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Error related potentials (ErrP), which are elicited in the EEG in response to a perceived

error, have been used for error correction and adaption in the event related potential

(ERP)-based brain computer interfaces designed for typing. In these typing interfaces,

ERP evidence is collected in response to a sequence of stimuli presented usually in

the visual form and the intended user stimulus is probabilistically inferred (stimulus with

highest probability) and presented to the user as the decision. If the inferred stimulus is

incorrect, ErrP is expected to be elicited in the EEG. Early approaches to use ErrP in the

design of typing interfaces attempt to make hard decisions on the perceived error such

that the perceived error is corrected and either the sequence of stimuli are repeated to

obtain further ERP evidence, or without further repetition the stimulus with the second

highest probability is presented to the user as the decision of the system. Moreover,

none of the existing approaches use a language model to increase the performance

of typing. In this work, unlike the existing approaches, we study the potential benefits of

fusing feedback related potentials (FRP), a form of ErrP, with ERP and context information

(language model, LM) in a Bayesian fashion to detect the user intent. We present

experimental results based on data from 12 healthy participants using RSVP KeyboardTM

to complete a copy-phrase-task. Three paradigms are compared: [P1] uses only ERP/LM

Bayesian fusion; [P2] each RSVP sequence is appended with the top candidate in the

alphabet according to posterior after ERP evidence fusion; corresponding FRP is then

incorporated; and [P3] the top candidate is shown as a prospect to generate FRP

evidence only if its posterior exceeds a threshold. Analyses indicate that ERP/LM/FRP

evidence fusion during decision making yields significant speed-accuracy benefits for

the user.

Keywords: error related potentials, feedback related potentials, event related potentials, electroencephalography,

brain computer interfaces, RSVP KeyboardTM, Bayesian fusion

1. INTRODUCTION

Event related potentials (ERPs) are commonly employed in the design of non-invasive
electroencephalography (EEG)-based brain computer interfaces (BCIs) to detect the user
intent (Farwell andDonchin, 1988; Acqualagna et al., 2010; Orhan et al., 2012; Akcakaya et al., 2014;
Moghadamfalahi et al., 2015). The pioneer study from Donchin and Farewell demonstrated that
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ERPs can be used to design a letter by letter typing
BCI (Farwell and Donchin, 1988). In addition to event related
potentials (ERPs), depending on the BCI application, error-
related potentials (ErrPs) can be used to indicate a perceived
error. ErrPs are detectable as deflections in the EEG signal
measured over the scalp of a person when they make or perceive
an error (Falkenstein et al., 2000; Davies et al., 2004; Buttfield
et al., 2006; Yazicioglu et al., 2006; Ferrez and del R. Millan, 2008;
Gürel andMehring, 2012;Margaux et al., 2012; Spüler et al., 2012;
Kieffaber et al., 2016). Different variants of ErrPs can bemeasured
in recorded EEG signal. For example, when the user realizes that
the interface failed to properly recognize user’s intention, an ErrP
signal is induced, which can characterized by two fronto-central
positive peaks appearing 200 and 320 ms after the feedback; a
fronto-central negativity near 250 ms and at last, broader fronto-
central negative deflection about 450ms after the feedback. These
latencies can change depending on the experimental paradigm
(Iturrate et al., 2013). Moreover, some studies have demonstrated
correlation between trial-by-trial estimates of the ErrP and the
post-error slowing (Debener et al., 2005). Based on these studies,
it has been proposed that the negative deflection of the ErrP
signal is the result of an error-detection mechanism, as opposed
to being an inhibitory or corrective signal. In addition, it has
been studied that the positive components of the ErrP reflects
conscious error processing or post-error adjustment of response
strategies (Falkenstein et al., 2000).

While some BCI typing systems have shown encouraging
results (Kawala-Sterniuk et al., 2021), there is still much work
to be done to produce real-world-worthy systems that can be
comfortably, conveniently, and reliably used by individuals
with severe neuromuscular disabilities who cannot use standard
communication pathways or other assistive technologies.
This work presents several improvements to a language-
model-assisted EEG-based typing BCI, RSVP KeyboardTM

(Moghadamfalahi et al., 2015), as well as similar designs that
depend on visually evoked P300 potentials. The baseline system
fuses text/language and EEG evidence to infer user intent in
EEG-controlled spelling to generate expressive language. In
particular, we study the potential benefits of fusing feedback
related potentials, a form of ErrP, with ERP and context
information (language model, LM) in a Bayesian framework.
The probabilistic evidence for ERP, ErrP, and non-EEG are
computed using different probabilistic generative models.

We represent the domain knowledge and casual relationship
among difference variables in a probabilistic graphical model.
The presented approach is a general dynamic fusion framework
that could be used with various presentation paradigms. Typing
interfaces aim to reach a certain confidence level before making
a decision on the user intent, and accordingly, sequences of
symbols are repeated multiple times. In our approach, after every
presented sequence, we compute the posterior distribution of
the symbol set (all the symbols in the English alphabet and the
backspace symbol) conditioned on ERP likelihoods and LM-
based priors. The mode of posterior distribution is selected as
prospect symbol that is presented to the user, either after every
sequence or after a confidence threshold is reached. The prospect
symbol is an additional visual stimuli, which induces an EEG

response that is indicative of that prospect’s correctness. We refer
to this response as feedback related potential (FRP), which takes
the form of an ErrP/non ErrP indicating an incorrect/correct
prospect symbol being presented. After the prospect symbol is
presented and the new FRP evidence is obtained, through the
Bayesian graphical model, the FRP evidence is fused with the
EEG and LM-based evidence and the posterior distribution of
the symbols is updated. Given the low signal-to-noise-ratio of
EEG, we take an iterative update approach by presentingmultiple
sequences of ERP and FRP stimuli to the user to compute a
more robust estimate, until the posterior reaches an information
theoretic confidence threshold. User intent is then selected using
maximum a posteriori (MAP) inference.

Existing typing BCIs that attempt to use ERP/FRP jointly
typically fall into one of these categories: a flag produced by
the ErrP classifier results in (a) the deletion of the last selection
made using the ERP classifier (Dal Seno et al., 2010; Schmidt
et al., 2012; Spüler et al., 2012; Chavarriaga et al., 2014); (b)
replacing the last selection made using the ERP classifier with
the second probable option (Combaz et al., 2012; Margaux et al.,
2012; Chavarriaga et al., 2014); (c) presenting more stimuli to
gather additional ERP evidence, but not using the FRP to update
symbol probabilities over the alphabet (Combaz et al., 2012).
A language model is not fused with ERP evidence in these
particular examples, but it has been suggested for boosting both
ERP and FRP evidence assessment. Unlike these early attempts
on using FRP evidence to make hard decisions based on ErrP
classifier outputs, we seek Bayesian fusion of ERP, FRP, and
language evidence using probabilistic generative models. The
system presented in this paper automatically decides to select a
letter to type or proceed with more ERP/FRP evidence collection
in a probabilistic fashion.

In an earlier study, we observed the potential enhancements
that can be achieved through a joint probabilistic inference from
all evidences (i.e., FRP, ERP, and LM), rather than using FRP as
a switch Gonzalez-Navarro et al. (2016a), Orhan et al. (2016).
In the early study, Monte Carlo simulations are performed
using synthetic EEG features from models calibrated with real
ERP/FRP data, and the results are simulated for five users with
synthetic EEG features (Gonzalez-Navarro et al., 2016a). As our
simulation results suggested, Bayesian fusion of all evidence (FRP,
ERP, and LM) yields faster typing speeds for all participants
without compromising accuracy. On the other hand, use of
ErrP in a sub-optimal fashion, by allowing FRP decisions to
override ERP, also improved speed relative to not using FRP at
all. But our results indicated that Bayesian fusion of FRP with
ERP, and not treating the former as a de facto superior form of
evidence, may yield better outcomes. Based on these results, we
decided to conduct a new study, presented in this manuscript,
to evaluate the performance of two different system strategies for
a joint probabilistic inference framework. This is the first work
where we study experimental results based on data from healthy
participants. We study the potential benefits of fusing feedback
related potentials (FRP) with ERP and context information (LM)
in a Bayesian fashion to detect the user intent.

To illustrate the efficacy of our approach we use RSVP
KeyboardTM (Moghadamfalahi et al., 2015), an EEG based BCI
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for letter by letter typing, which is described in more details in
section 3. Three strategies [P1], [P2], and [P3] are compared in
terms of speed, accuracy, and information transfer rate (ITR).
The EEG for this study is acquired from 12 healthy participants
using RSVP KeyboardTM to complete a copy-phrase-task. [P1],
the baseline system fuses LM and ERP (collected from RSVPs)
evidence in a Bayesian fashion to infer user intent. On the other
hand, our novel propositions, [P2] and [P3], use a joint inference
from all evidence (FRP, ERP, and LM) to make a decision. In [P2],
FRP evidence is collected after every RSVP sequence; whereas
in [P3], RSVP sequences are repeated multiple times until a
confidence level is achieved, then the feedback is presented as
the mode of estimated posterior (in other words, FRP evidence
is collected less frequently in [P3]).

2. PROPOSED GRAPHICAL MODEL FOR
INFERENCE

2.1. Decision Framework
In a typical letter by letter typing BCI application, the user has to
select among a discrete set of task symbols from a DictionaryD =

{A,B, . . .Z} ∪ {<,−} where “−” represents space symbol and
“<” represents backspace symbol. Here, we examine how a BCI
can infer a task symbol from different EEG evidence and prior
context information. In particular, we build a decision framework
that takes into account two types of EEG evidence: FRP and
ERP evidence. We propose several methods for combining FRP,
ERP evidence and prior context information, using real-time
posterior probability updates. This BCI application utilizes a
visual presentation module to detect the user intent and the
EEG collected during the visual stimulation is then employed in
decision making procedure.

Different visual presentation methods can be considered in
order to evoke visual potentials. Rapid serial visual presentation
(RSVP) paradigm is a minimally gaze dependent alternative for
matrix presentation paradigms, that is aimed to induce ERPs
for intent detection. In the RSVP paradigm, the symbols are
rapidly presented as a time series on a prefixed location on the
screen in a pseudo-random order, to evoke the response when
the target symbol appears (Acqualagna et al., 2010; Orhan et al.,
2012; Moghadamfalahi et al., 2015). In this presentation scheme,
each flashing letter is a trial and in each “sequence,” a subset of
dictionary is presented. From now on, we will be referring to only
inducing ERP (target) evidence when we mention RSVP trial.

Figures 1A,B illustrate a flash of a prospect symbol and RSVP
trial respectively. Due to low signal-to-noise-ratio (SNR) of EEG,
the system usually requires to query the user with more than
one “sequence” and “prospect symbol” to achieve a desired
confidence level before making a decision. The set of “sequence”
and “prospect symbol” which leads to a decision is called an
“epoch.” In every epoch, it is assumed that the target symbol
remains unchanged. Figure 1C represents a schematic of an EEG
epoch in the RSVP KeyboardTM including a series of letters in an
ERP sequence and a feedback stimulus as a “prospect symbol.”
The feedback stimulus is always presented at the end of the RSVP
sequence (shown in green). In Figures 1A,B, “Press Space Bar

or Enter to pause” indicates the Pause/Play button. “Esc to quit”
indicates the exit button should the participant choose to end the
experimental session. Both options are added to the experimental
design for the convenience of the user.

2.2. Probabilistic Graphical Model (PGM)
The proposed probabilistic graphical model (PGM) that
represents kth “epoch” for an EEG-based typing application is
presented in Figure 2.

Here, a∗
k
is a random variable which represents the user

intent in epoch k, Ac(t) = {atj |j = 1, . . . |Ac(t)|} is a subset

from the dictionary D, treated as the “sequence” at instant t of
the epoch k, c denotes for candidate, |Ac(t)| is the number of
symbols presented in the t-th sequence, Ck represents the context
information that has been provided with the language model
for which we will provide a brief description, in section 2.5.
Moreover, here we introduce Ap(t) ∈ D. This set is a singleton
Ap(t) = {āt}which includes the prospective symbol for the query
set Ap(t) at instant t (p denotes for prospect). In addition, ec(a

t
j )

and ep(ā
t) are the ERP and FRP evidence obtained in response

to an RSVP trial atj and feedback trial āt respectively. We assume

that the user intent is not changing within an epoch. Hence, given
that every atj ∈ Ac(t) and āt ∈ Ap(t) are either target or non-

target, the intent inference can be formulated as a binary decision
problem. Therefore y(·), z(·) correspond to binary class labels
for ERP, FRP responses. Hence, y(atj ) : = δ(atj ; a

∗) has a one-

to-one relationship with the true state a∗
k
such that y(atj ) = 1

if a∗
k

= atj and 0 otherwise. Similarly, z(āt) : = δ(āt; a∗). Nc

and Np are the maximum number of “sequences” and “prospect
symbols” that can be used in an epoch if a desired confidence
level is not reached in reasonable duration. In the case that we
do not use FRP evidence, the right box from the graphical model
from Figure 2 will be eliminated and the rest will remain the
same. We utilize the graphical model presented to compute the
posterior distribution of the intended character a∗

k
after collecting

the EEG evidence and by utilizing the language model evidence.
The details of the posterior distribution computation is given in
section 2.4. In order to make inference on the user intent, we
compare three different evidence acquisition paradigms (one for
each strategy). These paradigms are discussed in section 2.3.

2.3. Evidence Acquisition Paradigms
Here, we present three different evidence acquisition paradigms:
(i) [P1], (ii) [P2], and (iii) [P3] as shown in Figure 3.

1. [P1] (Baseline): In this paradigm a set of pseudo-randomly
ordered stimuli are presented to the user to elicit ERP. Each
stimulus is a trial. Sets of trials that are presented with no
time gaps are called a sequence Ac(t). Every sequence can
only contain up to one target stimulus. After each sequence,
the posterior distribution over the character set is computed
and a decision is made if the maximum probability exceeds a
predefined threshold or a time limit is reached. Otherwise, the
system continues with more sequences.

This paradigm, is the baseline for RSVP KeyboardTM and it
does not include FRP evaluation.
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FIGURE 1 | Different visual stimuli: (A) RSVP and (B) Feedback trials. (C) Schematic of an epoch with RSVP and Feedback sequences. A series of RSVP sequences

including non-target and target symbols are shown at a prefixed position on the screen consecutively over time in rapid serial fashion. The RSVP sequence starts with

a + symbol. At the end of each RSVP sequence, a prospect symbol is appended.

2. [P2] (Always FRP): In this paradigm we first query the
user with ERP sequences in a similar fashion as [P1], then
the mode of posterior is depicted as a prospect symbol i.e.
Ap(t). Ap(t) is then presented on a prefixed location of
the screen, like in regular RSVP trials, to induce FRP in
EEG. Depending on the instructions given to the user, this
FRP may take the form of an error-related potential (ErrP)
indicating an incorrect prospect symbol being presented.
The collected EEG in response to each prospect symbol
is used to update the posterior using the PGM shown in
Figure 2.

This paradigm is also utilizes MAP inference, in a
procedure similar to [P1].

3. [P3] (Confirm FRP): This paradigm is similar to [P1] and
[P2] but the top candidate is shown as a prospect symbol to
generate FRP evidence only if its posterior probability exceeds
a threshold. The graphical model presented in Figure 2 is
directly used to fuse the ERP and FRP evidence to infer the
user intent.

2.4. Maximum a Posteriori (MAP) Inference
The decision making process utilizes a maximum a posteriori
(MAP) inference mechanism for intent detection. The graphical
model presented in Figure 2 is used to compute the posterior
distribution of the intended symbol, after evaluating the
ERP and FRP likelihoods in recorded EEGs during ERP and
FRP sequences and using context priors. A general decision
framework for the three evidence acquisition paradigms
is presented in Figure 4. According to this framework,
before making a final decision the ERP and FRP evidences
corresponding to multiple sequences are aggregated and fused
with the context prior. Different query selection methods [Pi]
i = {1, 2, 3} are presented in Figure 4. (Please see section 2.3 for
more details.)

We estimate the prospective symbol āt ∈ Ap(t) at instant t, as
the mode of posterior distribution:

āt = argmax
a∈D

P
(

a∗k = a|E1 : t
c , E1 : t−1

p ;C
)

(1)
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FIGURE 2 | Proposed probabilistic graphical model representing the kth

epoch. Here, the dashed lines show a deterministic relation while the solid

lines define a probabilistic correspondence. z (āt ) = 1 ErrP label, z (āt ) = 0 non

ErrP label. y (atj ) = 1 target label, y (atj ) = 0 non Target label. t denotes

sequence index. j denotes trial index.

FIGURE 3 | Evidence acquisition paradigms, experimental setup, and visual

stimuli type. (A) Three evidence acquisition paradigms. First row shows [P1],

second row shows [P2], and third row shows [P3]. (B) Visual stimuli are

projected on a black screen. The EEG evidence collected after the

presentation of a typical sequence and prospect symbol stimuli are used for

detecting user intent. (C) Three different visual stimuli, RSVP sequence,

prospect symbol, and decision symbol.

where â∗
k
is the estimated user intent; E1 : t

c = {Ec(Ac(j))}
t
j=1 is

the ERP evaluations for all the sequences in epoch k up to t;

Ec(Ac(t)) = {ec(a
t
j )}

|Ac(t)|
j=1 is the set of observation for the query

set Ac(t); E
1 : t−1
p = {Ep(Ap(j))}

t−1
j=1 is the FRP EEG evidences

for all the observed prospective sequences in epoch k at instant

t; Ep(Ap(t)) = ep(ā
t) is the set of observation vectors for the

prospective set Ap(t). For [P2] and [P3] the FRP EEG evidence
ep(ā

t) is obtained in response to āt .
To compute the posterior distribution in (1), we utilize

the assumptions of the graphical model presented in Figure 2.
According to this PGM, the ERP and FRP evidence and context
information are independent when the intended symbol ak is
given. Then for epoch k and at time instant t, after observing
the query sets Ac(t) and Ap(t), the maximum a posteriori can be
computed using the objective function in (2).

â∗k = argmax
a∈D

P
(

E
t
c |a

∗
k = a

)

· P
(

E
t
p|a

∗
k = a

)

· P
(

a∗k = a
∣

∣C) (2)

We can further assume that conditioned on the unknown symbol
ak all EEG evidence from different trials are independent, and
simplify the first two terms of Equation (2) as:

P
(

E
t
c |a

∗
k = a

)

=











∏

t=1, ..., N
{j | atj=a,y(atj )=1}

p (ec(a
t
j )|y (a

t
j ))

p (ec(a
t
j )|0)











(3)

P
(

E
t
p|a

∗
k = a

)

=









∏

t=1, ..., N
{āt=a,z(āt)=0}

p (ep(ā
t)|z (āt))

p (ep(āt)|1)









(4)

According to the inference equation defined in (2), we need to
estimate (i) the context prior that we estimated using a language
model P(a∗

k
= a|C), (ii) class conditional distributions over

the ERP evidence p (ec|1) for target and p (ec|0) for non-target
classes, and (iii) class conditional distributions over the FRP
EEG evidence p

(

ep|0
)

and p
(

ep|1
)

. We have implemented the
proposed ERP and FRP data acquisition paradigms using the
RSVP KeyboardTM framework (Moghadamfalahi et al., 2015).

2.5. Context Information
To compute P(a∗

k
= a|C), we utilize an n-gram language model

which provides a prior probability over every symbol in the
dictionary. We have shown that context information when fused
with EEG evidence improves the system performance effectively
(Orhan et al., 2013; Moghadamfalahi et al., 2015). An n-gram LM
is aMarkovmodel of order n−1. Let C = {a∗m}m=n−1, ..., 1, where
a∗m is themth previously typed character. Then:

P(a|C) = P(a|{a∗m}m=n−1, ..., 1) =
P(a, a∗n−1, . . . , a∗1)

P(a∗n−1, . . . , a∗1)
(5)

In our system, we use a 6-gram language model, which is
trained on the NY Times portion of the English Gigaword corpus
(Roark et al., 2010).

3. HUMAN-IN-THE-LOOP EXPERIMENTS

We perform a set of online experiments to compare the effects
of [P1], [P2], and [P3] on system performance. We collected
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FIGURE 4 | (A) General decision framework for the three evidence acquisition paradigms [P1], [P2], and [P3]. The only part that differs in each paradigm is the select

query block. BCI channel decides which query is going to be presented, the evidence from the query is collected in the user channel, αd is the decision threshold. Nd

is the total number of sequences (including ERP + FRP). Decision is made when the posterior probability of the selected symbol passes the threshold αd , or when the

total number of sequences is reached (denoted with ≤ αd/Nd ). In (B), t%2 stands for t mod 2 (modulo operation), indicating that the prospect symbol is shown once

after every RSVP sequence.

data from 12 healthy participants (5 females), 22–38 years old.
After a calibration session, participants were asked to perform a
copy phrase task of RSVP KeyboardTM. The data were collected
according to the guidelines of an IRB-approved protocol at
Northeastern University (IRB 130107).

3.1. Method
In RSVP KeyboardTM, the EEG signal is acquired using a
g.USBamp biosignal amplifier with active g.Butterfly electrodes
at a sampling rate of 256 Hz, from 16 EEG sites (according to the
International 10/20 configuration): Fp1, Fp2, F3, F4, Fz, Fc1, Fc2,
Cz, P1, P2, C1, C2, Cp3, Cp4, P5, and P6. To improve the signal-
to-noise ratio (SNR), and to eliminate drifts, signal is filtered
by an FIR linear-phase bandpass filter with cutoff frequencies
[1.5,42] Hz and a notch filter at 60 Hz. Typically, a wideband
filter, such as a [0.05–30] Hz filter is recommended to avoid
the potential distortion of ERP waveforms (Luck, 2014). In our
work, temporal-windowed EEG signals are filtered by [1.5,42]
Hz bandpass filter (FIR, linear phase, length 153, 0 DC-gain) to
eliminate the low frequency deviations and high frequency noise.
Lower high-cutoff frequencies may be used (Orhan et al., 2016).

In order to capture the ERP and FRP, while omitting the
possible motor reposes (Moghadamfalahi et al., 2015), EEG from

a time window of [0, 500) ms after each flash’s onset is processed
as the corresponding raw data for each trial. To further pre-
process after filtering, the EEG data for each channel are first
down-sampled by 2 and projected to a lower dimensional space
using principal component analysis (PCA), and finally data from
every channel is concatenated to form the feature vector yij
for trial ith, of type j in response to a trial, as we defined in
Equation (6). More specifically, yip represents FRP evidence for

the prospective symbol trial ith; and yic represents ERP evidence
for the query trial ith. After pre-processing,

yij =
[

vij[1]
T vij[2]

T . . . vij[Nch]
T

]T
∈ R

Nch·Nt (6)

where vij[n] is the multivariate measurement collected from

channel n. Note that here Nch = 16 is the number of channels
and Nt is the number of time samples for each channel after
applying PCA.

We then perform a quadratic projection of these feature
vectors on to a one dimensional space so that it maximizes
the separation between two possible classes of non-target and
target. This projection is obtained as the log-likelihood ratio
of two multivariate normal density functions estimated using
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regularized discriminant analysis (RDA) over target and non-
target classes. eij(a

i
c) and eij(a

i
p), are the one dimensional ERP and

FRP evidences, respectively. We estimate the class conditional
distributions of p

(

ec(a)|1
)

, p
(

ec(a)|0
)

over the ERP evidences;
and p

(

ep(a)|1
)

, p
(

ep(a)|0
)

over the FRP evidences, using
kernel density estimation (KDE). We employ Gaussian kernel
with a bandwidth computed using the Silverman’s rule from
the recorded labeled data (Silverman, 1986). Note that these
distributions are computed after collecting data in a calibration
session. Then, the estimated densities are used in test sessions.

Recall that the EEG (ERP and FRP) evidence and language
model prior are fused using the assumptions of the graphical
model presented in Figure 2 to obtain the posterior probability
mass function (PMF). The posterior probabilities is then used in
MAP inference framework to make a joint decision as described
in section 2.

3.2. Experiment Design
All users participate in three copy phrase tasks, each task being
performed on a separate day. In each day, the user performs the
task pursuing one of [P1], [P2], and [P3] paradigms. The order
of the paradigms are randomly assigned to the users to avoid the
learning impact on the typing performance.

A copy phrase task includes typing the following ten
different phrases.

1. THE DOG “WILL” BITE YOU,
2. GO TO “THE” MOVIES,
3. GOOD HEALTH “CARE” IS CRUCIAL,
4. SUPER “BOWL” SUNDAY,
5. EAT THREE TIMES A “DAY,”
6. THE THIRD “SEAT” FROM THE LEFT,
7. MY PARENTS “FIND” ME FUNNY,
8. SHE ALSO “PAID” FOR LUNCH,
9. SOMETHING THAT “BUYS” US TIME,
10.THE COMPOSER “SITS” QUIETLY,

Each phrase includes a missing word and the users are asked to
complete these words. Here, the target words are written in bold.
The entire sentence is shown to the user before each phrase is
being typed. We use different phrases with different difficulty
levels in terms of prior probability provided by the language
model. For instance, the words such as “THE" or “WILL" are very
easy to type because their initial letters are very likely based on
the LM prior. However, the words such as “PAID" or “BUYS" are
very difficult to type. Figure 5 demonstrates an example of a user
performing the copy phrase task.

Prior to each copy phrase task all participants perform
two calibration tasks: calibrationERP and calibrationFRP.
CalibrationERP is used to learn the statistics of the ERP classifier
(target vs. non target), using the calibration mode of the system
to record labeled EEG data. Typically, each calibrationERP session
consists of 100 sequences of symbols. Before each sequence, the
user is asked to attend to a particular symbol. Then a sequence
consisting of the target symbol and 9 other non-target symbols
is presented to the user in a random order. CalibrationFRP is
used to learn the statistics of the FRP classifier (correct vs. non

FIGURE 5 | Copy phrase task performed on EEG-based BCI using RSVP

KeyboardTM paradigm. The user is asked to type WILL.

correct) using the copy mode of the system to record labeled
EEG data. To obtain compatible evidence, we simulated [P2] and
[P3] paradigms to collect supervised FRP EEG data.

During calibrationFRP, we modify the LM probabilities, in
order to record enough labeled data for correct and non correct
classes. Users are asked to rest between calibrations and copy
phrase tasks and continue once they felt ready.

The length of each trial is 500 ms for all paradigms, there
are 10 trials in one ERP sequence and 1 trial (i.e., the prospect
symbol followed by a question mark) in one FRP sequence. Ac(t)
is selected based on the posterior probability (fusion of evidence
+ LM). In [P1], the trial symbol is shown for 150 ms followed by
a 50 ms blank screen (i.e., the inter-trial interval). The interval
between successive sequences is 500 ms. In [P2] and [P3], after
ERP evidence is collected, the trial symbol is shown for 0.9 s
followed by a 0.1s blank screen for the FRP evidence. Decision
symbol is shown for 2 s. The maximum number of sequences
allowed in an epoch is 100 for calibration tasks (Simply because
during calibration, we have a single combined epoch and we do
not make decisions). In copy phrase tasks, the maximum number
of sequences allowed in an epoch is 8 (that is, a decision is
made after max 8 sequences in an epoch). In paradigm [P3], the
posterior probability for showing the prospect symbol is set as
αp = 0.66. Note that, we do not employ an αp during paradigm
[P2] because we already show the prospect symbol after every
ERP sequence. For all three paradigms ([P1], [P2], and [P3]), the
posterior probability threshold for decision is set as αd = 0.9.

4. ANALYSIS RESULTS

Using the data collected in the human-in-the-loop copy phrase
and calibration experiments described in section 3, we report
the effect of the three evidence acquisition paradigms: [P1]
(Baseline), [P2], and [P3].

4.1. Human-in-the-Loop Calibration
Experiment Results
Using the supervised data collected during the calibrationFRP, we
first analyze the average EEG recorded in response to correct
and incorrect feedback for the two evidence acquisition, [P2]
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FIGURE 6 | Average EEG responses of 12 users for (A) incorrect [P2], (B) incorrect [P3], (C) correct [P2] and (D) correct [P3].

FIGURE 7 | Average EEG response for correct and non-correct feedback of 12 users and 16 electrodes for (A) [P2] and (B) [P3].

and [P3]. Figure 6 shows the average FRPs for the correct and
incorrect feedback trials for 12 users for the two scenarios that
use FRP; [P2] and [P3]. The results show the statistical presence
of the ErrP response in both [P2] and [P3]. As we can see in
Figures 6A,B, the waveform in response to the incorrect feedback
is characterized by a positive component observed ([350 ms])
after the delivery of the incorrect feedback, representing a visually
evoked potential (VEP).We do not observe this positive response
after the correct feedback, as shown in Figures 6C,D. Upon the
presentation of the incorrect feedback, a negative ([50–100] ms)
component is also observed. In addition, Figures 6A–D show the

scalp topography at different time windows {100, 320, 400} ms.
Based on these results, we observe higher separability between
the EEG time series recorded in response to non-correct and
correct feedback around the time window of 320–350ms. Finally,
Figures 7A,B show the average FRPs for the correct and incorrect
feedback for 12 users and 16 electrodes; for [P2] and [P3],
respectively. From Figures 7A,B, we can observe that when [P3]
paradigm is performed, the amplitude of this positive component
([350 ms]) for the incorrect stimuli is slightly lower compared to
[P2] (it could be inferred from the amplitude difference between
the green line (non-ErrP) vs. red line (ErrP) for [P2] and [P3]).)
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FIGURE 8 | AUCs for 12 users for two calibrations tasks (A) calibrationFRP, (B) calibrationERP, for 3 different evidence acquisition paradigms [P1], [P2], and [P3].

Please note that for [P1] we do not have calibration task FRP, since this paradigm does not use FRP evidence. The absence of FRP in [P1] is denoted with “/ - [P1]”

and is shown in black. For [P1]: AUCFRP = 0, AUCERP = 0.8138, for [P2]: AUCFRP = 0.7966, AUCERP = 0.8308, for [P3]: AUCFRP = 0.7341, AUCERP = 0.8300.

TABLE 1 | Typing performance results for 12 subjects performing a copy task

using RSVP KeyboardTM for three different strategies [P1], [P2], and [P3].

P1 P2 P3

User ATL PPC ATL PPC ATL PPC

1 0.73 0.70 0.91 1.00 0.90 1.00

2 0.82 0.90 0.99 1.00 0.91 1.00

3 0.64 0.70 0.88 1.00 0.96 0.90

4 0.65 0.60 0.90 1.00 0.81 0.90

5 0.74 0.80 0.87 0.90 0.85 0.80

6 0.73 0.80 0.93 1.00 0.86 0.90

7 0.76 0.70 0.90 1.00 0.85 0.90

8 0.69 0.60 0.93 1.00 0.83 1.00

9 0.78 0.80 0.75 0.70 0.76 0.80

10 0.73 0.80 0.93 1.00 0.88 0.90

11 0.78 0.90 0.64 0.70 0.79 1.00

12 0.80 0.80 0.83 0.90 0.78 0.80

Mean 0.73 0.75 0.87 0.94 0.85 0.91

ATL represents the accuracy in typing a letter correctly, and PPC is the probability of

phrase completion.

We then compare classification accuracies across different
acquisition paradigms by employing AUC values as the measure
of EEG evidence classification accuracy. In particular, using the
calibration data obtained in the Human-in-the-loop calibration
experiment (calibrationERP and calibrationFRP) as described in
section 3.2, we compare the offline target vs. non-target stimuli
and correct vs. incorrect feedback classification results for the
three data acquisition paradigms, [P1], [P2], and [P3]. Figure 8A

compares the areas under the receiver operating characteristics
curves (AUCs) for the FRP evidences of each user in different
acquisition paradigms, [P2] and [P3]. Similarly, Figure 8B shows
the ERP classification AUCs for each user for different acquisition
paradigms, [P1], [P2], and [P3]. AUC values are calculated based
on the cross validation of the classifier’s performance on the
training (calibration) data sets. In 10 out of 12 users tested,
the classification AUC for paradigm [P2] is larger than [P3], as
observed in Figure 8A. This can be a result of the experiment
[P2] being more controlled. In other words, since each RSVP
sequence is appended with a prospect symbol in paradigm [P2],
the user always knows when the feedback is going to be presented
in [P2] as opposed to [P3]. Comparing the calibration results
from Figures 8A,B we can see that for most users, the ERP
calibration results have higher AUCs compared to the FRP
classification. This difference in the classification AUCs can be
due to the fact that the number of observations that we collect
during ERP calibration is higher than the number of observations
that we can collect during FRP calibration.

4.2. Human-in-the-Loop Copy Phrase
Experiment Results
Using the data collected during three copy phrase tasks, we
analyze the typing performance for the three evidence acquisition
paradigms. As explained in section 3.2, each copy phrase task
includes typing ten different phrases with different difficulty
levels. Table 1 shows the typing accuracy performance of the
three evidence acquisition paradigms for all users in terms of two
measures: accuracy in typing a letter correctly (ATL), which is
the total number of correctly typed letters divided by the total
number of typed letters; and probability of the phrase completion
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FIGURE 9 | Average of information transfer rate (bits/sequence) for three evidence acquisition paradigms: [P1] (black), [P2] (red), and [P3] (blue). All 12 users

performed the copy phrase task in RSVP KeyboardTM.

(PPC) which is the total number of correctly typed phrases
divided by the total number of phrases.We observe that both [P2]
and [P3] paradigms improve the typing accuracy performance
compared to [P1]. As shown in Table 1, none of the users are
able to complete the 10 copy phrase tasks correctly using [P1].
A paired t-test is also performed on ATLs to compare the typing
accuracies among different paradigms across 12 users. In most
EEG-based BCI systems, signal recorded from multiple channels
along the scalp is assumed to be a Gaussian process with an
unknown covariance and mean (Gonzalez-Navarro et al., 2016b).
Assuming the Gaussianity of the recorded signal, we believe that
applying t-testing is plausible. The result is presented in Table 3.
From Table 3, we observe very low p-values for [P2] vs. [P1], and
[P3] vs. [P1]. However, no significant differences between [P2]
and [P3] are observed.

Here, we use information transfer rate (ITR) (Obermaier et al.,
2001) as another performance measure. ITR summarizes the
accuracy and speed into a single metric and it is commonly
used to measure BCI performance. Figure 9 illustrates the ITR
(bits/sequence) values for all subjects; and Table 2 reports the
mean of the ITR values among 12 subjects for the three strategies.
From Figure 9 and Table 2 it can be observed that [P2] (in red)
along with [P3] (in blue) yield considerable improvements in
both speed and accuracy. Among all the results, [P1] displays
the lowest performance. Using paired t-test, a hypothesis testing
is also performed to compare the ITR values obtained from
different paradigms across 12 participants. The results are
presented in Table 3. Table 3 also represents [P2] as the slightly
better paradigm, although the difference between [P2] and [P3]
is not statistically significant.

Human-in-the-loop copy phrase experiment results in
Figure 9 and Table 1 show that the proposed strategies [P2] and
[P3] outperform the strategy [P1] in terms of accuracy (with
[P2] leading the race); and result in significant improvements in
both speed and accuracy when compared to [P1]. We believe that
improving not only accuracy but also speed is highly desired for
BCI systems that are designed for real-life applications.

Finally, using online copy phrase and calibration results, we
report ITR as a function of AUC obtained from the FRP and

TABLE 2 | Mean of the ITR (bits/sequence) from Figure 9 for 12 subjects

performing a copy task using RSVP KeyboardTM for three different strategies [P1],

[P2], and [P3].

P1 P2 P3

Mean ITR 0.55 0.96 0.80

TABLE 3 | Hypothesis t-testing results for accuracy of typing a letter correctly

(ATL) and ITR values for different evidence acquisition paradigms for 12 users.

Paired t-Test Results Paired t-Test Results

between Different ATL Values Between Different ITR Values

Pi v.s. Pj P-values Pi v.s. Pj P-values

[P1] v.s. [P2] 3.00e−4 [P1] v.s. [P2] 0.04

[P1] v.s. [P3] 9.20e−5 [P1] v.s. [P3] 0.06

[P3] v.s. [P2] 0.46 [P3] v.s. [P2] 0.47

The null hypothesis is that the expected ATL/ITR difference of the two considered ITRs is

zero. Here, we conducted a Bonferroni correction in which the critical significance level of

α = 0.05 is adjusted.

the ERP classifiers for each paradigm in Figures 10A,B. There
are two different AUC values for paradigms [P2] and [P3] since
they both use ERP and FRP evidences, whereas there is only
one AUC value for [P1] corresponding to the ERP evidence. A
linear regression model is fit to the observed data. We also report
the coefficient of determination R2. From these figures it can be
observed that in all three cases, there is a positive correlation
between AUC and ITR. In the case of AUCERP, the correlation
is higher, which indicates that AUCERP is an effective factor to
improve ITR for the three paradigms. For FRP, the correlation is
much lower, so we can conclude that AUCFRP has a small effect
on ITR for both paradigms [P2] and [P3].

Compared to the benchmark BCI spellers which rely on
visually evoked potentials (VEPs) such as SSVEPs, our ERP/ErrP
based BCI speller has a slight advantage in accuracy (Liu et al.,
2020), (Wong et al., 2020). Compared to the vision-independent
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FIGURE 10 | Linear regression relation between ITR (bits/sequence) and AUCs of: (A) FRP for evidence acquisition paradigms [P2] (red) and [P3] (blue), and (B) ERP

for [P1] (black), [P2] (red), and [P3] (blue). Actual ITR values (represented by dots) and ITR values predicted by the linear model (represented by the solid line) are

plotted as a function of the AUC for 12 users.

BCI paradigms which rely on ERP elicitation via auditory and
tactile stimulation, our visually evoked ERP/LM/FRP fusion BCI-
speller has a significant advantage in ITR, and the accuracies
we obtain with paradigms [P2] and [P3] compete with state-
of-the-art P300 BCIs in the literature (Eidel and Kübler, 2020),
(Kawala-Sterniuk et al., 2021).

5. CONCLUSIONS

In this manuscript, we compared three different Bayesian
inference frameworks that tightly fuses context information
and different EEG evidences to be used in intent inference
engines of EEG-based brain computer interfaces. In particular,
we study the potential benefits of fusing FRP, ERP, and
language evidence using probabilistic generative models for a
speller BCI. Based on the human-in-the-loop (copy phrase and
calibration) experiments with 12 healthy participants using RSVP
KeyboardTM, three strategies are compared: [P1]-Baseline, which
only fuses ERP/LM evidence; [P2]-AlwaysFRP, where each RSVP
sequence is followed by an FRP trial using the top candidate in the
alphabet according to posterior after ERP/LM evidence fusion;
[P3]-ConfirmFRP, where the top candidate is shown as a prospect
to generate FRP evidence only if its posterior exceeds a threshold,
possibly after multiple ERP-evidence acquisition sequences.

We performed several analyses on the Human-in-the-loop
copy phrase experiment results, which are: (i) accuracy (in the
form of AUC, ATL, and PPC), (ii) speed (in the form of ITR),
(iii) Information Transfer Rate (ITR) (bits/sequence). Our results
show that by using enough FRP evidence in addition to ERP
evidence and language model (LM), the typing speed could be
increased compared to a model that does not use FRP evidence.

Overall, both proposed strategies [P2] and [P3], which utilize
FRP evidence outperform [P1] in terms of accuracy. Moreover,
[P2] yields significant speed and accuracy and, therefore, ITR
improvements compared to [P1] and also performs better
compared to [P3]. These results could be due to the fact that
for [P3] we do not collect enough FRP evidence during copy-
phrase tasks, and that [P2] causes less mental fatigue due to
its deterministic presentation method. We think that, for a
Brain-Computer Interface which is designed to be used daily,
it is crucial to improve the speed as well as the accuracy. Our
results suggest that, probabilistic fusion of the FRP evidence
can bring the true performance of a BCI one step closer to
the objective.

According to the results, BCI users can benefit from
the fusion of the FRP evidence to the decision making, if
there are enough FRP evidences. Based on the analyses, we
propose a BCI typing system capable of employing multiple
evidence acquisition paradigms. This system, after individual
assessments, will be able to determine the most profitable
evidence presentation/inference paradigm as per user preference,
capabilities, and EEG signal statistics.

We demonstrate theoretically that probing the users intent
with FRP-acquisition using the current top candidate is an
optimal strategy in an active learning framework employing
the independent-trial-EEG-evidence assumption paradigm.
This approach constitutes an improvement over previous
literature employing ERP paradigms alone. In earlier work,
we demonstrated that showing the top letters according
to the current posterior in a sequence for ERP evidence
acquisition is similarly optimal under the same independence
assumption (Moghadamfalahi et al., 2015). Therefore, under the
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independent-trial-EEG-evidence model, the best strategy is to
repeat the following until a decision is confidently made: show
the top candidate, gather EEG evidence, and update the posterior.
Clearly the independence assumption is incorrect, if not for
the auto-correlation of EEG time series, due to the overlapping
time windows that are used for trial-EEG-evidence extraction.
Consequently, in an improved ERP/FRP/LM fusion framework
that can be designed in the future, the following issues need to be
considered more carefully: (1) a signal model that captures the
temporal dependency of EEG features extracted for each trial, (2)
the temporal cost of gathering a sequence-worth of ERP evidence
vs. FRP evidence by showing the current top prospect. Therefore,
in future work, we plan to address these issues and develop
an ERP/FRP/LM fusion mechanism for BCI spellers that will
dynamically decide whether to gather more ERP evidence, more
FRP evidence, or neither during intent inference. The inference
framework does not strictly rely on EEG evidence, therefore,
we will also explore multi-modal physiological evidence fusion
using signal sources such as EMG or eye-gaze trajectories.
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