly between different analysis conditions

(F6,30 = 91.5, p = 5 � 10�52; Figure 4b), showing that the agreement

between non-CSF brain regions from the EPI and T1 anatomical scans

depended on the method of distortion compensation that was used.

Post hoc paired t tests revealed that the overlap for non-CSF regions

was highest when using GE oppPE field maps for distortion compen-

sation (via either AFNI's 3dQwarp or FSL's topup; red symbols; all sig-

nificant paired t30 values ≥2.84, FDR-corrected p-values ≤.032). The

overlap for the CSF-excluded masks was lower when distortion com-

pensation was performed using a B0 field map (via FSL's fugue; green

triangle) or SE oppPE field map (in either AFNI's 3dQwarp or FSL's

topup; blue symbols), and lowest for the alignment-only data (using

either six-parameter [white circle] or 12-parameter alignment

methods [gray circle]).

We further compared distortion compensation methods by calcu-

lating the mutual information between fMRI and T1 data across the

whole brain, as higher mutual information reflects better alignment.

Compared to the Dice coefficient, mutual information is more

sensitive to differences in the alignment of internal brain structures,

as it is based on the intensity of all voxels within the brain. Within the

whole-brain masks, mutual information between EPI and T1 anatomi-

cal scans was significantly different across analysis conditions

(F6,30 = 35.1, p = 7 � 10�28; Figure 4c), reflecting a difference in

alignment quality for different distortion compensation methods.

In particular, post hoc tests revealed that mutual information across

the brain was generally highest when using the GE oppPE field map

methods for distortion compensation (red squares; all significant

paired t30 values ≥3.48, FDR-corrected p-values ≤.017). Mutual infor-

mation was generally comparable between B0 field map, SE oppPE

methods and the six-parameter alignment-only data (white circle). The

12-parameter alignment-only method (gray circle) yielded lower

mutual information compared to all other conditions.

3.1.2 | ROI analyses

Thus far, our analyses have focused on metrics to quantify distortion

compensation across the whole brain. However, there is significant

variability in the amount of geometric distortion due to B0 inhomoge-

neity (and in the voxel shift applied by different correction methods)

between brain regions, as shown in Figure 5 and Supplemental

Figure 7. Such regional variability is quantified in Supplemental -

Figure 8, which shows example histograms of voxel shift data

obtained using different distortion compensation methods across

brain regions from a single subject. Further, Supplemental Figure 9

summarizes the voxel shift data (mean, median, SD, and maximum

absolute shift) from different distortion compensation conditions and

different brain regions across all subjects.

To examine whether our results might be affected by regional

variability in distortion due to B0 inhomogeneity across the brain, we

next compared the performance of different distortion compensation

methods within specific ROIs; specifically, the vmPFC (Figure 6d, Sup-

plemental Figure 4a,b), the dmPFC (Figure 7d, Supplemental

Figure 4c,d), and a posterior ROI which included the occipital pole and

posterior cerebellum (Supplemental Figures 7 and 10). Each of these

ROIs exhibit substantial geometric distortion for EPI scans with an AP

PE direction, but in vmPFC there is also significant signal dropout due

to through-slice dephasing (Figures 2 and 5a). Thus, we examined the

same distortion compensation metrics used above (Dice coefficients

and mutual information) but restricted to these ROIs, to assess how

different distortion compensation methods may perform in regions

with significant distortion, both with and without additional dropout.

We first asked how different distortion compensation methods

would perform in vmPFC (Figure 6d, Supplemental Figure 4a,b), a

region that shows substantial geometric distortion and dropout. In

particular, we were interested in whether SE oppPE field maps might

outperform GE oppPE methods, as superior distortion correction for

SE field maps has been theorized on the basis that the 180�

refocusing pulse reduces dropout in SE sequences (Holland

et al., 2010). Dice coefficients for vmPFC masks (Figure 6a,b) showed

higher overlap between T1 anatomical and EPI data for SE oppPE field
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map methods (blue) versus GE oppPE (red), with B0 field map correc-

tion using fugue (green) in the middle (ANOVAs, main effects of condi-

tion for whole-vmPFC masks and CSF-excluded masks, F6,30 > 46.7,

p-values < 3 � 10�34). However, there was little or no advantage for

any of these methods when compared to scans with no distortion

compensation applied at all (6- or 12- parameter alignment only; white

and gray, respectively). This suggests that although SE oppPE

methods yielded the best agreement between T1 and EPI data in the

vmPFC region, distortion compensation may not substantially improve

T1-EPI agreement in vmPFC, compared to no correction. Further,

mutual information between T1 and EPI data in vmPFC was not signif-

icantly different across conditions (ANOVA, main effect, F6,30 = 0.99,

p = .4), suggesting that none of the distortion compensation methods

we tested had a substantial effect on T1-EPI agreement in vmPFC

according to this metric.

Next, we compared the performance of different distortion

compensation methods within a region that also shows substantial

geometric distortion due to B0 inhomogeneities, but less dropout

due to through-slice dephasing, dmPFC (Figure 7d, Supplemental

Figure 4c,d). Here, we found results that were more similar to our

whole-brain results, as compared to those from vmPFC. In particu-

lar, we saw substantial differences in dmPFC across distortion com-

pensation methods for all three of our metrics (ANOVAs, main

effects of condition for whole-dmPFC masks, CSF-excluded masks,

and mutual information, F6,30 > 14.1, p-values < 4 � 10�13;

Figure 7), with GE oppPE methods (red) generally yielding the best

agreement between T1 and EPI data in dmPFC. Thus, we conclude

that in regions such as dmPFC in which there is significant geomet-

ric distortion (but not dropout), GE oppPE methods may show

slight advantages over other distortion compensation techniques,
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F IGURE 5 Voxel shift maps for ventral and dorsal regions. (a–e) Ventral regions. Example voxel shift maps from the same ventral axial
section (cyan line; (a)) in the same subject are shown for distortion compensation based on gradient echo (GE) oppPE (b), B0 field map (c), and spin
echo (SE) oppPE (d) correction methods. Color bar indicates voxel shift in the anterior–posterior (positive–negative) direction. Colored vertical

lines indicate the positions of the voxel shift data plotted in (e). Magenta regions in (b–e) show the ventromedial prefrontal cortex region of
interest (ROI) used below (Figure 6). (f–j) Same as in (a–e), but for a more dorsal section. Magenta regions in (g–j) show the dorsomedial prefrontal
cortex ROI used below (Figure 7). GE and SE oppPE corrections in these examples were performed with AFNI's 3dQwarp. Note that the x-axes
differ in (e) and (j). Differences in voxel shifts between correction methods are apparent, particularly in regions such as ventromedial and
dorsomedial prefrontal cortex

4216 SCHALLMO ET AL.



similar to the pattern of results from our earlier whole-brain

analysis.

Finally, we examined how distortion compensation varied in pos-

terior brain regions across our seven analysis conditions

(Supplemental Figures 7 and 10). Like dmPFC, posterior regions

exhibit geometric distortion due to B0 inhomogeneity, but less

through-slice dephasing than in vmPFC. Results within the posterior

ROI differed significantly across condition (ANOVAs, main effects of

condition for whole-ROI masks, CSF-excluded masks, and mutual

information, F6,30 > 10.1, p-values < 1 � 10�9), and were generally

similar to those in dmPFC. Agreement between T1 and EPI data in

posterior regions tended to be higher in the five GE oppPE, B0 field

map, and SE oppPE conditions, as compared to the alignment-only

conditions, but results were similar between the five distortion com-

pensation conditions overall.

3.2 | Analysis #2: Prealigned data

Because our scans were acquired in a fixed order, we considered

whether differences in head motion might have biased our results in

favor of the GE oppPE data, which was acquired near the beginning

of the session (approximately 1.25 hr in total length), rather than

the B0 field map or SE oppPE data, which were acquired near the

end. Specifically, if subjects tended to move more during the B0

field map and SE oppPE scans, or moved more between these scans

and the GE EPI scans on which distortion compensation was per-

formed, then this might degrade the quality of distortion compensa-

tion for the B0 field map and SE oppPE methods as compared to

the GE oppPE method.

To explore this issue, we performed our analyses again after first

aligning all field map and 7 T GE fMRI scans to the magnitude portion

of the B0 field map. We applied all five distortion compensation

methods to the same 7 T GE EPI scan, to mitigate any possible bias

caused by the fixed scanning order. Whether or not the GE EPI and

field map data were initially aligned had very little impact on our

whole brain results (Supplemental Figure 11). After initial alignment,

all distortion compensation methods improved agreement between

fMRI and T1 data (ANOVAs, main effects of condition, F6,30 > 35.7,

p-values < 3 � 10�28) as compared to the alignment-only conditions,

with the GE oppPE field maps showing the strongest performance,

similar to the results in our main analysis (Figure 4).

F IGURE 6 Results in ventromedial prefrontal cortex (vmPFC). (a) Overlap (Dice coefficient) between gradient echo (GE) echo planar imaging
(EPI) and T1 binary masks restricted to vmPFC, across different distortion compensation methods. Gray lines indicate conditions that do not differ
significantly (post hoc paired t tests, threshold p < .05, false discovery rate [FDR] corrected). X-axis labels: GE oppPE = gradient echo opposite
phase encoding field map (red); B0 FM = B0 field map (green); SE oppPE = spin echo opposite phase encoding field map (blue); Align only =

alignment-only (no explicit geometric distortion compensation). (b) Same, but for binary masks in vmPFC with regions of cerebrospinal fluid (CSF)
excluded, following tissue segmentation. (c) Mutual information between GE EPI and T1 scan data in the vmPFC ROI. Squares show data
corrected using AFNI, triangles show data from FSL, circles show alignment-only data. Error bars are SEM calculated within subjects
(Morey, 2008). (d) Example T1 anatomical image with overlaid vmPFC masks: whole-region of interest (ROI) (teal), T1 (green), EPI (yellow), and T1-
EPI overlap (red). The Dice coefficient analysis in (a) quantified the agreement between EPI and T1 masks (i.e., red vs. green and yellow), whereas
(b) did the same after excluding CSF regions. SE oppPE methods yielded somewhat better T1-EPI agreement than GE or B0 methods for whole-
vmPFC masks (a) and CSF-excluded masks in vmPFC (b), but little or no advantage over alignment-only methods (gray and white), and there were
no significant differences in mutual information across methods (c). This suggests a modest advantage for SE oppPE correction over other
methods within regions with substantial dropout, but even SE oppPE correction may not yield substantially better T1-EPI agreement as compared
to uncorrected EPI data (i.e., alignment only)
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3.3 | Analysis #3: Single-band reference

Alignment and segmentation of GE EPI data may depend on image con-

trast (e.g., gray matter vs. white matter intensity). To explore the role of

image contrast in our results, we repeated our main whole-brain analyses

using the single-band reference data in place of the multiband 7 T GE

EPI data for alignment, segmentation, and quantification purposes, as

image contrast was higher in the single-band reference (Supplemental

Figure 5). The patterns of results for the single-band reference data

(ANOVAs, main effects of condition, F6,30 > 35.2, p-values < 5 � 10�28;

Supplemental Figure 12) were very similar to those obtained with

multiband GE EPI in the main analysis (Figure 4), suggesting that the

quality of the alignment and segmentation of our 7 T data were not lim-

ited by image contrast in the multiband scans.

3.4 | Analysis #4: T2 Reference anatomy

The alignment between GE EPI data and an anatomical reference, and

therefore our subsequent quantification of distortion compensation

metrics (Dice coefficients and mutual information), may depend on

the chosen anatomical reference scan. To examine this, we repeated

our main whole-brain analysis using the T2 anatomical data in place of

the T1. We found that using a T2-weighted anatomical scan as a refer-

ence for alignment purposes had little effect on our results (ANOVAs,

main effects of condition, F6,30 > 50.4, p-values < 5 � 10�36; compare

results in Supplemental Figure 13 and Figure 4).

3.5 | Analysis #5: PA PE data

The pattern of geometric distortion due to B0 inhomogeneity in EPI

data depends critically on the PE direction (Figure 1) (Andersson

et al., 2003; Embleton et al., 2010; Morgan et al., 2004; Mori

et al., 2018). To examine whether our findings were specific to data

with an AP PE direction, we repeated an earlier whole-brain analysis

(#2: prealigned data) using GE EPI data with the opposite (PA) PE

direction (see Section 2 for details). The results of this analysis largely

recapitulated our earlier findings (ANOVAs, main effects of condition,

F6,30 > 26.1, p-values < 2 � 10�22; compare data in Supplemental

Figure 14 with those in Supplemental Figure 11), suggesting that the

choice of an AP or PA PE direction did not have a dramatic effect on

our results. In Supplemental Figure 15, we show an example of the

subtraction between distortion-corrected AP and PA data in a single

subject. This method has previously been used to quantify residual

error, as a metric for distortion compensation quality (In et al., 2017).

F IGURE 7 Results in dorsomedial prefrontal cortex (dmPFC). (a) Overlap (Dice coefficient) between gradient echo (GE) echo planar imaging
(EPI) and T1 binary masks restricted to dmPFC, across different distortion compensation methods. Gray lines indicate conditions that do not differ
significantly (post hoc paired t tests, threshold p < .05, false discovery rate (FDR) corrected). X-axis labels: GE oppPE = gradient echo opposite
phase encoding field map (red), B0 FM = B0 field map (green), SE oppPE = spin echo opposite phase encoding field map (blue), Align only =

alignment-only (no explicit geometric distortion compensation). (b) Same, but for binary masks in dmPFC with regions of cerebrospinal fluid (CSF)
excluded, following tissue segmentation. (c) Mutual information between GE EPI and T1 scan data in the dmPFC Region of interest (ROI). Squares
show data corrected using AFNI, triangles show data from FSL, circles show alignment-only data. Error bars are SEM calculated within subjects
(Morey, 2008). (d) Example T1 anatomical image with overlaid dmPFC masks: whole-ROI (teal), T1 (green), EPI (yellow), and T1-EPI overlap (red).
The Dice coefficient analysis in (a) quantified the agreement between EPI and T1 masks (i.e., red vs. green and yellow), whereas (b) did the same
after excluding CSF regions. T1-EPI agreement was generally highest in dmPFC for EPI data corrected using GE oppPE field maps (red) similar to
our whole-brain results (Figure 4)
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As shown in Figure 8, across all subjects residual errors for AP–PA

data are lowest in the GE oppPE conditions (ANOVA, main effect of

condition, F5,30 = 661, p < 9 � 10�98), consistent with superior distor-

tion compensation.

3.6 | Analysis #6: Young adult HCP data

To assess how well our findings would generalize outside our own

dataset, we conducted another analysis using similar methods with

7 T GE EPI data from the Young Adult HCP dataset (Benson

et al., 2018; Glasser et al., 2016; Van Essen et al., 2013; Vu

et al., 2017). Distortion compensation using SE oppPE field maps

within our processing pipeline tended to improve correspondence

between EPI and T1 data from the Young Adult HCP (compared to

alignment-only data; ANOVA, main effects of condition, F3,19 > 66.1,

p-values < 2 � 10�18; Supplemental Figure 16), and yielded similar

results to those obtained using SE oppPE methods in our main analy-

sis (compare blue symbols to those in Figure 4).

3.7 | Analysis #7: Correcting SE data

Up to this point, we have focused on distortion correction of GE EPI

data at 7 T. Our results have generally shown superior performance

for GE oppPE field map scans over SE oppPE methods (e.g., Figure 4),

except in regions with severe dropout (i.e., vmPFC; Figure 6). One

possibility is that GE oppPE field maps may not be superior overall,

but may be better for correcting GE data in particular, whereas SE

oppPE field maps may yield superior correction of SE data. Further,

including the EPI scan to-be corrected as one half of the oppPE scan

pair may result in superior correction. We sought to address this by

applying our analyses to SE, rather than GE data. As predicted, distor-

tion compensation quality metrics varied significantly across condi-

tions (ANOVA, main effects of condition, F4,19 > 153, p-values

< 2 � 10�35; Supplemental Figure 17), with SE oppPE methods out-

performing GE oppPE methods when applied to SE EPI data. Along-

side our other results, this suggests that matching the oppPE field

map to the data type to-be corrected yields superior distortion

compensation.

4 | DISCUSSION

Our analyses showed that all of the distortion compensation methods

tested (GE oppPE field maps, B0 field maps, SE oppPE field maps)

yielded overall improved correspondence between GE fMRI and T1

anatomical data across the whole brain, compared to alignment-only

data. We found very few differences when comparing our results for

oppPE field map corrections performed using AFNI versus FSL

(squares vs. triangles, Figure 4), suggesting that these two software

packages generally yield equivalent data quality for this type of distor-

tion compensation. However, we did find small but consistent differ-

ences in Dice coefficients and mutual information between the

various distortion compensation methods we examined. Agreement

between GE fMRI and T1 data across the whole brain was generally

highest in our dataset when using GE oppPE field maps for distortion

compensation (red symbols, Figure 4). Hence, we have chosen to

implement this particular correction method within our own internal

data processing pipeline for the Psychosis HCP.

Although it has been theorized that SE oppPE field maps might

yield overall better distortion compensation than GE oppPE methods

(Holland et al., 2010), we generally observed better distortion correc-

tion, as quantified by Dice coefficients and mutual information, for GE

versus SE oppPE methods in our whole-brain analyses of GE data

(e.g., red vs. blue symbols, Figure 4). However, Analysis #7 (correcting

SE data) showed that SE oppPE methods did outperform GE oppPE

field maps when applied to correct SE EPI data in particular. Thus, we

conclude that matching the type of oppPE field map to the EPI data

to-be corrected (whether GE or SE), and including the EPI data of

interest as one half of the oppPE pair, yields better distortion compen-

sation than correcting one type of data with the other type of oppPE

field map data. We offer two plausible explanations for this finding

below.

A similar overall pattern to our whole-brain results (Figure 4) was

observed within dmPFC (Figure 7), a region with significant geometric

distortion, but not in vmPFC (Figure 6), where both significant distor-

tion and substantial signal dropout due to through-slice dephasing are

observed. In vmPFC, we saw somewhat better performance
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F IGURE 8 Residual error for anterior–posterior (AP) minus
posterior–anterior (PA) data. Residual error was calculated by taking
the difference between AP (Analysis #2: prealigned data) and PA
(Analysis #5: PA PE data) echo planar imaging (EPI) data, as in
Supplemental Figure 15. Gray lines indicate conditions that do not
differ significantly (post hoc paired t tests, threshold p < 0.05, false
discovery rate [FDR] corrected). X-axis labels: gradient echo
(GE) oppPE = gradient echo opposite phase encoding field map (red);
B0 FM = B0 field map (green); SE oppPE = spin echo opposite phase
encoding field map (blue); Align only = alignment-only (no explicit
geometric distortion compensation). Squares show data corrected
using AFNI, triangles show data from FSL, and circles show alignment-
only data. Symbols are the mean across subjects. Error bars (generally
smaller than symbols) are SEM calculated within subjects
(Morey, 2008). Data are in arbitrary (scanner) units. GE oppPE
methods showed the lowest residual error (signal difference),
consistent with superior distortion compensation
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(higher Dice coefficients; Figure 6a,b) for SE versus GE oppPE

methods, consistent with the notion that SE oppPE field maps would

yield better distortion compensation due to reduced through-slice

dephasing (Holland et al., 2010). However, Dice coefficients for the

SE oppPE methods were generally not higher than for the alignment-

only conditions, and we saw no differences in mutual information

between T1 and EPI data within vmPFC across conditions (Figure 6c).

In contrast, the patterns of results in the dmPFC ROI (Figure 7) were

similar to those from the whole-brain analyses (Figure 4). Together,

these results suggest that for GE EPI data, the advantages (if any) of

the SE oppPE approach were limited to regions of the brain with

strong drop-out (such as vmPFC), whereas the GE oppPE approach

tended to produce better results in our GE data overall.

This study provides a framework for deciding which distortion

compensation method to use for a given dataset, based on quantita-

tive comparisons of the agreement between distortion-corrected EPI

data and an anatomical reference scan. We expect that the relative

performance of different methods may vary across datasets based on

data acquisition parameters, scanner and coil hardware, and the

details of the processing pipelines that are used. Thus, the reader may

wish to compare the relative performance of different distortion com-

pensation methods in their own dataset using an approach similar to

ours. We used multiple metrics to quantify EPI-T1 agreement as a

proxy for correction quality (i.e., Dice coefficients for whole-brain

masks and CSF-excluded masks, as well as mutual information), since

we acknowledge that there is no single gold standard for measuring

the quality of distortion compensation in human brain imaging data

(Hong et al., 2015) (but see the following studies that used simulations

to try to establish ground truth (Esteban et al., 2014; Graham

et al., 2017)). Across our analyses, we found that certain methodologi-

cal decisions (i.e., whether or not to align data prior to distortion com-

pensation, the use of single-band reference, T2 anatomical, or PA GE

data) had little effect on our pattern of results (compare Figure 4 with

Supplemental Figures 11–14), whereas regional variations in distor-

tion compensation metrics were more dramatic (Figures 6 and 7; Sup-

plemental Figure 10). We found results comparable to our main

findings when examining data from the Young Adult HCP study

(Supplemental Figure 16). By making our data and analysis code pub-

licly available (see Section 2), we hope to facilitate the empirical selec-

tion of effective approaches for geometric distortion compensation in

future research.

In addition to geometric distortion compensation, our analyses

included gradient nonlinearity correction (Bakker et al., 1992; Glasser

et al., 2013; Jezzard & Clare, 1999), a postprocessing step to correct

for static spatial nonuniformities in the brain images caused by the

gradients themselves (i.e., not dependent on the scanning sequence or

B0 field inhomogeneity). In our data, we found gradient nonlinearities

led to voxel shifts up to about 4 mm in some regions (Supplemental

Figure 1; Supplemental Table 1). Correcting for this type of image dis-

tortion is particularly important in cases such as ours, where one

wishes to align EPI and anatomical data acquired in different scanning

sessions, as distortions due to gradient nonlinearities will vary across

scanners based on differences in gradient hardware, and across

scanning sessions based on head position. Previous studies comparing

different geometric distortion compensation methods have generally

not included (or reported) gradient nonlinearity correction. For

datasets acquired in a single scanning session, sequence-independent

gradient nonlinearities limit geometric fidelity but not the ability to

align distortion corrected EPI to anatomical reference scans. We

believe that effective corrections for both gradient nonlinearities and

geometric distortions are critical for achieving high spatial fidelity, and

for harmonizing EPI and T1 data across different scanning sessions or

field strengths.

We did not initially hypothesize that GE oppPE methods would

outperform SE methods in our GE data, but rather sought to explore

which method would perform best in our dataset. We offer two possi-

ble explanations for this finding, which are not mutually exclusive.

First, there may be more opportunities for head motion to degrade

the quality of distortion compensation when using a SE oppPE field

map to correct GE EPI data (or vice-versa), as there are two additional

scans (forward and reverse PE SE) during and between which the sub-

ject must hold still, versus only one additional scan for a GE oppPE

field map (reverse GE, as the GE EPI data to-be corrected may serve

as the forward PE half of the GE oppPE pair). As noted below, any

head motion between scans will change the B0 inhomogeneities and

subsequent geometric distortions, leading to poorer correction.

Including the EPI scan to-be corrected as half of the oppPE pair may

also allow the unwarping algorithm to correct any geometric differ-

ences between scans due to head motion, in addition to those caused

by B0 inhomogeneity distortion. We examined the effect of motion in

a series of post hoc analyses (see Supplemental methods), in which

we correlated our distortion compensation metrics against residual

head motion between our GE EPI data (following distortion compen-

sation) and our different field map scans. The data shown in Supple-

mental Figures 18 and 19 suggest that greater head motion between

SE field map and GE EPI scans may have contributed to poorer distor-

tion compensation for the SE oppPE methods (vs. GE oppPE), but that

this may not fully account for the overall reduced performance we

observed for SE corrections. Future studies that acquire multiple SE

oppPE field map scans at different time points, or in which subjects

are explicitly instructed to move their heads between scans, may be

better able to directly examine this possibility.

Second, superior performance of the GE oppPE field maps for

correcting GE data might possibly be attributed to differences in

image contrast between GE and SE data (Embleton et al., 2010; Gra-

ham et al., 2017) (compare Figure 1a,b vs. Figure 1g,h). In regions of

significant B0 inhomogeneity, geometric distortion can cause dis-

placed signal from multiple voxels to ‘pile up’ within a single voxel

(i.e., local compression) (Andersson et al., 2003; Li et al., 2006; Li

et al., 2007; Wan et al., 1997). Local compression depends on PE

direction; oppPE field map methods attempt to correct for compres-

sion by using interpolation to recreate the image ‘in between’ the for-

ward and reverse PE scans. If local compression differs between SE

and GE scans, as would be expected due to contrast differences, then

the mapping of spatial information during oppPE distortion compensa-

tion may also differ. In this case, the warp field calculated from SE
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oppPE field maps (and applied to GE EPI data; or vice versa) may be

incorrect in regions of local compression, resulting in poorer distortion

compensation (Embleton et al., 2010; Graham et al., 2017). This issue of

signal compression during distortion compensation has also been appre-

ciated in the dMRI field; local compression differs for scans with different

diffusion weighting (and thus different signal contrast), which is relevant

for distortion compensation of such data using oppPE methods

(Embleton et al., 2010; Graham et al., 2017).

Our results agree with previous studies that have universally

shown corrections for geometric distortion due to B0 field inhomoge-

neity improve EPI data quality and alignment with minimally distorted

reference scans (Hutton et al., 2002). In particular, previous work has

generally shown better performance for oppPE field map strategies,

as compared to B0 field maps, which has been attributed in part to the

difficulty of using B0 field maps to correct distortion near the edges of

the brain (see Figure 1f), where phase values change rapidly across

space. Using simulated EPI data, both Esteban (Esteban et al., 2014)

and Graham (Graham et al., 2017) showed quantitatively that ground

truth undistorted images were recovered best using an oppPE field

map method, whereas B0 field maps performed slightly worse, and

nonlinear registration-based methods were greatly inferior (but still

better than no correction at all). Similar conclusions were reached by

Hong et al. (2015) using SE EPI in the mouse brain at 7 T, by Holland

et al. (2010) using SE EPI at 1.5 and 3 T in the human brain, and by

Wang et al. (2017) using 3 T dMRI data in humans (see also Gholipour

et al., 2011). Thus, there is some evidence to suggest, in general terms,

better performance for oppPE methods over B0 field maps, with

nonlinear registration yielding poorer results (but better than no cor-

rection, and useful in cases where the additional scans required to

perform the other methods above are not available).

This study considered only static geometric distortions in the GE

EPI data caused by B0 inhomogeneity. If a subject moves during a

scanning session, then the B0 inhomogeneities will not be stable over

time, and geometric distortions will vary with head motion (Hutton

et al., 2002), resulting in poorer correction based on static methods

(Graham et al., 2017). We conducted a series of analyses to examine

the impact of head motion on our results (Supplemental Figures 11,

18, and 19). Our findings suggest that greater head motion was asso-

ciated with somewhat lower Dice coefficient values, but that differ-

ences across field map methods in subject head motion over time may

not fully account for the pattern of results we observed. Methods for

dynamic distortion compensation (e.g., with different distortion fields

calculated for each time point in an EPI time series) have also been

proposed (Andersson et al., 2001; Barry et al., 2010; Dymerska

et al., 2018), and may offer advantages in correcting time-varying geo-

metric distortion, as compared to the static approaches considered

here. However, to our knowledge, such dynamic distortion compensa-

tion methods are not currently implemented in the software packages

that are most often used to preprocess brain imaging data.
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