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A sampling‑guided unsupervised 
learning method to capture 
percolation in complex networks
Sayat Mimar1 & Gourab Ghoshal1,2*

The use of machine learning methods in classical and quantum systems has led to novel techniques 
to classify ordered and disordered phases, as well as uncover transition points in critical phenomena. 
Efforts to extend these methods to dynamical processes in complex networks is a field of active 
research. Network‑percolation, a measure of resilience and robustness to structural failures, as well as 
a proxy for spreading processes, has numerous applications in social, technological, and infrastructural 
systems. A particular challenge is to identify the existence of a percolation cluster in a network in 
the face of noisy data. Here, we consider bond‑percolation, and introduce a sampling approach 
that leverages the core‑periphery structure of such networks at a microscopic scale, using onion 
decomposition, a refined version of the k‑core. By selecting subsets of nodes in a particular layer of 
the onion spectrum that follow similar trajectories in the percolation process, percolating phases can 
be distinguished from non‑percolating ones through an unsupervised clustering method. Accuracy in 
the initial step is essential for extracting samples with information‑rich content, that are subsequently 
used to predict the critical transition point through the confusion scheme, a recently introduced 
learning method. The method circumvents the difficulty of missing data or noisy measurements, as 
it allows for sampling nodes from both the core and periphery, as well as intermediate layers. We 
validate the effectiveness of our sampling strategy on a spectrum of synthetic network topologies, as 
well as on two real‑word case studies: the integration time of the US domestic airport network, and 
the identification of the epidemic cluster of COVID‑19 outbreaks in three major US states. The method 
proposed here allows for identifying phase transitions in empirical time‑varying networks.

Artificial intelligence has abundant applications in a wide spectrum of disciplines including health care, medicine, 
finance, autonomous driving and engineering of smart devices to name a  few1. In the physical sciences, machine 
learning (ML) techniques have been used to extract useful information from massive datasets generated by par-
ticle physics experiments or observations in  astronomy2. In condensed matter physics, ML methods have been 
adapted to study thermodynamic phase transitions in several classical systems such as the Ising  Model3, the XY 
 Model4,5 and the Hubbard  model6, as well as to explore quantum phase  transitions7–10. On regular lattices, for 
instance, unsupervised learning models are used to discriminate between ferromagnetic and paramagnetic spin 
configurations at different temperatures, with unlabeled samples above and below the critical threshold. Examples 
of such methods include principle component analysis (PCA)11, t-distributed stochastic neighboring ensemble 
(t-SNE)5, k-means  clustering12, auto-encoders13 and the recently introduced confusion  scheme14. When labels 
with ordered-disordered states of configurations are introduced, supervised learning methods such as Artificial 
(ANN)15,16 and Convolution Neural Networks (CNN)17, are employed to infer the transition temperature, which 
has been found to be in exact agreement with theoretical  predictions18,19

In complex networks an important example of critical phenomena is percolation, a measure of structural 
resilience and a benchmark model for other dynamical processes such as epidemic spreading, vital node identifi-
cation and community  detection20–22. One example is bond-percolation, where in a network of N nodes, E edges 
are added randomly to an empty network (or conversely removed at random from a connected network), until at 
a critical fraction of edges φc , a giant connected component (GCC) of size O(N) emerges in a continuous second-
order phase transition. While the critical bond-occupation probability φc can be computed using  numerical23 
and analytical  methods24–27, for networks of smaller size and in real-world networks with incomplete data, due 
to finite size effects these differ from what can be determined by directly simulating the percolation  process28.
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Indeed, data on empirical networks is commonly noisy and restricted to sub-samples29. Furthermore, uncer-
tainty in measurements alters network topology and impacts structural measures such as centrality as well as the 
percolation threshold, which in turn affect network  dynamics30–34. In particular, nodes in the network-core are 
more sensitive to incomplete observations and missing  links35,36. Examples include Call Data Records (CDR’s) 
from mobile-phones that miss connections due to missing phone numbers, as well as online social networks 
that may indicate existing virtual ties among people who are  unacquainted37. In the context of epidemics, super-
spreading events have been identified as a significant source and driver of major  outbreaks38. However, contact-
tracing the network of spread is biased by limitations in data collection and public health capacity, potentially 
leading to over- or under-estimation of the extent of super-spreading39.

Recently, ML techniques have been proposed to study the epidemic cluster in the susceptible-infectious-
susceptible (SIS) compartmental model of epidemic spreading on  networks40. The proposed approach converts 
high dimensional network data into image-like structures and exploits CNNs to learn and precisely identify the 
outbreak threshold of epidemic dynamics. Similar techniques were used for the case of sparse time-series data 
of a handful of nodes produced by networks of coupled Kuramoto  oscillators41 to accurately classify underlying 
network structure.  In42 a deep learning framework is introduced, combining both unsupervised and supervised 
learning methods to predict phase transitions associated with spreading dynamics. This approach makes accurate 
estimates of the critical transition point in uniform random networks, as well as proposes hub- and -neighbors 
and max-k-core sampling to overcome predictive inaccuracies associated with networks that have heavy-tailed 
distributions of links. Indeed, the rich structural features of heterogeneous networks render the simultaneous 
prediction of the critical transition point and the clustering of dynamical phases by adopting unsupervised 
learning approaches like PCA, challenging. In complex hierarchical networks, separating percolating and non-
percolating regimes in dynamical processes remains unsolved.

To uncover the precise role of network structure in the learning process, in this manuscript, we focus on bond-
percolation and investigate the effect of topology on ML methods that seek to estimate the percolation clusters 
and to infer the critical bond occupation probability φc . Our approach extends previously proposed macro-level 
sampling procedures by using onion decomposition (OD)43 as a tool to determine the position of nodes in the 
core-periphery structure. This network statistic—a refined version of the k-core decomposition—decomposes 
the network into hierarchically ordered layers and reveals much more structural information at meso and micro 
scales. OD is able to uncover the internal structure of a shell (determined by k-core) by introducing the concept 
of layer that counts the number of peeling steps needed to reach a node, hence identifying a succession of layers 
within a shell44. The resulting onion spectrum obtained with this pruning method effectively defines the center 
and periphery of a network. We investigate the limiting cases of uniform—and heavy-tailed—distribution and 
demonstrate significant differences between networks of opposite topologies, with the former having a homoge-
neous population of nodes across layers, while the latter containing dense layers interspersed by sparse regions. 
We use a hybrid unsupervised learning method, combining t-SNE and k-means clustering, and train it on subsets 
of nodes sampled from both the sparse and dense layers to distinguish dynamical states above and below φc . We 
show that sampling from the dense layers with nodes containing similar dynamical information in the percolation 
process, provides significantly higher accuracy than compared to sampling from the sparse layers or sampling 
nodes randomly, independent of whether nodes lie in the core or the periphery.

Having determined the optimal sampling strategy, we next use the confusion scheme to identify the critical 
occupation probability φc , and once again demonstrate high accuracy as compared to the ground-truth estimates 
of the threshold values. Perhaps, most surprisingly, we show that optimal samples are not limited to the core of the 
underlying network, but there exists multiple subset of nodes in the entire range of layers in the onion spectrum. 
This finding bears particular significance for using such methods in empirical networks, the majority of which 
have heavy-tailed distributions of links, and whose measurements are noisy. Finally, we apply our formalism to 
two examples of real-world time evolving systems: We determine the exact critical integration time of the US 
air transportation network , as well as identify the epidemic cluster for COVID-19 in three major states in the 
US. We end with a discussion of the implications of our findings.

Percolation on different network topologies
Consider a network G where V = {v1, · · · , vN } is the node set that undergoes bond-percolation, and let φ denote 
the occupation probability of a certain configuration. The data X generated during the process is contained in a 
M × N matrix, where N is the number of nodes and M is the total number of dynamical states at different values 
of the control paramete φ . The entries of X are binary;

Each value is characterized by the tuple (vi ,φ) and equals 1 if vi is part of the giant connected component (GCC) 
of the network and 0 if the node is disconnected from GCC at given φ . The matrix X is then associated with the 
vector y of size M × 1 that represents the label space. For pre-transition states φ ≥ φc the entries y(φ) = 0 and 
for post transition states φ < φc we have y(φ) = 1.

We pick two graphs at the opposite ends of the structural spectrum of networks: first, we construct a square 
lattice with NSL = 1024 and open boundaries such that all nodes, except those at the periphery, have degree 
k = 4 , leading to a uniform, tightly-peaked degree distribution. On the other end of the spectrum, we con-
sider a power-law network with NPL = 1000 and degree distribution pk ∼ k−γ generated using the configura-
tion  model45. We choose an exponent γ = 3.1 , such that both networks have finite second moments 〈k2〉 in 
their degree-distributions and exhibit phase transitions at non-zero probabilities φc =

[

�k2�/�k� − 1
]−1 in the 

(1)x(vi ,φ) =

{

1, vi ∈ GCC
0, vi /∈ GCC.
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thermodynamic  limit24. We simulate the percolation process on the networks with opposite topologies start-
ing from φ = 1 and decrementing the occupation probability by �φ = 0.001 until φ = 0 yielding M = 1000 
configurations in total for both networks, generating the matrices XSL with size 1000× 1024 and XPL with 
size 1000× 1000 for square lattice and power-law network respectively. The critical phase transition point φc 
is numerically determined as the value of φ where the size of the second largest cluster reaches its  maximum46. 
The ground truth label vectors ySL and yPL with entries either 0 or 1 representing two percolating classes are 
constructed accordingly. Hence the pairs {XSL : ySL} and {XPL : yPL} contain the training data and corresponding 
labels that are used in the subsequent machine learning methods described in next sections.

Next, we use the onion decomposition method to uncover the core-periphery structure of two different types 
of networks. In addition to the coreness metric produced by k-core decomposition that identifies nested maximal 
subnetworks with nodes having at least k connections, the onion decomposition improves the coreness infor-
mation by assigning a layer to each node, to further indicate its position within the core and makes its internal 
organization  apparent43. (See SI Sect. 1 for the details of OD algorithm and demonstration of the method on a 
sample network in Fig. S1).

In Fig. 1a,b we show the onion spectra of the square lattice and the power-law network. Nodes are sorted 
with respect to their layer value in descending order, from the inner- to the outer-most layer—from core to 
periphery—(high to low layer values from left to right). The square lattice has a uniform spectrum where nodes 
populate each layer equally in the network, however the power-law network shows a spectrum with sparsely 
filled inner layer followed by monotonically increasing node fractions in successive layers as one moves to the 
outer layers, terminating in a large peripheral layer. The fraction of nodes in each layer (shown as inset in both 
panels) indicates that square-lattice and power law network have 32 and 14 onion layers in their onion spectra 
as opposed to a single and double shells respectively, identified by k-core decomposition. The effect of this dif-
ference in structure is shown in panels c and d, where we show the evolution of the percolation process in the 

Figure 1.  Effect of topology on percolation dynamics. Onion decomposition of (a) a Square Lattice of size 
N

SL = 1024 (32× 32) and (b) a power-law network with NPL = 1000 and γ = 3.1 . Nodes are ordered from 
the inner- to the outer-most layers which are labeled in descending order. The onion spectra are shown in the 
inset, as distribution of nodes per layer, where 32 and 14 distinct layers are identified by square lattice and power 
law network, respectively. Layers are populated uniformly in the square-lattice, and in a punctuated fashion. 
In (c) and (d), the percolation process in the range 0 ≤ φ ≤ 1 represented by the matrices XSL and XPL for the 
square-lattice and power-law network where nodes (columns) are sorted in decreasing order with respect to 
their layer values from core to periphery (left to right). The critical bond-occupation probabilities φSL

c = 0.524 
and φPL

c = 0.298 are marked as the red dashed line. Nodes part of the GCC are colored black, those outside are 
colored white. Nodes are ordered the same as in the upper-panel.
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range 0 ≤ φ ≤ 1 by plotting the matrices XSL and XPL where nodes (columns) are sorted with respect to their 
layer values in decreasing order from left to right and the horizontal axis corresponds to the nodes sorted in the 
same order as in the upper panel. The critical bond occupation probabilities φSL

c  and φPL
c  , below which there is no 

GCC, are marked by the red horizontal dashed lines. Nodes that are part of the GCC are colored black, whereas 
those outside the GCC are colored white. (Note that the few sets of nodes colored black below φc belong to the 
largest connected component (LCC) which is technically not the GCC.).

The figure indicates that in the case of the square lattice, groups of nodes across layers show common dynam-
ics for a wide-range of φ . Nodes attach and detach from the GCC (as φ changes) in a similar fashion independent 
of what layer they belong to. In contrast, in the power-law network there is wide variation across layers; for a 
given value of φ large swathes of nodes in the inner- and outer-most layers are not part of the GCC. Further, 
whether a node is part of the GCC as φ is increased, varies from layer-to-layer. Finally, we note the presence of 
high-fidelity samples in the core-, intermediate- and peripheral-layers. For any classification algorithm, such 
class-imbalanced datasets pose a challenge as learning methods fail to capture the distributive characteristics of 
the data and produces unsatisfactory  accuracies47. The performance of such algorithms is poor on subsets with 
under and over-represented classes as it tends to partition phases into relatively uniform sizes. The pre-processing 
of the data using onion decomposition, instead allows for the identification of node subsets with similar dynami-
cal information in the percolation process. That is, the method identifies layers where nodes disconnect from the 
GCC at comparable values of the control parameter, hence yielding a balanced training data in the subsequent 
learning phase and leading to high clustering accuracy of dynamical phases. This is particularly important for 
the power law network as shown in Fig. 1b where the fractions of nodes present in different layers and their 
corresponding dynamical trajectories panel (Fig. 1d) display an irregular trend.

Effect of sampling on clustering
Next, we focus on the classification scheme for clustering configurations as percolating and non percolating 
phases. We construct a hybrid unsupervised learning model with t-SNE48 a non-linear dimensionality reduction 
technique, and k-means  clustering49 used for identifying pre-determined number of clusters from an unlabeled 
dataset. We add Gaussian noise, N (0, 0.01) , to the matrices XSL and XPL with sorted columns (1st column being 
the node in innermost layer) to help spread the data points. We then sample subsets of nodes in consecutive 
disjoint bins of size 20 in the form of 1–20, 21–40, 41–60, etc. (corresponding to ≈ 50 samples of 1000× 20 
matrices, covering the entire range of nodes) as training sets, from the innermost layer to the peripheral layer 
such that nodes with similar layer values are grouped into a single sample. We project subsets of 20 nodes into a 
two-dimensional plane with t-SNE, and then use k-means with k = 2 to assign pre and post transition labels to 
all 1000 configurations in hand. To assess the performance of the algorithm we compare the labels assigned by 
the unsupervised learning method ŷ to the ground-truth labels y for both square lattice and power law network 
and define the accuracy αŷ,y as

where the summand is the Kronecker delta-function.
In Fig. 2 we plot the results of our analysis for the square-lattice. Panel d shows αŷ,y as a function of the 

sampled subsets of nodes sorted with respect to their layer values. As baselines, the horizontal black dashed 
line indicates the accuracy for 50 samples of subsets of 20 nodes chosen uniformly at random independent of 
layer position ( αŷ,y = 0.80 ) and the gray dashed line represents the accuracy for a model-independent random 
guess of the state-labels ( αŷ,y = 0.5 ). As the figure indicates, depending on the sampled layer, accuracy fluctuates 
around the performance of the random sampling method, with some layers providing almost perfect accuracy, 
whereas others no better than a random guess of labels. The high-and low-accuracy samples are not limited to 
the core, but periodically found across all layers in the onion spectrum. Example outputs of the unsupervised 
learning scheme are shown in panel a (inner-layer, αŷ,y = 0.56 ), b (random sample, αŷ,y = 0.80 ) and c (outer-
layer, αŷ,y = 0.99 ). For the poor-accuracy inner-layer sample, the model is confused by the fact that nodes in the 
training-set exhibit different dynamical evolution in the percolation process. They connect to the GCC at differ-
ent values of φ , hence the unsupervised learning model cannot divide configurations into two separate clusters. 
Conversely, for the high-accuracy outer-layer sample, the subset of nodes belongs to a high-fidelity layer in the 
onion spectrum, such that the majority of nodes in the set connect to the GCC at similar values of φ . Such layers, 
as indicated in Fig. 1c are distributed equally across the onion spectrum. Finally, the random sampling strategy 
provides reasonable accuracy, given the homogenous structure of the square lattice (all nodes in a single-shell), 
as random samples and tailored subsets have similar properties.

In Fig. 3 we plot the corresponding results for the power-law network indicating rather different behavior. 
As seen in panel b, the random sampling (averaged over ∼ 50 random subsets) strategy performs considerably 
poorer with αŷ,y = 0.64 , only marginally better than randomly guessing labels. Furthermore, the peaks and 
troughs in the accuracy curve are much more irregular, as compared to the square-lattice, reflecting the richer 
structure of the power-law network. There are samples in the inner and intermediate-layers providing poor 
accuracy (panel a), and surprisingly, there exists a range in the outer-most layers that yields accuracy as high as 
0.99 (panel d). The results indicate the importance of adopting a considered sampling strategy for training-sets in 
power-law topologies, given that unlike in networks with uniform topologies, random sampling is sub-optimal. 
Indeed, very few real-world networks have uniform topologies, instead exhibiting heavy-tailed distributions, 
implying that for any realistic application, identifying high-quality samples a priori is of paramount importance. 

(2)αŷ,y =
1

nstates

nstates
∑

i=1

δŷ,y ,



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:4147  | https://doi.org/10.1038/s41598-022-07921-x

www.nature.com/scientificreports/

Figure 2.  Effect of sampling on the unsupervised learning scheme for the square lattice. (d) The accuracy of 
label prediction αŷ,y with t-SNE and k-means clustering as a function of training data consisting of binned nodes 
of size 20, sorted in decreasing order with respect to their layer values from core to periphery as shown by the 
arrow from left to right. The accuracy for random samples of 20 nodes ( αŷ,y = 0.8 ) is shown as a black dashed 
line, and the grey dashed line corresponds to model-independent random guessing of state labels ( αŷ,y = 0.5 ). 
Examples of clustering of percolating (blue dots) and non-percolating phases (red dots) (a) for low-accuracy 
samples from the inner-layer (b) random samples and (c) high-accuracy samples from the outer-layer.

Figure 3.  Effect of sampling on the unsupervised learning scheme for the power-law network. (d) The accuracy 
of label prediction αŷ,y with t-SNE and k-means clustering as a function of training data consisting of binned 
nodes of size 20, sorted in decreasing order with respect to their layer values from core to periphery as shown 
by the arrow from left to right. The accuracy for random samples of 20 nodes ( αŷ,y = 0.64 ) is shown as a black 
dashed line, and the grey dashed line corresponds to model-independent random guessing of state labels 
( αŷ,y = 0.5 ). Examples of clustering of percolating (blue dots) and non-percolating phases (red dots) (a) for low-
accuracy samples from the inner-layer (b) random samples and (c) high-accuracy samples from the outer-layer.
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Given issues of data sparsity, it is of note, that such samples exist in multiple layers of the power-law network, 
including the core-, intermediate- and peripheral layers.

Identifying critical transition points
The procedure described thus far, while effective in identifying configurations below and above the percola-
tion phase, in itself, cannot identify the critical bond occupation probability φc . To do so, we make use of the 
confusion scheme, first introduced to study phase transitions in Kitaev chains, the classical Ising model and in 
disordered quantum spin  chains14. Recently it has been extended to uncover the critical transition probability in 
dynamical phase transitions in complex  networks42. Next, we show that our sampling-guided strategy adopted 
to the confusion scheme is quite effective in terms of identifying the value of φc.

The method does not take as input labels of the dynamical states, instead a synthetic label space y is associ-
ated with an input matrix I , with entires 0 and 1, corresponding to the before and after transition states in the 
percolation process. At φ = 1 the label vector y = 0 i.e., all configurations are in the before state, and for φ = 0 , 
the vector y = 1 , each snapshot is labeled as after state. The boundary between 0 and 1 (corresponding to the 
critical threshold) in this artificial label-set is varied in the entire range of the control parameter φ ∈ [0, 1] with 
increments of � = 0.005 (yielding 200 steps in total) and associated with an optimal subsample I ⊂ X selected 
using the method described in “Effect of sampling on clustering”. For both the square-lattice and the power-law 
network we select samples from the periphery that yield high accuracy in clustering.

A feed-forward neural network (FFNN) is trained with this data consisting of pairs {I : y} in the form of 
supervised learning problem using the PyTorch  library50. The input layer contains neurons at the same number 
of the chosen subsample size, followed by a hidden layer of 128 neurons. Both layers have rectified linear unit 
(ReLu) as activation functions. The output layer contains a single neuron with sigmoid activation function, that 
predicts the probability of a configuration belonging to one of the states. A binary cross-entropy loss-function 
is minimized in training, which is well suited for binary classification problems. For stochastic optimization we 
use the Adam  method51 with learning rate 10−3 . To prevent over-fitting we use Dropout regularization with prob-
ability 10−1 . In each step, the dataset is split into a training set that is fed into the FFNN and prediction accuracy is 
evaluated on the test set. Highest accuracies are achieved at endpoints of the threshold range due to the constant 
nature of the label space. As one spans the range between [0, 1], initially lower accuracy values are observed as 
some configurations are associated with incorrect labels. At the transition probability, the artificial label space 
matches the ground truth, leading to a high classification accuracy. In this process, the accuracy curve follows a 
W-shape as a function of φ , where the middle peak corresponds to the estimated transition  probability42 ( See SI 
Sect. 2 for detailed information about the confusion scheme and a schematic illustration of the output in Fig. S2).

In Fig. 4, we show the output of the confusion scheme on the square lattice (a) and the power-law network 
(b). In both panels, the brown curve corresponds to a random sample of 20 nodes and the black curve to the 
high-accuracy subset from the peripheral layers, identified using the unsupervised learning method. The vertical 
dashed lines mark the value for the ground-truth value of φc in each network. The random sampling strategy in 
the square lattice is reasonably effective, generating a W-shape, although the peak near φc is not well-defined. In 
the power-law network the random sampling accuracy curve is noisy and flat yielding little-to-no information 
on the transition probabilities. However, in both cases the black curve yields a clear W-shape and the middle-
peaks line up well with the ground-truth values of φc . Thus unlike existing methods, the sampling-guided 
scheme outlined here simultaneously identifies nodes in the GCC as well as provides accurate estimates for the 
bond-occupation probability.

Figure 4.  Identification of φc as a function of network topology: (a) Square lattice and (b) power-law network 
with random samples of 20 nodes (brown curve) and a high-accuracy sample from the peripheral layers 
identified using the unsupervised learning method (black curve). The vertical dashed line represents the critical 
bond occupation probabilities in each network, φSL

c = 0.524 and φPL
c = 0.298 . The random sample in the square 

lattice has a clear W shape, but the middle peak is noisy and is flat around φSL
c  . For the power-law network 

the random sampling strategy fails to provide any information on the transition probability. In both cases, the 
sampling-guided strategy yields high accuracy on φSL,PL

c  , with the middle peaks in the black curves occurring at 
0.520 and 0.305.
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Transitions in time‑varying real‑world networks
Next, we validate our methodology in two real-world examples. The availability of large time-resolved datasets 
enables for the representation of a wide range of dynamical phenomena in the form of time-varying networks. 
Such processes often exhibit phase transitions, and thus can be analyzed via percolation in static networks. Some 
applications include wireless communication networks with unreliable  links52, spreading of infectious diseases in 
modular time varying  networks53 or percolation in ground-transportation networks to identify critical bottleneck 
roads in local  flows54,55. Recently, the integration process of air traffic into a temporally connected network was 
modeled  as a time-varying percolation  process56. The critical integration time Tc , at which the network forms a 
temporal spanning cluster, is proposed as a measure of global reliability of air-traffic.

We test our scheme on the air-transportation network, to identify both Tc as well as label nodes that belong 
to the time-varying GCC. We construct the temporal air-transportation  network57 starting from t0 = 7 : 30 a.m. 
on September 5, 2019 and spanning a 18-h period until the integration process is completed. The resulting net-
work consists of 288 airports as nodes and 1903 edges, where a link corresponds to at least one flight between 
two airports. We generate states with a time window of [t0, t0 + T] where T is incremented in intervals of 1-min 
generating ∼1100 instances as the training and test set.

The task of the unsupervised learning method is to discriminate between states before and after the integration 
process. Unlike in the synthetic networks studied thus far, the transition happens at an early stage ( Tc = 91 min), 
and therefore the dataset is unbalanced. After running the onion-decomposition scheme to identify the layers, 
we pick two samples with 10 airports: Sample 1 from the core of the air transportation network (Atlanta, Austin, 
Nashville, Boston, Charlotte, Denver, Detroit, Fort Lauderdale-Hollywood, Las Vegas, Los Angeles, Chicago O’Hare) 
and Sample 2 from the periphery (Norfolk, Worcester, Southwest Oregon, Barkley, Palm Beach, Hilton Head, Punta 
Gorda, Pitt-Greenville, Newport News/Williamsburg, Ithaca Tompkins). We then use the t-SNE method to cluster 
the states. The results are shown in Fig. 5a,b, indicating that the method performs well; the labels are assigned by 
k-means with an accuracy of αŷ,y = 0.99 in both samples of nodes. We then use these two samples as a training 
set on the confusion scheme, and plot the resulting accuracy curve as a function of the time t in Fig. 5c. The 
curve corresponding to the core-sample is shown as black circles, while curve for the peripheral sample is shown 
as red-squares. As a reference we show the case for a random sample of 10 airports (Reno-Tahoe, Albany, Rapid 

Figure 5.  Predicting integration time of the Unites States air-transportation network. Clustering of pre- and 
post-transition states in the temporal integration process from a sample taken from the inner-layer (Sample 1) 
(a) and one from the peripheral layer (Sample 2) (b). In both cases the accuracy is αŷ,y = 0.99 . In (c), the output 
of the confusion scheme in predicting the critical integration time ( Tc = 91 min, marked as vertical dashed 
line) at which a connected percolating cluster of airports linked by flights is formed. Training the network on 
Sample 1 yields a peak of the W-shaped curve (black-circles) at T = 93 min and with Sample 2 (red squares), at 
T = 94 min. Training on a random sample (green triangles) yields a noisy curve, and an accurate identification 
of Tc is not possible (Behavior of all three curves near Tc shown as zoomed inset).
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City Regional, Hector, Miami, Waterloo, Kansas City, Corpus Christi, Columbia Metropolitan, Baltimore/Wash-
ington) as green triangles, whereas Tc is shown as the vertical dashed line. For both samples, the accuracy curve 
αŷ,y shows a clear W-shape with peaks at T = 93 min and T = 94 min. The random sample yields a noisy curve 
with no clear peak (behavior near peak for all three curves shown as inset). The results illustrate the versatility 
of the sampling-scheme with near-perfect identification of airports in the temporally connected cluster and the 
ability to estimate the critical integration time to within 3–4% , and the flexibility in sampling from the core or 
the periphery of the network.

Next, we consider a different dynamical process of particular relevance; the spread of COVID-19 in the United 
 States58. We investigate the possibility of employing our clustering method to use as a diagnostic tool that signals 
at a relatively early stage, whether an epidemic outbreak is about to occur based on real-time data. We pick three 
major states; Texas, Georgia and New York with 3.0 , 1.1 and 1.9 ( ×107 ) inhabitants respectively. We consider a 
spatial resolution at the level of counties leading to 254 nodes for Texas, 159 for Georgia and 62 for New York. We 
construct mobility networks from the United States census bureau’s  LODES59 commuting data, where the edges 
represent population-flows between counties corresponding to 20,262 (Texas), 11,042 (Georgia) and 1883 (New 
York) undirected links. We then follow the temporal evolution of the number of detected cases in each county 
from January 21st to May 18th  202060. Counties are labeled “infected” when the number of cases per-capita is 
above a threshold of 10−4 . In Fig. 6a, we plot the empirical temporal evolution of the number of infected counties 
finding an emergence of an epidemic cluster around day 60 for all three states. In the top-row of Fig. 6, we train 
our unsupervised learning model with samples of size 10 selected from the high-fidelity layers of of the mobility 
networks in cumulative intervals of 20 days starting from day 0. In Fig. 6b we plot the accompanying accuracy 
curve αŷ,y in function of time. Before day 60, there is no epidemic cluster, and therefor αŷ,y = 0.5 equivalent to 
model-independent simple guessing of labels. After day 60, however, once an epidemic cluster emerges, the model 
is able to reliably split counties into infected and disease-free clusters and make more accurate predictions. The 
increase in the accuracy curve tracks the growth in the epidemic cluster and reaches perfect accuracy at around 
day 80. We note that from a point of forecasting the epidemic progression in real-time with up-to-date data, the 
model reaches accuracies of ≈ 70% when the size of the epidemic cluster is ≈ 0.4.

Figure 6.  Emergence of the epidemic cluster of COVID-19 in 3 major US states. The network corresponds 
to population flows between locations in-state at the resolution of counties. Nodes are labeled as infected if 
the number of cases per-capita exceeds 10−4 . (a) indicates that an epidemic cluster emerges around day 60 
in all three states. The top three rows show the output of the clustering method that splits counties into those 
belonging to the epidemic cluster and those outside. Training occurs from day 0 in cumulative intervals of 20. 
The identification of counties belonging to the epidemic cluster becomes increasingly accurate past the phase-
transition and peaks around day 80 as seen in (b).
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Discussion
Taken together, our work sheds light on the role of micro- and mesoscopic structure of networks in machine 
learning phases of bond percolation. Our sampling guided approach reveals the importance of choosing par-
ticular subset of nodes from layers of the onion spectrum of the network that enables unsupervised learning 
methods to distinguish between percolating and non-percolating states. Labels assigned by k-means match 
the ground truth labels with near-perfect accuracy. We show that this is facilitated by sampling nodes chosen 
from both core and peripheral layers, identified using onion decomposition, that identifies subsets of nodes in a 
spectrum of layers following similar paths in the percolation process, i.e. they detach (or attach) to the percolat-
ing cluster at comparable values of φ . The sampling-guided strategy carries over to other learning tasks, such 
as identifying the critical occupation probability φc using the confusion scheme. This gain in performance is 
particularly pronounced for networks with heavy-tailed degree distributions, where the method significantly 
outperforms random sampling. Indeed, to the best of our knowledge, the framework presented here is the first 
to simultaneously enable the clustering of nodes into different dynamical states, as well as identify φc in networks 
with heterogeneous topologies. This bears significance, given that many empirical networks exhibit right-skewed 
distributions of links.

To validate our results, we demonstrate two possible applications of our findings on real-world time-varying 
networks that exhibit a percolation transition; the exact integration time of the US domestic air transportation 
network, as well as the emergence of the COVID-19 epidemic cluster in three large US states. In both cases the 
framework yields excellent performance. The application to pandemic settings is of particular interest, as a pos-
sible diagnostic tool to assess the current state of disease-spread with real-time data. The ability to accurately 
classify (with reasonable accuracy) regions into infected and disease-free states (close to when the epidemic 
cluster first emerges) could prove useful in terms of mitigation strategies. Indeed, techniques have been proposed 
to study immunization strategies in networks where only a small subset of nodes are observed at a time, to slow-
down epidemic  spread61,62. Given the limited knowledge of network structure, immunizing a small sample of 
nodes provides significant improvement in the global level immunization of the  network63. Similar considerations 
apply in the diffusion of rumors or “fake news” in social media and online  platforms64. The approach proposed 
here can, in principle, be easily extended to such real world dynamical processes on networks.
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