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ABSTRACT

Objective: Patient information can be retrieved more efficiently in electronic medical record (EMR) systems by

using machine learning models that predict which information a physician will seek in a clinical context. How-

ever, information-seeking behavior varies across EMR users. To explicitly account for this variability, we derived

hierarchical models and compared their performance to nonhierarchical models in identifying relevant patient

information in intensive care unit (ICU) cases.

Materials and methods: Critical care physicians reviewed ICU patient cases and selected data items relevant for

presenting at morning rounds. Using patient EMR data as predictors, we derived hierarchical logistic regression

(HLR) and standard logistic regression (LR) models to predict their relevance.

Results: In 73 pairs of HLR and LR models, the HLR models achieved an area under the receiver operat-

ing characteristic curve of 0.81, 95% confidence interval (CI) [0.80–0.82], which was statistically signifi-

cantly higher than that of LR models (0.75, 95% CI [0.74–0.76]). Further, the HLR models achieved statisti-

cally significantly lower expected calibration error (0.07, 95% CI [0.06–0.08]) than LR models (0.16, 95% CI

[0.14–0.17]).

Discussion: The physician reviewers demonstrated variability in selecting relevant data. Our results show that

HLR models perform significantly better than LR models with respect to both discrimination and calibration.

This is likely due to explicitly modeling physician-related variability.

Conclusion: Hierarchical models can yield better performance when there is physician-related variability as in

the case of identifying relevant information in the EMR.

Key words: electronic medical records, information-seeking behavior, machine learning, physician variability, hierarchical

modeling
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INTRODUCTION

A key source of frustration with electronic medical record (EMR)

systems stems from the inability to retrieve relevant patient informa-

tion efficiently.1–4 Current EMR systems do not possess sophisti-

cated search capability or do they prioritize patient information

relative to the clinical task at hand.5,6 The inability to identify

relevant patient information can lead to poor care and medical

errors.7–9 Further, in complex clinical environments, such as the in-

tensive care unit (ICU), large quantities of data per patient accumu-

late rapidly,10 which can exacerbate information retrieval

challenges. EMR systems that prioritize the display of relevant

patient information are therefore needed to minimize the time and

effort that physicians spend in identifying relevant information.

Various solutions have been proposed for effective prioritization

and display of patient information in EMR systems,11–14 most of

which are based on rules that have been developed to customize and

organize the display of patient information. In contrast to rule-based

approaches, we developed and evaluated a data-driven approach

called the learning EMR (LEMR) system in a prior study.15,16 The

LEMR system tracks physician information-seeking behavior and

uses it to learn machine learning models that predict which informa-

tion is relevant in a given clinical context. Those predictions are

used to highlight the relevant data in the EMR system to draw a

physician’s attention.

However, information-seeking behavior has been shown to vary

across individual physicians as well as across EMR system user types

such as physicians, nurses, and pharmacists.1,5 In this study, we use

hierarchical models to explicitly model this variability because such

models have been shown to be useful when the data are collected

from subjects with different behaviors.17 In particular, we compare

the performance of hierarchical logistic regression (HLR) models

and standard logistic regression (LR) models in predicting relevant

patient information in a LEMR system.

The remainder of this article is organized as follows. In the Back-

ground section, we review the LEMR system, briefly describe hierar-

chical models, and describe prior work on physician-related

variability. In the Methods section, we describe the data collection

and preparation, the experimental details, and the evaluation meas-

ures. We present the results of the experiments in the Results section

and close with the Discussion and Conclusion sections.

BACKGROUND

In this section, we provide brief descriptions of the LEMR system,

hierarchical models, and past studies that have examined physician-

related variability.

The LEMR system
The LEMR system uses a data-driven approach to prioritize patient

information that is relevant in the context of a clinical task.15,16 The

system uses machine learning to automatically identify and highlight

relevant patient information for a specified task, for example, the

task of summarizing a patient’s clinical status at morning rounds in

the ICU. In ICU morning rounds, the clinical team reviews pertinent

information and the status of each patient; for each patient, one

team member reviews information in the EMR system and orally

presents a summary of the patient’s clinical status to the team.

Reviewing and identifying relevant patient information, called pre-

rounding, is time-consuming and laborious. The goal of the LEMR

system is to use machine learning to automatically identify and high-

light the relevant information required for a given clinical task such

as prerounding. The predictive models of the LEMR system are de-

rived using the information-seeking behavior of physicians when

they search for relevant information in the EMR in the context of

the clinical task. In particular, 11 critical care physicians reviewed

the EMRs of ICU patients and marked the information that was rel-

evant to prerounding, and predictive models were developed from

this data.

Hierarchical models
Hierarchical models, also known as multilevel models, are useful in

modeling hierarchically structured data because they can capture

variability at different levels of the hierarchy.17 For example, con-

sider predicting the mortality rate in a hospital with several units,

such as critical care, general medical care, and emergency care. The

data have a two-level hierarchical structure with the hospital at the

first level and the units at the second level of the hierarchy. The

overall mortality rate at the hospital level is obtained by combining

the unit-level mortality rates in some fashion. A hierarchical model

explicitly estimates the variability of the mortality rates across the

units and uses those estimates to derive the hospital-level mortality

rate, which can result in a better estimate of the overall mortality

rate compared to using nonhierarchical models.

In a similar fashion, the information-seeking data used to de-

velop the LEMR models has a two-level hierarchical structure,

where the top level corresponds to data that denote the entire popu-

lation of physician reviewers and the bottom level corresponds to

data that denote individual physicians. For specific patient informa-

tion such as serum creatinine, its relevance is expected to differ

across physician reviewers. A hierarchical model of the LEMR data

explicitly captures this variability that is likely to be useful in deriv-

ing more accurate predictive models.

LAY SUMMARY

In current electronic medical record (EMR) systems, large amounts of information are frequently collected in complex clinical

settings such as the intensive care unit, which makes it challenging for physicians to identify relevant patient information.

To make EMR systems more useful, one approach is to augment them with the capability to intelligently highlight patient in-

formation that is relevant to the clinical task. In an effort to address this challenge, we developed a learning EMR system

that uses machine learning to leverage physicians’ information-seeking behavior to identify and highlight the relevant infor-

mation. One challenge for machine learning is the variability in information-seeking behavior across physicians that typically

used models may not be able to capture. In this article, we show that hierarchical models such as hierarchical logistic re-

gression perform better at identifying relevant patient information compared to logistic regression. The hierarchical model

learns a distinct model for each physician while sharing useful knowledge learned from one physician with the rest of the

physicians in order to improve performance.
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Physician-related variability
Physician-related variability in healthcare outcomes has been of in-

terest for decades, going back to the 1970s with studies reporting

the effects of geographic location on clinical outcomes such as mor-

tality and length of stay.18 In particular, variation in individual phy-

sician characteristics and practice styles has been recognized as a

source of variability in clinical outcomes after adjusting for the

health status of patients and the quality of healthcare services.5,19–25

For example, variability in cesarean section rates has been attributed

to physician practice style after controlling for patient characteristics

and risk factors, the status of the medical facility, and physician

years of experience.25 A study concluded that variability across indi-

vidual physicians may impact the quality of preference-sensitive crit-

ical care delivery.20 A recent study analyzed physician search

patterns in the EMR and uncovered considerable variation in

information-seeking behavior.5 In general, hierarchical modeling

has been applied in various clinical settings to account for physician-

related variability where the data have a hierarchical structure and

can be grouped by a variety of factors such as country, state, or

hospital site.26–32

METHODS

In this section, we first describe the data set and the data preparation

steps. Then, we describe the experimental methods including the de-

velopment and evaluation of predictive models.

Data set
A set of ICU patient cases with a diagnosis of either acute kidney

failure (AKF; ICD-9 584.9 or 584.5; 93 cases) or acute respiratory

failure (ARF; ICD-9 518.81; 85 cases) were selected randomly from

patients who were admitted between June 2010 and May 2012 to

an ICU at the University of Pittsburgh Medical Center. Eleven criti-

cal care medicine physicians reviewed the patient cases in the LEMR

system and for each patient indicated which patient information

was relevant to the task of prerounding in the ICU. The recruited

reviewers included ICU fellows and attending clinicians from the

Department of Critical Care Medicine at the University of Pitts-

burgh. Each physician reviewer was instructed to review up to 30

patient cases. The first four cases were the same for all reviewers

and were used as burn-in cases; these cases were not included in the

data set. The remaining cases were different for each reviewer and

each physician reviewed and annotated as many cases as they could

during one to two sessions that lasted a total of 4–6 hours. Because

the cases had some variation in the amount of patient information

they contained and the physicians varied in the speed of reviewing,

all physicians did not review the same number of cases.

The data set consists of two sets of variables including the pre-

dictor variables (or predictors) and target variables (or targets) that

we now describe in detail. Predictor variables include demographics,

admitting diagnosis, vital signs, ventilator settings, input and output

measurements, laboratory test results, and medication administra-

tion data. A few variables such as demographics and admitting diag-

nosis are static, that is, their values do not change during the ICU

stay, while the remaining variables, which constitute the majority of

the predictors, are temporal and have multiple values during the

ICU stay. For example, age (in years) is a static predictor variable

while blood urea nitrogen (BUN) is a temporal predictor variable as

it is usually measured multiple times during an ICU stay.

Target variables include any data in the EMR, such as vital signs,

ventilator settings, input and output measurements, laboratory test

results, and medication administration data that a physician may an-

notate as relevant for the task of prerounding. A target variable can

take either relevant or not relevant values. As an example, for a pa-

tient with AKF, BUN¼relevant denotes that BUN was measured for

the patient and was sought, found, and annotated by a physician as

relevant. If BUN was measured for the patient but was not sought

by a physician, then the target is denoted as BUN ¼not relevant. A

target variable may be missing too; for example, when BUN is not

measured for the patient, it would not be available for a physician to

seek and find. We developed a predictive model for each target vari-

able such as BUN that predicts whether it is relevant in a particular

patient. To develop a BUN model, we used all predictor variables

described in the previous paragraph and used only data in which the

BUN target was not missing.

The difference between predictor and target variables is in the

values they take; that is, a target variable takes values of either rele-

vant or not relevant, whereas a predictor variable’s values are the

measured values that are recorded in the EMR. For example, when

BUN is a predictor, it takes numeric values in milligrams per decili-

ter (mg/dL) unit (Note that BUN may have been measured multiple

times for a patient case and therefore, take several numeric values.

We summarize these values as a fixed-length vector as described in

the Data preparation section.), whereas as a target variable, it takes

a value of either relevant or not relevant. Consequently, a model for

predicting whether or not BUN is relevant may contain numeric val-

ues for BUN as a predictor variable.

Data preparation
We transformed the data set into a representation that is amenable

to the application of machine learning methods. In particular, for

each temporal predictor variable, we generated between 4 and 36

features (feature expansion in Figure 1).

The number of features for a temporal predictor was based on

(1) the data domain of the predictor variable (eg, medication admin-

istration or laboratory result) and (2) the type of the predictor vari-

able (eg, nominal or continuous). For example, for each medication

variable, we generated four features including an indicator of

whether the drug is currently prescribed, the time elapsed between

first administration and the current time, the time elapsed between

the most recent administration and the current time, and the dose at

the most recent administration. For each laboratory test result, vital

sign, and ventilator setting, we generated up to 36 features including

an indicator of whether the event or measurement ever occurred, the

value of the most recent measurement, the highest value, the lowest

value, the slope between the two most recent values, and 30 other

features. More details on the feature expansion are given in refer-

ence 33.

The data set consisted of 178 patient cases and 1864 raw predic-

tor variables. Feature expansion resulted in a total of 30 770 fea-

tures. Since the dimensionality of the data was high, we reduced the

number of features (feature reduction in Figure 1) by removing those

features where the values were missing in every patient case, had the

same value for every case (ie, had zero variance), or the values were

duplicates of another variable. Feature reduction resulted in a total

of 6935 features.

We selected as target variables 73 EMR data items that had been

annotated as relevant (positive) in 9 or more patient cases. Supple-

mentary Table S1 contains the list of target variables along with the
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number of cases in which each target variable was relevant, as well

as the number of cases where the target variable was available for se-

lection (ie, the value was not missing).

Experimental methods
Predictive models

An HLR model is a generalization of a standard logistic regression

model in which the data are clustered into groups and the model in-

tercept and coefficients can vary by group.17 Figure 2 shows the

structure of a 2-level HLR model in which the LEMR data are clus-

tered into groups of patient cases reviewed by each physician.

Parameters at the lower level represent the physician-level models

for the 11 physician reviewers, and parameters at the upper level

represent the model for the entire population of physician reviewers

(ie, population-level model). For a more detailed description of HLR

models, see Supplementary Material.

We developed HLR predictive models for each of the selected 73

targets. Each predictive model of a target variable is formulated as a

binary classification problem where the model learns to identify

cases in which the target variable is relevant. To investigate the util-

ity of HLR over nonhierarchical models, we used LR as baseline

models in which the physician identifier was included as an indica-

tor variable. We implemented the HLR models using the brms pack-

age34 in R, which uses No-U-Turn Sampler (NUTS) (as an extension

of the Hamiltonian Monte Carlo algorithm) to estimate the poste-

rior distribution of model parameters. In our experiments, we set

Figure 1. Steps in preparing the predictor variables. (A) The predictor variables for two example patients as measurements with one row per day are presented.

The colors represent data domains; D: demographics, M: medication administrations, L: laboratory test results, V: vital signs, VS: ventilator settings, IO: input/out-

put, and other: other domains. (B) The result of expanding the temporal predictor variables (total ¼ 1848) to features (total ¼ 30 770) is shown. This step flattens

the data so that a patient that is represented by multiple rows is now represented by a single row. * denotes that the number of expanded predictors differs

depending on the predictor value type (eg, nominal or continuous). (C) The features after feature reduction are shown, in which the number of features is reduced

to 6935 features. † indicates that the number of features may be different for each variable in the domain.

Figure 2. A 2-level HLR model for LEMR data. The lower level represents phy-

sician-level intercepts (ai) and coefficients (bi) where i¼1,. . .,11 denotes the

physician identifier. The upper level represents the intercept and coefficients

(a,b) for the population-level model.
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the NUTS sampler to use 4 Markov chains; each chain included 400

iterations of sampling where the first 200 were used to calibrate the

sampler. A total of 4 � 200¼800 posterior samples for each HLR

model parameter were obtained. LR models were implemented us-

ing the glmnet package in R.35

Cross validation

Each model was trained and evaluated independently in a stratified

10-fold cross-validation setting. At each iteration of the cross valida-

tion, the patient cases were randomly split into a training set (9

folds) and a test set (1 fold), while preserving the original distribu-

tion of the target variable. Hyperparameter tuning and data prepro-

cessing such as imputing missing values and feature selection were

performed during cross validation. More details are described in

Supplementary Materials.

Performance measures

We measured the predictive performance of each model with the

area under the receiver operating characteristic (ROC) curve

(AUROC), area under the precision-recall curve (AUPRC), and

expected calibration error (ECE).36 AUROC is a measure of model

discrimination and varies from 0.5 and 1, where 0.5 denotes an

uninformative model and 1 represents perfect discrimination.

AUPRC summarizes the precision-recall curve where precision (or

positive predictive value) and recall (or sensitivity) values at differ-

ent thresholds are plotted as a curve. The AUPRC varies from 0 to 1

is and is commonly used in binary classification problems when the

data are imbalanced (ie, when cases with one label are more preva-

lent than cases with the other label).

ECE is a measure of model calibration. In a perfectly calibrated

model, outcomes with predicted probability p correspond to a frac-

tion p of positive cases in the data. ECE is derived from the probabil-

ity calibration curve37 where the sorted predicted probabilities are

partitioned into k bins; in each bin i, calibration error is defined as

the absolute difference between the mean of predicted probabilities

(Pi) and the fraction of positive outcomes (oi). ECE is the weighted

average of the calibration errors over all k bins:

ECE ¼
Xk

i¼1

wipi � oi; (1)

where wi denotes the fraction of cases that fall into bin i. Lower

ECE denotes a better-calibrated model.

RESULTS

We report the variability across the physician reviewers and then re-

port the results of the predictive performance of LR and HLR mod-

els from three perspectives: overall, per-target, and per-physician.

Table 1 summarizes the physician characteristics and the number of

patients that each physician reviewed within the two diagnostic

groups, AKF and ARF.

Table 1. Years of ICU experience for each physician and the num-

ber of patient cases each physician reviewed

Physician identifier

Years of ICU

experience

No. of cases reviewed

(no. of ARF, no. of AKF)

1 <1 15 (8, 7)

2 1 15 (10, 5)

3 3 12 (5, 7)

4 <1 17 (8, 9)

5 1 15 (9, 6)

6 1 15 (7, 8)

7 2 22 (10, 12)

8 1 20 (11, 9)

9 1 16 (8, 8)

10 2 16 (8, 8)

11 7 15 (9, 6)

Figure 3. Per-physician ARP values over 73 target variables. A blue circle denotes the ARP value and an error bar denotes a 95% CI. The panel on the left is for

ARF cases and the panel on the right is for AKF cases.

Table 2. Overall AUROC, AUPRC, and ECE for LR and HLR models

over all 73 target variables and across all physicians

Measure LR HLR P-value

AUROC 0.75 (0.74–0.76) 0.81 (0.80–0.82) <.001

AUPRC 0.665 (0.663–0.667) 0.763 (0.762–0.765) <.001

ECE 0.16 (0.14–0.17) 0.07 (0.06–0.08) <.001

Higher AUROC and AUPRC show better discrimination power while

lower ECE denotes better probability calibration. The best values for each

metric are in boldface.

606 JAMIA Open, 2020, Vol. 3, No. 4



Variability in information-seeking behavior
We define a descriptive statistic called average relevance proportion

(ARP) to measure the information-seeking behavior of each physi-

cian reviewer. An ARP value for a physician is defined as the average

proportion of EMR data items that the physician sought as relevant.

We calculated the ARP values over the 73 EMR data items that

were used as target variables. Figure 3 shows the physician ARP val-

ues separately for each of the diagnostic groups. Each circle denotes

the ARP value for the corresponding physician on the x-axis and

each error bar represents a 95% confidence interval (CI) for an ARP

value. In the ARF diagnosis group, the ARP CIs for physicians 1, 7,

and 8 do not overlap with those of the other physicians, which indi-

cates a potential variability in information-seeking behavior be-

tween these physicians and the rest. Similar variability is observed in

the AKF group, where the ARP CIs of physicians 1, 3, 7, and 8 differ

from those of the other physicians.

Figure 4. (A) ROC, precision-recall, and calibration curves over all 73 target variables across all physicians. For the calibration curves, the closer a curve is located

to the dotted diagonal line, the more calibrated the corresponding approach is. (B) Distribution of AUROC, AUPRC, and ECE values for 73 models. Forward-slash

hatches in blue represent the distributions for HLR models and backslash hatches in orange denote the distributions for LR models. The AUROC and AUPRC dis-

tributions for HLR models are right-skewed relative to the LR models, which show that HLR models generally have better discrimination power. The distribution

of ECE values of HLR models is left-skewed relative to the LR models, which means that HLR models are generally better calibrated than LR models. (C) AUROC,

AUPRC, and ECE values for each physician reviewer over all 73 models. The values for HLR models are shown in blue and the values for LR models are shown in

orange. The AUROC and AUPRC values are higher for HLR models than for LR models, except for the AUROC value for physician 1. All the ECE values are lower

for HLR models, which means that HLR models are better calibrated than the LR models.
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Overall performance
The overall performance of each model family (LR and HLR) was

calculated by concatenating the predictions for all 73 target varia-

bles into a single vector and using that vector to compute the perfor-

mance metrics. Table 2 reports the AUROC, AUPRC, and ECE for

the LR and HLR models across all 73 target variables. For AUROC

values, the 95% CI and P-value were calculated using Delong’s

method.38,39 The 95% CI for AUPRC values was derived using the

logit intervals method40 and the P-value was calculated using the

Wald z-test. For ECE values, we set k ¼ 100 in Equation 1 and

obtained a vector of 100 calibration errors to compute 95% CIs and

a t-test P-value. Figure 4A shows the overall ROC and calibration

curves for LR and HLR models. Note that for the calibration curves,

we set the number of bins to k ¼ 10 for better visibility.

Per-target performance
For per-target performance, we computed the predictive perfor-

mance for each target variable, which resulted in vectors of

AUROC, AUPRC, and ECE values each with a length of 73, for

each model family (LR and HLR). Distributions of per-target perfor-

mance measures are shown as histograms in Figure 4B for each

model family. Histograms of the two model families are overlaid for

better comparison. Additional details are provided in Supplementary

Table S1 where AUROC, AUPRC, and ECE values are reported for

each target variable.

Per-physician performance
For per-physician performance, we computed the predictive perfor-

mance for each physician, which resulted in 11 AUROC, AUPRC,

and ECE values for each model family (LR and HLR). Figure 4C

presents the per-physician bar plots of the performance measure val-

ues; the bars for HLR and LR models are displayed side by side for

better comparison. Per-physician calibration curves are presented in

Supplementary Figure S1.

DISCUSSION

Our results show that HLR models perform better than LR models

when predicting which information a physician will seek in a future

patient case. Moreover, the ECE results show that HLR models are

generally better calibrated than LR models. In general, the more cal-

ibrated the probabilities are that are output by a predictive model,

the higher the expected utility of the decisions that will be made us-

ing that model; in the case of the LEMR system, those decisions in-

volve which information is worthwhile to highlight in the EMR of a

given patient.

Figure 5. Examples of variation among physicians as seen from the values of the coefficients of a specific predictor variable. Each panel shows estimates of the

coefficients of a predictor variable in an HLR model. A circle denotes the median value and the bar denotes the 80% credible interval for the posterior distribution

of the model parameter.
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Although most physician reviewers had similar years of ICU ex-

perience, we observed a considerable degree of variability in

information-seeking behavior across physicians in terms of ARP val-

ues. Because the study patients were selected to have a similar level

of complexity, patient cases are unlikely to be the source of this vari-

ability. Controlling for physicians’ years of experience in LR models

was not as effective in improving predictive performance as estimat-

ing individual physician variability using the HLR models. This

shows the advantage of HLR models over standard models in the

presence of unexplained variability.

The per-physician performance measures in Figure 4C show that

HLR models learn physician-specific models that perform better in

terms of both discrimination and calibration. Although HLR models

fit a separate model for each physician, the inherent regularization

in these models prevents overfitting. In particular, as population and

physician-specific parameters are estimated at the same time, a pool-

ing effect occurs that prevents a physician-specific model from over-

fitting when the sample size is small.

Furthermore, HLR models allow for a detailed investigation at

the physician level because each physician model has its own set of

parameters. Figure 5 demonstrates a few instances of the detailed in-

formation that can be obtained from an HLR model. Each panel in

Figure 5 represents the distributions of a model parameter in an

HLR model for each physician and for all physicians as a whole. In-

vestigating the physician-specific parameters can lead to a better un-

derstanding of factors that influence a physician’s information-

seeking behavior.

LIMITATIONS

One limitation of this study was the relatively modest amount of an-

notated data. Having experts review and annotate data is an expen-

sive and time-consuming task in many domains, especially in

medicine. It takes many hours for a physician to review and anno-

tate a small number of patient cases in the EMR, which makes it

challenging to collect large amounts of annotated data in the LEMR

system. Due to this limitation, the number of positive samples for

most target variables was modest. As a result, we derived models for

only 73 target variables out of 865 available target variables. This

challenge can be addressed by using scalable data collection meth-

ods. For example, a scalable solution based on eye-tracking technol-

ogy has been proposed to automatically identify information that

physicians seek in the EMR.41

Another limitation of this study is that we did not model the reli-

ability of the annotations across physicians. In practice, physicians

will not agree on which information is relevant due to differences in

knowledge, level of expertise, and subjective preferences. In a previ-

ous study, we observed poor agreement among physicians on which

information is relevant for the same case and clearly specified clini-

cal task.16 Moreover, inexperienced physicians may provide annota-

tions that are judged to be erroneous by expert physicians. By

pooling annotations from all physicians, the HLR models are more

influenced by physicians who have annotated a larger number of

cases, and if disproportionally more cases are erroneously annotated

in the training data, the models will provide poor recommendations.

Thus, it is important to distinguish between correct and erroneous

annotations which may be challenging in complex patient cases

where even experts may disagree on which patient information is

relevant. One approach to addressing this limitation is to develop a

consensus model that physicians collectively converge to and com-

bine such a model with physician-specific models.42

Despite the advantage of HLR models in terms of performance,

a drawback of HLR models is the added complexity due to the addi-

tional per-level parameters. This complexity creates new challenges

in parameter estimation and interpretation. Compared to LR mod-

els, training HLR models requires more computing power and there

are more hyperparameters to tune, including the choice of prior dis-

tributions.

CONCLUSION

Displaying large quantities of patient information in EMR systems

with little prioritization can adversely influence the decision-making

process of physicians and compromise the safety of patients. A data-

driven solution was recently proposed as a learning EMR (LEMR)

system that uses machine learning to identify and prioritize relevant

data in the EMR for physicians. The current study improves the per-

formance of LR models by using HLR models.

We trained 2-level HLR models that simultaneously learn

physician-specific models at one level and a population model at an-

other level. We evaluated the discrimination and calibration perfor-

mance of HLR models in identifying relevant data items in the

EMR. Our results show that HLR models perform significantly bet-

ter than LR models. Moreover, we demonstrated that HLR models

provide details about the physician-specific models that can be used

to investigate physicians’ information-seeking behaviors in the EMR

system.

SUPPLEMENTARY MATERIAL

Supplementary material is available at Journal of the American Medical Infor-

matics Association online.
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