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Abstract: The loss effect in smart materials, the active part of a transducer, is of significant importance
to acoustic transducer designers, as it directly affects the important characteristics of the transducer,
such as the impedance spectra, frequency response, and the amount of heat generated. It is therefore
beneficial to be able to incorporate energy losses in the design phase. For high-power low-frequency
transducers requiring more smart materials, losses become even more appreciable. In this paper,
similar to piezoelectric materials, three losses in Terfenol-D are considered by introducing complex
quantities, representing the elastic loss, piezomagnetic loss, and magnetic loss. The frequency-
dependent eddy current loss is also considered and incorporated into the complex permeability of
giant magnetostrictive materials. These complex material parameters are then successfully applied
to improve the popular plane-wave method (PWM) circuit model and finite element method (FEM)
model. To verify the accuracy and effectiveness of the proposed methods, a high-power Tonpilz
Terfenol-D transducer with a resonance frequency of around 1 kHz and a maximum transmitting
current response (TCR) of 187 dB/1A/µPa is manufactured and tested. The good agreement be-
tween the simulation and experimental results validates the improved PWM circuit model and FEA
model, which may shed light on the more predictable design of high-power giant magnetostrictive
transducers in the future.

Keywords: Terfenol-D; losses; complex parameters; plane-wave method (PWM); finite element
method (FEM)

1. Introduction

Terfenol-D has a larger magnetostrictive coefficient, higher magneto-mechanical cou-
pling coefficient, and higher energy density than traditional magnetostrictive materials,
such as nickel and piezoelectric materials, and due to the use of state-of-the-art SiC de-
vices [1], Terfenol-D has permitted the building of various actuating devices, including
actuators, transducers, and motors, both at the macro- and micro-scale. High dynamic
strains have been produced in Terfenol-D linear actuators using the device mechanical
resonance, even against a high load, where very large powers and good efficiency can be
achieved [2]. Due to these excellent properties, a few high-power magnetostrictive under-
water transducers already outperform PZT transducers, especially in the low-frequency
domain. The design of a giant magnetostrictive transducer has been attracting great interest
in the field of underwater acoustic research [3,4].

The design process of acoustic transducers for adequate performance and reliabil-
ity has increasingly come to rely upon robust modeling techniques and numerical tools
of analysis [5]. The existing popular modeling methods of acoustic transducers mainly
include the lumped-parameter method, plane-wave method (PWM) circuit model, and
finite element method (FEM) model. The lumped-parameter method [6] adopts a single-
degree-of-freedom, spring-mass-damping system to represent a Tonpilz transducer, which
can easily calculate the resonant frequency of the transducer. However, its accuracy is
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limited, and it can only be used to roughly estimate the size of the transducer. Based on the
lumped-parameter method, Sherman and Butler [7] used electrical components to represent
the mechanical system, successfully established a lumped-parameter circuit model of a
transducer, and simulated the electrical and mechanical characteristics. According to the
circuit theory of wave propagation, such as transmission lines, Tilmans [8] established the
PWM model. The accuracy of this model is much higher than that of the lumped-parameter
circuit model, and even better accuracy can be achieved under high-frequency conditions.
Recently, a PWM equivalent circuit model was successfully used in a longitudinal–torsional
ultrasonic transducer [9], a Tonpilz transducer head mass selection according to excitation
signal type [10], and analysis of the transmitting characteristics of an acoustic conformal
array of multimode Tonpilz transducers [11]. Giant magnetostrictive materials follow the
piezomagnetic laws, which are very similar to the piezoelectric laws, in a quasi-linear man-
ner. Therefore, Ackerman [12] deduced the PWM model for Terfenol-D devices. Butler [13]
established a PWM equivalent model of a 2.5 kHz high-power Terfenol-D transducer and
verified its feasibility.

FEM is widely used as a design tool for transducer design, as it is very capable of
dealing with highly complex geometries and calculating the modes of vibration and the
coupling between these modes [11]. FEM can also allow accurate calculations of the stress
and strain distributions in the structure and calculations of the vibration displacement
response at the output surface for a known electrical excitation [14], presenting various
results. Recently, efforts were made to model the nonlinearity of material behavior using
the curve fitting technique [5] and the discrete energy-averaged model [15]. However,
for those modeling techniques, the contribution to the power dissipation of the material
constants is usually ignored. However, the loss effect in smart materials, the active part of a
transducer, is of significant importance to acoustic transducer designers, as it directly affects
the important characteristics of the transducer, such as the impedance spectra, frequency
response, and the amount of heat generated [16]. Therefore, only the mechanical behavior
of the transducer design can be accurately estimated using those methods. Neglecting the
loss effect would cause substantial simulation errors [17]. In order to consider the loss of
piezoelectric transducers, Sherrit [18] used a PWM model with complex material constants
to represent the piezoelectric material parameters in order to characterize the piezoelectric
losses. Recently, a PWM circuit model with dielectric, elastic, and piezoelectric losses was
developed by Dong [19,20] to verify the accuracy improvement. Greenough [21] estab-
lished the equivalent PWM circuit model of Terfenol-D to extract the loss-related material
constants. The characterization of Terfenol-D losses, including mechanical, piezomagnetic,
and magnetic losses, using complex material parameters is discussed in [22], but the eddy
loss is not discussed. For high-power low-frequency Terfenol-D transducers requiring more
smart materials, material losses become even more appreciable. To date, there has been few
reports on incorporating Terfenol-D complex material parameters into the PWM or FEM
modeling techniques.

In conclusion, methods for Terfenol-D applications and finite element simulation meth-
ods for giant magnetostrictive transducers taking into account losses are rarely reported. In
this paper, a PWM of a high-power giant magnetostrictive transducer considering the losses
of Terfenol-D is established. The three complex parameters of the complex compliance coef-
ficient, the complex piezomagnetic coefficient, and complex permeability are used to realize
the characterization of losses. To consider the eddy current effect in giant magnetostrictive
materials, the variance of equivalent magnetic permeability with frequency is considered.
These complex material parameters are also used in the FEM calculation to realize the
consideration of losses. To verify the feasibility and accuracy of the proposed PWM and
FEM models, a high-power Tonpilz Terfenol-D transducer with a resonance frequency of
around 1 kHz and a maximum transmitting current response (TCR) of 187 dB/1A/µPa is
manufactured and tested. The good agreement between the simulation and experimental
results successfully validates the improved PWM circuit model and FEA model, which may
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shed light on the more predictable design of high-power giant magnetostrictive transducers
in the future.

2. The High-Power Tonpilz Terfenol-D Transducer

The structure of a high-power Tonpilz Terfenol-D transducer is mainly composed of
a head mass, a drive section, a tail mass, and a stress rod with a metallic bolt to fasten all
the components. A 1 kHz Tonpilz giant magnetostrictive transducer was designed and
manufactured. A structural diagram of the transducer is shown in Figure 1. This transducer
uses high-strain Terfenol-D as the driving material, and the driving section consists of four
Terfenol-D rods with a diameter of 20 mm and a length of 100 mm. A samarium–cobalt
permanent magnet with a thickness of 15 mm and a diameter of 20 mm is pasted on both
ends of each Terfenol-D rod to provide a bias magnetic field of around 45 kA/m. The stress
rod passing through the center of the assembly provides a prestress of 20 MPa for the rods
by the disc springs. To reduce the eddy current, the Terfenol-D rod is radially slotted, and
the schematic diagram of the Terfenol-D rod is shown in Figure 2. In order to provide AC
excitation to the rods, 1300 turns of AC drive wound wire electric solenoid are wound on
each rod.
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Figure 2. Photo of a radially slotted Terfenol-D rod.

The total length of the energy device is l = 247 mm, the thickness of the head mass is
lh = 45 mm, the thickness of the tail mass is lt = 72 mm, the diameter of the head mass dh
and the diameter of the tail mass dt are both 160 mm, and the transducer mass is around
90 kg. The structural parameters of the transducer are shown in Table 1.

Table 1. Structural parameters of the transducer.

Structure Material Density (kg/m3) Radius (mm) Thickness (mm)

Head mass Aluminum 2700 160 45

Terfenol-D Rod Terfenol-D 9250 10 100

Tail mass Stainless steel 7900 160 72
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3. Loss Integration into PWM Equivalent Circuit

A cylindrical Terfenol-D in k33 vibration mode is discussed in this paper, as shown
in Figure 3. The coordinate system is established with one end of the rod as the origin of
coordinates, and the vibration of the Terfenol-D rod is simplified to simple harmonic motion
without considering the time response of the circuit; a conventional PWM equivalent circuit
without considering material losses [23] is described in Figure 4.
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In Figures 3 and 4, lg is the length of the Terfenol-D rod, I denotes the input current, V
is the induced electromotive force generated in the loop, and F1 and F2 are the forces in the
mechanical terminals. ε1 and ε2 are the vibration velocity at z = 0 and z = lg, respectively. L0
is the damped inductance and expressed as [23]

L0 =
N2 AµS

33
l

(1)

µS
33 = µT

33 −
d33

2

SH
33

(2)

where µT
33 represents the relative permeability under constant stress, SH

33 stands for the
elastic compliance under constant magnetic field intensity, and d33 denotes the piezomag-
netic constant.

The electromechanical conversion factor is described as

ϕ =
d33

jωNµS
33SH

33
(3)

Zg1 and Zg2 are impedances and are expressed as

Zg1 = jρgcgSg tan(
kglg

2
) (4)

Zg2 = ρgcgSg/j sin(kglg) (5)
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Herein, ρg is the density, the cross-section area is Sg = πrg
2, the wave number kg is

denoted by kg =ω/cg, ω stands for the frequency, and the sound velocity is expressed as
cg =

√
1

ρgSH
33

.

An equivalent circuit of the Tonpilz transducer without considering material losses
is shown in Figure 5, where the subscripts r, h, g, and t are the radiation load, head mass,
Terfenol-D rod, and tail mass, respectively. Zh1 and Zh2 denote the series and parallel
impedances of the head mass, and Zt1 and Zt2, represent the series and parallel impedances
of the tail mass. The detailed impedance expressions of the above components can be found
in Table 2.
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Table 2. PWM equivalent circuit parameters.

Terfenol-D Tail Mass Head Mass

Distributed impedance Zg1 = jρgcgSg tan( kg lg
2 ) Zt1 = jρtctSt tan( kt lt

2 ) Zh1 = jρhchSh tan( kh lh
2 )

Distributed impedance Zg2 = ρgcgSg/j sin(kglg) Zt2 = ρtctSt/j sin(ktlt) Zh2 = ρhchSh/j sin(khlh)
Wave number kg = ω

cg
kt =

ω
ct

kh = ω
ch

Wave speed (m/s) cg = 1√
ρgSH

33

ct = 4942 ch = 5128

Zr is the radiation impedance, Zr in air can be treated as zero, and the radiation
impedance in water is [7]

Zr = ρcA
[(

1− J1(2kR)
kR

)
+ j

H1(2kR)
kR

]
(6)

where J1 is the Bessel function of the first kind, A is the area of the vibrating surface, and
H1 is defined as follows:

H1 ≈
2
π
− J0(kR) +

(
16
π
− 5
)

sin(kR)
kR

+ (12− 36
π
)

1− cos(kR)

(kR)2 (7)

where k is the wave number, and R is the radius of the active surface.
According to the equivalent circuit in Figure 5, the mechanical impedance Zm of the

transducer can be
Zm =

Zm1 ∗ Zm2

Zm1 + Zm2
+ Zg2 (8)

In Equation (8), Zm1 = (Zr+Zt1)∗Zt2
Zr+Zt1+Zt2

+ Zt1 + Zg1 and Zm2 = Zh1∗Zh2
Zh1+Zh2

+ Zh1 + Zg1.
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According to the circuit theory, the circuit diagram shown in Figure 5 can be simplified
to the circuit diagram shown in Figure 6.
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Figure 6. Simplified equivalent circuit of the Tonpilz Terfenol-D.

The input impedance of the transducer Ze is described as

Ze = Rc +
jωL0 ∗ Zm/ϕ2

jωL0 + Zm/ϕ2 (9)

where Rc is the resistance of the wound wire electric solenoid, and Z0 = jωL0.
MATLAB is used to program and simulate Equation (9), and the calculated result of

the transducer’s impedance without material losses is shown in Figure 7, which adopts the
classic Terfenol-D material parameters as presented in [13].
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Figure 7. Simulated impedance of the Tonpilz Terfenol-D transducer without material losses.

Assuming that the radiation resistance in the air is 0, ignoring the Terfenol-D losses,
the impedance amplitude at resonance is very large, indicating a high Q situation. That is,
the Terfenol-D in the PWM model is similar to the lossless transmission line [24]. There
is no loss of energy in the vibration process of the transducer, which is not in line with
the actual situation. Therefore, the loss during the operation of the giant magnetostrictive
transducer must be considered in the modeling process.
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Losses in PWM Equivalent Circuit

Based on the aforementioned PWM equivalent circuit, three hysteresis losses are firstly
considered in the giant magnetostrictive rod, namely, the elastic loss, piezomagnetic loss,
and magnetic loss. Complex parameters are commonly used to express the losses [22]:

SH
33 = SH′

33 + jSH′′
33

d33 = d′33 + jd′′33
µT

33 = µT′
33 + jµT′′

33

(10)

The imaginary part represents the mechanical, piezomagnetic, and magnetic losses of
the material.

Substituting Equation (10) into Equations (1) and (3), the inductance L1 and electrome-
chanical conversion coefficient ϕ1 can be re-written as follows:

L1 = L′1 + jL′′1 (11)

ϕ1 = ϕ′1 + jϕ′′1 (12)

L′1 =
N2 Ag

lg

µT′
33

(
SH′2

33 + SH′2
33

)
+ SB′

33

(
d
′2
33 − d′′ 233 + 2d′33d′′33

SH′′
33

SH′
33

)
SH′2

33 + SH′′ 2
33

(13)

L′′1 =
N2 Ag

lg

µT′′
33

(
SH
′2

33 + SH
′′ 2

33

)
+ SH′′

33

(
d′′ 233 − d

′2
33 + 2d′33d′′33

SH′
33

SH′′
33

)
SH′2

33 + SH′′ 2
33

(14)

ϕ1
′ =

d′33(µ
T′
33SH′

33 − µT′′
33 SH′′

33 ) + d′′33(µ
T′
33SH′′

33 + µT′′
33 SH′

33 )

ωN[(µT′
33SH′

33 − µT′′
33 SH′′

33 )
2
+ (µT′

33SH′′
33 + µT′′

33 SH′
33 )

2
]

(15)

ϕ1
′′ =

d′′33(µ
T′
33SH′

33 − µT′′
33 SH′′

33 )− d′33(µ
T′
33SH′′

33 + µT′′
33 SH′

33 )

ωN[(µT′
33SH′

33 − µT′′
33 SH′′

33 )
2
+ (µT′

33SH′′
33 + µT′′

33 SH′
33 )

2
]

(16)

Under the excitation of an alternating magnetic field, an eddy current exists in the giant
magnetostrictive material, and the eddy current loss varies with frequency, which does
not exist in the popular piezoelectric materials. Therefore, the magnetic loss of the giant
magnetostrictive transducer ought to be frequency dependent. However, the imaginary
part of the complex permeability in Equation (10) does not change with frequency, which
is insufficient to characterize the frequency-dependent eddy current loss. Therefore, it is
necessary to incorporate the eddy current loss factor in order to characterize the dynamic
characteristics of the eddy current loss [25]. Equation (10) can be expressed as

SB
33 = SB′

33 + jSB′′
33

d33 = d′33 + jd′′33
µT

33 = µT′
33(χr + jχi) + jµT′′

33

(17)

Substituting Equation (17) into Equations (1) and (3), the inductance L2 and electrome-
chanical conversion coefficient ϕ2 can be obtained as follows:

L2 = L′2 + jL′′2 (18)

ϕ2 = ϕ′2 + jϕ′′2 (19)
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L′2 =
N2 Ag

lg

µT′
33χr

(
SH
′2

33 + SH
′′ 2

33

)
+ SB′

33

(
d
′2
33 − d′′ 233 + 2d′33d′′33

SH′′
33

SH′
33

)
SH′2

33 + SH′′ 2
33

(20)

L′′2 =
N2 Ag

lg

(
µT′′

33 − µT′
33χi

)(
SH
′2

33 + SH
′′ 2

33

)
+ SB′′

33

(
d′′ 233 − d

′2
33 + 2d′33d′′33

SH′
33

SH′′
33

)
SH′2

33 + SH′′ 2
33

(21)

ϕ2
′ =

d′33

(
µT′

33χrSH′
33 −

(
µT′′

33 − µT′
33χi

)
SH′′

33

)
+ d′′33

(
µT′

33χrSH′′
33 +

(
µT′′

33 − µT′
33χi

)
SH′

33

)
ωN

[(
µT′

33χrSH′
33 −

(
µT′′

33 − µT′
33χi

)
SH′′

33
)2

+
(
µT′

33χrSH′′
33 +

(
µT′′

33 − µT′
33χi

)
SH′

33
)2
] (22)

ϕ2
′′ =

d′′33

(
µT′

33χrSH′
33 −

(
µT′′

33 − µT′
33χi

)
SH′′

33

)
− d′33

(
µT′

33χrSH′′
33 +

(
µT′′

33 − µT′
33χi

)
SH′

33

)
ωN

[(
µT′

33χrSH′
33 −

(
µT′′

33 − µT′
33χi

)
SH′′

33
)2

+
(
µT′

33χrSH′′
33 +

(
µT′′

33 − µT′
33χi

)
SH′

33
)2
] (23)

where χr and χi are the eddy current factors, which are related to the cut-off frequency f c. According
to [26], the f c of the Terfenol-D used is 3 kHz. In this case, f � fc. According to [27], the eddy current
factors are  χr = 1− 1

48

(
f
fc

)2
+ 19

30,720

(
f
fc

)4
+ . . .

χi =
1
8

(
f
fc

)
− 11

3072

(
f
fc

)3
+ 473

4,343,680

(
f
fc

)5
+ . . .

(24)

After considering all the loss factors, a new equivalent circuit is obtained by separating the real
and imaginary parts of the Terfenol-D part, as shown in Figure 8, where the parameters are

Rg1 = ρg Ag
c′′g sin(k′glg)ch(k′′g lg) + c′g cos(k′glg)sh(k′′g lg)

sin2(k′glg)ch2(k′′g lg) + cos2(k′glg)sh2(k′′g lg)
(25)

Xg1 = ρg Ag
c′′g cos(k′glg)sh(k′′g lg)− c′g sin(k′glg)ch(k′′g lg)

sin2(k′glg)ch2(k′′g lg) + cos2(k′glg)sh2(k′′g lg)
(26)

Rg2 = ρg Ag
c′gsh(k′glg)− c′′g sin(k′glg)

2
[

cos2
( k′g lg

2

)
ch2
(

k′′g lg
2

)
+ sin2

( k′g lg

2

)
sh2
(

k′′g lg
2

)] (27)

Xg2 = ρg Ag
c′g sin(k′glg) + c′′g sin(k′glg)

2
[

cos2
( k′g lg

2

)
ch2
(

k′′g lg
2

)
+ sin2

( k′g lg

2

)
sh2
(

k′′g lg
2

)] (28)

k = k′ + jk′′ = ω

[
ρSH′

33
2

(D + 1)

] 1
2

− jω

[
ρSH′′

33
2

(D− 1)

] 1
2

(29)

c = c′ + jc′′ = (ρSH′
33 )
− 1

2 1
D

[
1
2
(D + 1)

] 1
2

+ j(ρSH′′
33 )

− 1
2 1

D

[
1
2
(D− 1)

] 1
2

(30)

D =

1 +

(
SH′′

33
SH′

33

)2
 1

2

(31)

Z0 = jωL0 = jω(L′0 + jL′′0 ) = R0 + jX0 (32)

R0 = −ωL′′0 = −ω
N2 A

l
µS

33
′′ (33)

X0 = ωL′0 = ω
N2 A

l
µS

33
′ (34)
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Figure 8. The equivalent PWM circuit of the Tonpilz Terfenol-D transducer considering material losses.

The impedance of the mechanical part is changed from pure reactance to resistance and reactance,
the real part of the inductance of the magnetic circuit part is the inductance representing the energy
storage, and the imaginary part is the resistance representing the magnetic loss. The imaginary part of
the permeability µS′′

33 is a negative value. The imaginary part of the inductance L′′0 calculated according
to Equations (14) and (21) is also negative. Therefore, the resistance R0 obtained by converting the
imaginary part of the inductance, representing the magnetic loss, is a positive resistance that varies
with frequency. The imaginary part of the material characteristic parameters is eventually converted
into the resistances of the PWM equivalent circuit, and, thus, it is expressed as the energy dissipation
elements in the equivalent circuit of the giant magnetostrictive transducer. Therefore, the loss can
be directly considered if the six characteristic parameters (SH′

33 , SH′′
33 , d′33, d′′33, µT′

33, µT′′
33 ) of the giant

magnetostrictive transducer material under specific working conditions are determined.

4. Loss Integration into FEM
FEM is a numerical technique that can analyze the continuous vibration and deformation of

transducers. If accurate material properties are known and are set in the simulation, FEM will
have a high prediction accuracy, so FEM is currently the most used analysis method for transducer
design and simulation verification. However, due to the limited availability of FEM programs with
magnetostrictive elements, the piezoelectric magnetic analogy method is mostly used at present.
Reference [7] compares the analogous method of piezoelectric transducers and magnetostrictive
transducers in detail, but losses are not considered in the simulation. In this paper, a relatively mature
piezoelectric module is used to numerically simulate the giant magnetostrictive transducer, and it
is compared with the finite element governing equation of piezoelectric materials. A more mature
piezoelectric module is used to simulate the giant magnetostrictive transducer considering the three
losses in this paper by comparing the FEM governing equations with piezoelectric materials.

The FEM piezoelectric model can be based on the matrix equation set:

{S} =
[
SE]{T}+ [dpiezo

]
{E}

{D} =
[
dpiezo

]
{T}+

[
εT]{E} (35)

The FEM magnetostrictive model can be based on the matrix equation set:

{S} =
[
SH]{T}+ [dmag

]
{H}

{B} =
[
dmag

]
{T}+

[
µT]{H} (36)

Assuming that a sinusoidal voltage is applied to the piezoelectric ceramic electrodes, the FEM
governing equation of piezoelectric coupling is [28]
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 [
Mpiezo

]
[0]

[0] [0]



[ ··
u
]

[ ··
V
]
+

 [
Cpiezo

]
[0]

[0] [0]



[ ·
u
]

[ ·
V
]
+


[
KE

piezo

] [
Kd

piezo

]
[
Kd

piezo

]T
[Kε]

[ [u]

[V]

]
=

[
[F]

[Q]

]
(37)

where [Mpiezo], [u], [V], [F], and [Q] are the global vectors of the mass matrix, mechanical displace-
ments, electric potential, mechanical force, and electrical charge, respectively. [Cpiezo] represents the
damping global matrix, and [KE

piezo], [Kd
piezo], and [Kε] are the global matrices of the elastic, piezoelec-

tric, and dielectric stiffnesses, respectively. The material parameters in Equation (35) can be written
as follows:

Kd
piezo =

Apiezodpiezo

LpiezoSE , KE
piezo =

Apiezo

LpiezoSE , Kε
piezo =

εT Apiezo N2
p

LpiezoSE

where Apiezo and Lpiezo are the cross-section area and the length of the piezoelectric ceramics, respec-
tively. Np is the number of piezoelectric ceramics. The superscript T indicates the transpose matrix.

The FEM governing equation of magnetostrictive coupling is

[ [
Mmag

]
[0]

[0] [0]

]
[ ··
u
]

[··
I
]
+

[ [
Cmag

]
[0]

[0] [0]

]
[ ·
u
]

[ ·
I
]
+


[
KH

mag

] [
Kd

mag

]
[
Kd

mag

]T
[Kµ]

[ [u]

[I]

]
=

[
[F]

[φ]

]
(38)

where [Mmag], [u], [I], [F], and [φ] are the global vectors of the mass matrix, mechanical displacements,
current, mechanical force, and magnetic flux, respectively. [Cmag] is the damping global matrix,
and [KH

mag], [Kd
mag], and [Kµ] are the global matrices of the elastic, piezomagnetic, and permeability

stiffnesses, respectively. Similarly, the material parameters in Equation (36) can be written as follows:

KH
mag =

Amag

LmagSH , Kd
mag =

Amagdmag

LmagSH , Kµ
mag =

µT Amag N2
g

LmagSH .

where Amag and Lmag are the cross-section area and the length of the Terfenol-D rod, respectively.
Here, Ng represents the number of coil turns.

By performing a term-by-term comparison of Equations (37) and (38), their mathematical
expressions are found to be the same. If we let voltage represent current and current represent
voltage, then admittance in the piezoelectric simulation can represent impedance in the magne-
tostrictive simulation provided that the transduction sections are under the same length and cross-
sectional area. Further details include the replacement of the c dielectric constant by the permeability
([εT] => [µT]), the elastic modulus by the elastic modulus ([SE] => [SH]), and the dpiezo constant by
the dmag constant ([dpiezo] => [dmag]) [7].

Therefore, if losses are considered, the equivalent relationship between the complex parameters
of piezoelectric materials [29] and those of giant magnetostrictive materials can be obtained as follows:

SE = SE′ + jSE′′ ⇒ SH = SH′ + jSH′′

dpiez = d′piez + d′′piez ⇒ dmag = d′mag + jd′′mag

εT = εT′ + jεT′′ ⇒ µT = µT′ + jµT′′
(39)

When these material parameters are changed into complex quantities, Equations (36) and (37)
remain unchanged, although the matrices [KE

piezo], [Kd
piezo], [Kε], [KH

mag], [Kd
mag], and [Kµ] turn to

complex number matrices.
COMSOL Multiphysics 5.5 can be used for the multi-field coupling calculation of transducers,

in which the piezoelectric module integrates the losses by setting complex piezoelectric material
parameters. We use the parameter comparison method mentioned above to carry out the simulation
of the giant magnetostrictive transducer.

Admittedly, this FEM model with complex “piezoelectric material parameters” has its limita-
tions, as the calculation does not include the magnetic circuit of the transducer (the magnetic leakage
is ignored), does not consider the coil loss, and so on.
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5. Experimental and Simulation Results
To verify the feasibility of using complex parameters to consider the material losses, this paper

adopts the widely used FEM software COMSOL Multiphysics 5.5. The main components, such as
the head, tail, and Terfenol-D, of the transducer are modeled, ignoring the effects of permanent
magnets and disc springs, and transducer screws. In the simulation, meshing is one of the most
important aspects to obtain accurate results, especially for wave generation. To accurately resolve
sound pressure waves in inner water, this paper specifies the maximum grid cell size as 1/5 of the
corresponding minimum wavelength, which is the speed of sound in water (1500 m/s) divided by
the maximum frequency used in the frequency sweep. The perfectly matched layer (PML) is meshed
using the sweep feature to create a five-layer-structured mesh. Additionally, a layer of “Boundary
Layer Mesh” is created within the inner water adjacent to the outer field boundary, with a thickness
set to 1/100 of the corresponding minimum wavelength. This boundary layer produces a smooth
transition between the inner free tetrahedral mesh and the outer structured prismatic mesh elements,
resulting in a higher accuracy of the external field calculation. The finite element model is shown
in Figure 9.
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Figure 9. Schematic diagram of transducer modeling.

The key material parameters (33 directions) are the same as in the PWM equivalent circuit.
These material properties are based on the impedance measurements of a Terfenol-D device and
extracted by a curve fitting of the measured data [30], and the input material parameters in the
simulation are shown in Table 3.

Table 3. Material properties of the Tonpilz transducer.

Material Material Properties

Head mass (Aluminum)
Density: 2700 kg/m3

Young’s modulus: 71 GPa
Poisson’s ratio: 0.33

Tail mass (Stainless steel)
Density: 7900 kg/m3

Young’s modulus: 193 GPa
Poisson’s ratio: 0.28

Terfenol-D

Density: 9250 kg/m3

Flexibility coefficient : SB′
33 = 1.65× 10−11;

SB′′
33 = −5.48× 10−13

Piezomagnetic coefficient : d′33 = 7.4× 10−10;
d′′33 = −2.2× 10−12

Relative permeability : µT′
33 = 4.58; µT′′

33 = −0.66

A modal simulation was conducted; the longitudinal vibration mode frequency was 1458 Hz
(as shown in Figure 10a), and the flexural mode frequency was 2343 Hz (as shown in Figure 10b).
The longitudinal vibration mode was a piston mode, where the radiation head moved forward and
backward together in the polarization direction. In the flexural mode, the corners of the radiating
head moved in opposite directions to the center. This is the flexural mode of the head mass, which, in
general, adversely affects transducer performance [6]. Here, we mainly discussed the simple longi-
tudinal vibration mode to validate the modeling techniques using the complex material quantities.
The sound pressure distribution of the transducer in the longitudinal vibration mode is shown in



Sensors 2022, 22, 3781 12 of 17

Figure 10c. The current response sent by the transducer in water can be calculated according to the
far-field sound pressure value.
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compared with the measured results. The eddy current loss is frequency-dependent and 
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Figure 10. Modal and harmonic response simulation of Tonpilz Terfenol-D transducer: (a) longitudi-
nal vibration mode of the Tonpilz Terfenol-D transducer by FEM; (b) flexural vibration mode of the
Tonpilz Terfenol-D transducer by FEM; (c) results of sound field of the Tonpilz Terfenol-D transducer
by FEM.

5.1. Measurement in the Air
Measurements were first made in the air to measure the transducer’s small-signal impedance.

An impedance analyzer (Agilent Model E4990A) was used to measure the impedance of the transducer
as a function of frequency.

It can be seen in Figure 11a from the impedance spectrum that the improved PWM and FEM mod-
els considering the material losses (without eddy loss) roughly approach the measured impedance
curve. There are still a few discrepancies in the phase curves across the wide frequency range. The
PWM and FEM simulation results after further consideration of the eddy current loss (Figure 11b) pro-
duce more accurate results compared with the measured results. The eddy current loss is frequency-
dependent and increases with the frequency, so the permeability should vary with the frequency.
The eddy current factor was introduced to make the relative permeability in the model be frequency-
dependent, so the frequency dependence of the eddy current loss can be considered. Therefore, the
phase curves of both simulation models considering the frequency dependence of the eddy current
losses are closer to the experimental measurements. Both results are in good agreement with the
impedance and phase curves.
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5.2. Underwater Measurement
To yield better underwater measurement results, the experiment was carried out in a lake with a

depth of 100 m and a minimum diameter of 2 km. The transducer was only deployed at a 10 m depth
to ensure that the pre-stress stayed around 20 MPa in the lake, along with a standard hydrophone
(B&K 8104) positioned 3.2 m away from the center of the radiating head of the transducer. A simplified
schematic diagram of the transducer’s underwater test is shown in Figure 12. The experimental
settings are shown in Figures 13 and 14. The output voltages and currents of the power amplifier, the
phase difference between them, and the hydrophone output voltage were measured and saved. The
large-signal impedance and TCR were calculated.
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The simulated results of the improved PWM and FEM model and the impedance curves
measured in the experiments are shown in Figure 15. It should be noted that the coil loss, measured
with an impedance analyzer without the insertion of the Terfenol-D rods, was also taken into account
by adding it to both simulated results. The frequency range was 800–1300 Hz. It can be seen from the
impedance curve that, after considering the eddy current loss, the impedance amplitudes calculated
using the PWM and FEM models are very close to the experimental measurement values. The
impedance curve produced by the FEM simulation agrees well with the measurement.
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TCR was one of the most important design criteria for transducer design because the operating
frequencies and the mechanical quality factors were determined with respect to the TCR results.
When a 1 A alternating current was applied to the PWM circuit shown in Figure 8, the current
in the electrical domain became analogous to the velocity of the active surface in the mechanical
domain. After calculating the “current” in the PWM circuit, the pressure in the far-field distance can
be obtained by using the following Equation (7):∣∣∣∣Pr

∣∣∣∣= ρckuR2

2r
(40)

where ρ is the density of the medium, c is the speed of sound in the medium, u is the speed of the
active surface, and r is the distance of the far field. After calculating the far-field pressure, the TCR is
calculated as follows:

TCR = 20 log(
Prms

Pre f
) (41)

where Prms is the root mean square pressure obtained in the far field, and Pref is the reference pressure,
which is 1 µPa for water.

The simulation and measurement results of TCR are shown in Figure 16. It can be seen that the
maximum TCR results of the improved PWM and FEM models established in this paper are close to
the measured results, and the prediction accuracy is shown in Table 4. The prediction accuracy of the
FEM model (with the eddy current loss) for the maximum TCR is 0.32%, and the prediction accuracy
of the resonance point is 1%. This high prediction accuracy is very rare for the PWM of the transducer,
which validates the proposed method of using the complex material parameters. Figure 16 also
shows that the simulation results of the PWM and FEM models have a slight discrepancy. This
may be attributed to the fact that the PWM model in this paper is a one-dimensional model, while
FEM is a three-dimensional model. The discrepancies over the frequency range, except for at the
resonance frequency, might result from the fluid simulation. FEM have better accuracies on the
acoustic field. In the FEM simulation, a full sound absorption (no reflection) condition was applied at
the outer boundary of the water medium. For the calculation of the TCR, a receiver node was set
to read complex sound pressures at a distance approximately in a far field from the fluid–structure
interaction layer.
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Table 4. The parameters calculated by modeling methods and their relative deviations (%) from the
measurement results.

PWM (without Eddy
Current Losses)

PWM (with Eddy
Current Losses)

FEM (without Eddy
Current Losses)

FEM (with Eddy
Current Losses) Measurement

fr (Hz) 1045 (4.5%) 1020 (2%) 1015 (1.5%) 1010 (1%) 1000
Max TCR (dB/1A/µPa) 190 (1.55%) 187.8 (0.37%) 189.8 (1.4%) 187.7 (0.32%) 187

6. Conclusions
This paper proposes improved equivalent PWM and FEM models considering the elastic loss,

piezomagnetic loss, and magnetic loss of Terfenol-D. On this basis, the frequency-dependent eddy
current losses are also considered and incorporated into the two models. To verify the accuracy of the
established PWM and FEM models considering the three losses, a high-power Tonpilz Terfenol-D
transducer with a resonance frequency of around 1 kHz and a maximum transmitting current response
(TCR) of 187 dB/1A/µPa is manufactured and tested. A comparison of the models with/without con-
sidering the losses with the experimental results shows the necessity and importance of considering
the material losses. The PWM and FEM simulation results considering the loss are in good agreement
with the experimental results, especially the model considering the variation of eddy current loss
with frequency has a high agreement with the experimental test results (the relative error between
the TCR of the PWM model at resonance and the experimental results is only 0.37%, and FEM is
only 0.32%); this indicates that the PWM and FEM models established in this paper considering the
losses are suitable for giant magnetostrictive transducers. Under a small signal, the eddy current
loss is small, so the models without the eddy current losses could still fit with the experiment results
with a certain accuracy. However, under 1 A current excitation, the eddy current losses are more
significant, so the simulation must consider the frequency-dependent eddy current losses to closely
fit the experimental curve. Our proposed method may shed light on the more predictable design of
high-power giant magnetostrictive transducers in the future.
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