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1. Summary
Target of rapamycin complexes (TORCs), which are vital for nutrient utiliz-

ation, contain a catalytic subunit with the phosphatidyl inositol kinase-related

kinase (PIKK) motif. TORC1 is required for cell growth, while the functions

of TORC2 are less well understood. We show here that the fission yeast Schizo-
saccharomyces pombe TORC2 has a cell cycle role through determining the proper

timing of Cdc2 Tyr15 dephosphorylation and the cell size under limited glu-

cose, whereas TORC1 restrains mitosis and opposes securin–separase, which

are essential for chromosome segregation. These results were obtained using

the previously isolated TORC1 mutant tor2-L2048S in the phosphatidyl inositol

kinase (PIK) domain and a new TORC2 mutant tor1-L2045D, which harbours a

mutation in the same site. While mutated TORC1 and TORC2 displayed dimin-

ished kinase activity and FKBP12/Fkh1-dependent rapamycin sensitivity, their

phenotypes were nearly opposite in mitosis. Premature mitosis and the G2–M

delay occurred in TORC1 and TORC2 mutants, respectively. Surprisingly,

separase/cut1—securin/cut2 mutants were rescued by TORC1/tor2-L2048S
mutation or rapamycin addition or even Fkh1 deletion, whereas these mutants

showed synthetic defect with TORC2/tor1-L2045D. TORC1 and TORC2 coordi-

nate growth, mitosis and cell size control, such as Wee1 and Cdc25 do for the

entry into mitosis.
2. Introduction
Understanding the relationship between cell division (increase in cell number)

and growth (increase in cell volume or mass) is important in biology. It is well

established that cyclin-dependent protein kinase (CDK) is the main regulator of

division, while the target of rapamycin (TOR) complex regulates cell growth

[1,2]. TOR controls a diverse set of cellular functions implicated in growth in

response to nutritional changes. Rapamycin is an immunosuppressant drug
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commonly used in organ transplantation [3]. It was originally

isolated as an antifungal compound produced by a bacterium

[4]. It displays antiproliferative properties, prolongs the life of

model animals, and might be useful in the treatment of cer-

tain cancers. Rapamycin binds to FK-binding protein

(FKBP12, a peptidyl-prolyl cis-trans isomerase), which inhi-

bits the TOR kinase complex (TORC) through direct

binding [5]. The mammalian TOR (mTOR) catalytic subunit

is the sole target of rapamycin through FKBP12 in mammals.

In contrast, the budding yeast Saccharomyces cerevisiae has two

kinases, Tor1 and Tor2. Frp1 (an FKBP12 homologue), Tor1

and Tor2 participate in rapamycin toxicity [6,7].

Saccharomyces cerevisiae Tor1 and Tor2 are closely related;

they mediate the control of many cellular events, such as tran-

scriptional activation, protein translation, ribosome biogenesis,

cell cycle, nutrient uptake, actin organization and autophagy

[8–14]. They also regulate cell growth in response to nutrient

availability. Tor1 and Tor2 are large proteins with 80 per

cent overall similar amino acid sequences with each other, con-

taining several functional domains. Among such domains, the

C-terminal catalytic serine/threonine kinase domain of Tor1/2

contains a conserved lipid kinase motif, which places the pro-

teins in the phosphatidyl inositol kinase-related kinase (PIKK)

family [15]. Tor1 and Tor2 form two functionally distinct TOR

complexes [12]. TORC1, which is responsible for many of the

known functions of TOR (reviewed in [16,17]), consists of

either Tor1 or Tor2, together with the Kog1, Lst8 and Tco89

subunits [12]. TORC1 is sensitive to rapamycin, while

TORC2 is rapamycin-insensitive [5]. TORC2 helps regulate

cell wall integrity, receptor endocytosis and actin cytoskeleton

polarization during cell cycle progression [14,18]. The inacti-

vation of Tor2 disrupts actin organization [19]. TORC2

contains only Tor2, together with Avo1, Avo2, Tsc11, Lst8,

Bit61 and Slm2 [20]. Rapamycin causes cell cycle arrest in

the early G1 phase in S. cerevisiae [8].

The fission yeast Schizosaccharomyces pombe is an excellent

model organism for the study of cell cycle control, mitosis,

DNA damage repair, chromatin dynamics and meiosis. Simi-

lar to S. cerevisiae, S. pombe has two TOR kinase genes, tor1þ

and tor2þ [21–29]. However, the nomenclature of TOR

kinases in S. pombe is unfortunate: S. pombe Tor2 is similar

to S. cerevisiae Tor1, whereas S. pombe Tor1 is similar to

S. cerevisiae Tor2. Accordingly, TORC1 and TORC2 in

S. pombe contain distinct subunits Tor2 and Tor1, respectively.

To couple extracellular nutrient signals to cell growth,

S. pombe TORC1 and TORC2 are controlled by the small

GTPases Rheb1 [30] and Ryh1 [31], respectively. Wild-type

S. pombe is insensitive to rapamycin and vegetatively

increases cell number in the presence of rapamycin [32].

However, S. pombe becomes sensitive to rapamycin under

conditions of starvation. Analyses of the fkh1 deletion

mutant (Fkh1 is similar to mammalian FKBP12) suggest

that rapamycin exerts its effect on sexual development in

S. pombe by inhibiting the function of Fkh1 [21].

Mass spectroscopic analysis of S. pombe TORC1 and

TORC2 has revealed that each complex contains four evolu-

tionarily conserved regulatory subunits, as schematized in

figure 1a [23]. Mip1 and Ste20 [23,24,34] are homologues of

mammalian Raptor and Rictor, respectively, while Pop3/

Wat1 [33,35] is a homologue of Lst8 that associates with

both TORC1 and TORC2. Using immunocoprecipitation

with FLAG–Tor1 or FLAG–Tor2 (both chromosomally inte-

grated and expressed under the control of the native
promoter), Hayashi et al. [23] showed that Mip1, Pop3, Toc1

and Tco89 co-precipitate with FLAG–Tor2, while Sin1

[24,36], Pop3, Bit61 and Ste20 coprecipitate with FLAG–Tor1.

More recently, however, Hartmuth & Petersen [37]

reported that the Tor1 catalytic subunit coprecipitates with

Mip1 in minimal (synthetic) media, which suggests that

S. pombe Tor1 and Tor2 may be the components of TORC1.

To settle the apparently conflicting results, we reinvestigated

in this study whether the TORC1-specific regulatory subunits

Mip1 and Tco89 physically interact with both Tor1 and Tor2.

Furthermore, for understanding distinct functions of Tor1

and Tor2, we constructed a conditional tor1 mutant that

allowed us to critically compare Tor1 functions with Tor2

functions in growth and cell cycle. In our previous study,

the negative interaction was found between TORC mutants

and overproduction of separase/Cut1 that is essential for

mitosis [33]. Cut1 is a conserved protease that is essential

for anaphase progression [38]. Schizosaccharomyces pombe
Cut2 is a chaperon-inhibitor for Cut1 [39,40] and is degraded

in the transition from metaphase to anaphase by the ana-

phase-promoting complex (APC)/cyclosome [41,42]. We

wanted to clarify this unexpected link between TORC and

mitosis. We will provide evidence that TORC1 and TORC2

are deeply implicated in cell division cycle control.
3. Results
3.1. TORC1 and TORC2 contain single, distinct catalytic

subunits
To determine whether Tor1 is associated with only TORC2,

immunoprecipitations were done. Ten strains containing

chromosomally and doubly integrated FLAG-tagged Tor1

or Tor2 with one of the five green fluorescent protein

(GFP)-tagged regulatory subunit genes (TORC1: Mip1 and

Tco89; TORC2: Ste20, Sin1 and Bit61) were made (figure

1b). All of the tagged genes were expressed from their

native promoters. As a control, five non-FLAG-tagged strains

were also used for immunoprecipitation. All the GFP- and

FLAG-tagged genes in this experiment were functional

because every strain was viable, forming normal colonies

and not sterile ones. These strains were vegetatively (VE)

grown in the synthetic Edinburgh minimal medium 2

(EMM2) medium for 24 h at 268C, and extracts immunopreci-

pitated with FLAG antibodies were subjected to immunoblot

analysis using anti-GFP antibodies.

GFP-tagged Ste20, Sin1 and Bit61 coprecipitated abun-

dantly with Tor1–FLAG, but GFP-tagged Mip1 or Tco89

did not. Conversely, GFP-tagged Mip1 and Tco89 coprecipi-

tated abundantly with Tor2–FLAG, but GFP-tagged Ste20,

Sin1 or Bit61 did not. Basically the same results were

obtained in a similar experiment performed with G0 phase

cells grown for 24 h at 268C under conditions of nitrogen star-

vation (figure 1b, bottom). Longer exposures did not reveal

any association between Tor1–FLAG and Mip1–GFP, nor

between Tor1–FLAG and Tco89–GFP. These results demon-

strated that the only detectable catalytic subunits of S. pombe
TORC1 and TORC2 were Tor2 and Tor1, respectively. This is

different from the case of budding yeast TORC1, which con-

tains Tor1 and Tor2 [12]. In the quiescent G0 phase, the

protein levels of TORC1 and TORC2 are roughly equal to

those in the vegetative phase.
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Figure 1. Schizosaccharomyces pombe TORC1 and TORC2 and construction of tor1-D mutant. (a) Schematic diagram of the subunit compositions previously
determined by mass spectrometry [23]. The ts mutant tor2-S is highly sensitive to rapamycin. Multi-copy plasmid pCUT1 carrying the separase gene is inhibitory
when introduced in ste20-545, 589 and pop3/wat1-803 mutants [33] (Ste20 and Pop3/Wat1 are Rictor and Lst8 homologues, respectively). (b) Immunoprecipitation
(IP) with anti-FLAG antibodies was performed for 15 strains that contained FLAG-tagged Tor2 or Tor1, and one of five GFP-tagged regulatory subunits (see text). A
non-tagged strain (2) was used as negative control. Top: vegetatively (VE) growing cells were collected and immunoprecipitated by anti-FLAG antibodies. The
resulting precipitates were run on SDS-PAGE and immunoblotted using anti-GFP antibodies. Bottom: the same experiment was performed, except that the cells were
from the G0 phase. (c) Conserved amino acid sequences of S. pombe Tor2 and Tor1 PI3K domains are shown. L2048 of Tor2 corresponds to L2045 of Tor1. Five
substitution (S, P, N, G and D) mutants at the L2045 residue were made. (d ) Only the L2045D substitution produced the ts phenotype for tor1 at 368C, which is
designated tor1-D. For controls, tor2-L2048S ( previously constructed and designated tor2-S in the present study) and deletion Dtor1 are shown (see text). (e) The
rapamycin sensitivity of tor2-S and tor1-D was examined in the presence of the deletion (D) of Fkh1 at various temperatures. See text.
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3.2. The substitution mutant tor1-L2045D is
temperature-sensitive and fertile

In an effort to critically compare the mutant phenotypes of

TORC1 and TORC2, we attempted to construct a conditional

tor1 substitution mutant. For this end, we used information

about the mutation site of the previously isolated tempera-

ture-sensitive (ts) TORC1 tor2-287 that resides in the highly

conserved PI3 kinase domain and contains the substitution

L2048S [23]. A comparison of the amino acid sequences indi-

cated that Tor2L2048 corresponds to Tor1L2045 (figure 1c).

Site-directed mutagenesis was performed at the Tor1L2045

site; however, the initial substitution mutant tor1-L2045S
did not show any defect in colony formation at 26–368C.

Several chromosomal integrants were then made by intro-

ducing amino acids P, N, G or D at the 2045 site. The tor1-
L2045D mutant (designated tor1-D hereafter) showed the

clear Ts2 phenotype, while the other mutants (L2045P,

L2045N and L2045G) were Tsþ (figure 1d ). The deletion

mutant Dtor1 was previously isolated and characterized

[43,44]. A comparison of the colony formations between

Dtor1 and tor1-D showed that Dtor1 grew slowly, and was

weakly ts and sterile. In contrast, tor1-D showed a clear ts

phenotype at 368C, but grew normally at 268C and was fer-

tile, which allowed the isolation of multiple mutants

containing tor1-D by performing crosses at 268C.

3.3. Fkh1 affects Tor1 and Tor2 in the presence or
absence of rapamycin

As reported previously, tor2-L2048S (designated tor2-S here-

after) is highly sensitive to rapamycin (0.01 mg ml21) at

268C [23]. Thus, the next step in this study was to examine

whether this sensitivity required the presence of Fkh1, an

FKBP12-like protein that controls protein folding [45,46]. As

expected from the presumed role of Fkh1 in generating rapa-

mycin sensitivity in other organisms, the rapamycin

sensitivity (0.01–1.0 mg ml21) at 268C was abolished in the

double mutant tor2-S Dfkh1 (figure 1e, top row). In contrast,

the tor1-D mutant was not sensitive to rapamycin at 268C,

but became significantly sensitive to the drug at the semi-per-

missive temperature of 33–34.58C (middle and bottom rows,

middle and right columns). In addition, the tor1-D mutant

lost sensitivity at the semi-permissive temperature, when

Fkh1 was deleted. Thus, the tor1-D mutation in the PIKK

domain rendered the strain considerably sensitive to rapamy-

cin at the semi-permissive temperature. The leucine uptake

controlled by Tor1 was also sensitive to rapamycin in Fkh1-

dependent manner [47]. Unexpectedly, the deletion Dfkh1
partly suppressed the ts phenotype of tor2-S at 33–34.58C
in the absence of rapamycin (dimethyl sulphoxide, DMSO).

This finding will be discussed later, together with the finding

that Dfkh1 suppressed other mutations.

3.4. Mutant target of rapamycin complexes contain the
reduced kinase activities

To understand the nature of ts tor1-D and tor2-S mutations,

the kinase activities of immunoprecipitated FLAG-tagged

Tor were measured using the authentic human substrate,

the recombinant p70S6K-GST fusion protein, of which T389
was phosphorylated (purchased from Merck, Whitehouse

Station, NJ). The non-tagged wild-type (972) precipitate

showed no activity (figure 2a). In contrast, both mammalian

and S. pombe TORC1, corresponding to purified mTOR

(Merck) and immunoprecipitated FLAG–Tor2 (chromoso-

mally integrated and expressed under the native promoter),

respectively, displayed the activities, which were inhibited

by the addition of Wortmannin (a known pharmacological

inhibitor drug of PIK and PIKK [48]).

Next, the kinase activity levels of wild-type and mutant

TORC1 and TORC2 were compared (figure 2b). The protein

levels of immunoprecipitated FLAG–Tor2, FLAG–Tor2-S,

FLAG–Tor1 and FLAG–Tor1-D were adjusted to roughly

equal (figure 2c). Non-tagged and FLAG-tagged Cut14, a con-

densin SMC subunit, served as negative controls, and mTOR

served as a positive control. The activity of the TORC1 mutant

precipitated by FLAG–Tor2-S was diminished, and the activity

of the TORC2 mutant precipitated by FLAG–Tor1-D was close

to the background level at both 268C and 368C, suggesting that

the mutations strongly reduced the kinase activities in vitro,

but that the activities were not heat-labile.

3.5. TORC1 kinase activity might be upregulated in
TORC2 tor1-D mutant cells

To obtain an insight into the in vivo activity of TORC1 in

wild-type and mutant cells, antibodies against phospho-Akt

substrate (PAS) were used for immunoblot to assay TORC1

activity [49]. These antibodies detected phosphorylated ribo-

somal protein S6, the presumed downstream substrate of

TORC1. Three strains (wild-type, tor2-S and tor1-D) were cul-

tured at 268C, and then shifted to 368C for 0–8 h. Extracts

were prepared for immunoblot analysis, using antibodies

against PAS, a-tubulin (TAT1) and Cdc2 (PSTAIR), the

latter two of which were used as the loading controls. In

tor2-S cells, the level of phosphorylated S6 greatly diminished

after 4 h, which is consistent with the prediction that TORC1

activity was abolished in the mutant cells at 368C (figure 2d ).

However, in tor1-D mutant cells, the degree of phosphory-

lated S6 sharply increased, which suggested that the

activity of TORC1 (containing the wild-type Tor2) increased.

This activation suggests that TORC1 activity might be

strongly upregulated in the TORC2 mutant (tor1-D).

3.6. Mutants tor1-D and tor2-S have distinct
phenotypes

Although the mutated residues in the PIK domain are the

same, the phenotypes of tor1-D and tor2-S were dramatically

different. FACScan (fluorescence-activated cell sorter scan;

Becton Dickinson, Franklin Lakes, NJ) revealed that tor1-D
cultured at 368C for 0, 4 or 8 h displayed post-replicative

2C DNA content, while a pre-replicative 1C DNA peak was

produced in tor2-S mutant at 368C (figure 3a) [23]. Note

that vegetatively growing S. pombe cells contain 2C DNA:

pre-replicative nuclei exist in binucleated cells. The rightward

shift of the FACS data does not reflect an increase in DNA

content, but rather an increase in cell volume.

Changes in the cell number and cell length of tor1-D and

tor2-S were then measured in the rich yeast extract,

polypeptone, d-glucose (YPD) medium. The mutants were

pre-cultured at 268C, and then shifted to 308C (permissive),
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338C (semi-permissive) or 378C (restrictive temperature). The

results are shown in figure 3b. At 308C, tor1-D and tor2-S (red

and orange lines) showed 4.7- and 3.7-fold increases in cell

number, respectively, similar to the values for wild-type (black

line). At 378C, the cell number increase of both mutants ceased.

Increasing the temperature to 378C significantly increased the
cell length of tor1-D (red column) by 60 per cent (inset, micro-

graph), but oppositely decreased that of tor2-S (orange column)

by 33 per cent. After 8 h at 378C, the average cell lengths were

quite distinct: 18.5+4.4 and 8.6+1.2 mm for tor1-D and tor2-
S, respectively. Those of the wild-type control for tor1þ and

tor2þ were 11.5+2.3 and 12.4+2.5 mm, respectively. At 338C,
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a semi-permissive temperature, the cell length of tor2-S signifi-

cantly decreased, while the cell number increased. The cell

length of tor1-D was the same as the wild-type.

These results suggested that cell division occurred prema-

turely for tor2-S but delayed for tor1-D, producing wee1-like

and semi-cdc25 phenotypes, respectively, at 378C. Cells with

the Dtor1 deletion were also further elongated [44]. Cells of

tor1-D occasionally (8%) showed a misplaced septum
(figure 3c). The phenotypes described here are consistent

with the previous reports [24,25,28].

3.7. Cell-length shortening under low glucose does not
occur in the tor1-D

Schizosaccharomyces pombe wild-type cells reduce in length in

low-glucose medium (0.08% glucose), while they divide with
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the same doubling time as that in the regular medium (2%

glucose) [50]. A decrease in glucose concentration from 2 to

0.08 per cent reduced the cell length of wild-type tor1þ

strain (black column) by approximately 20 per cent after 6 h

(figure 3d ). In contrast, this cell-length shortening did not

occur for tor1-D mutant (red column), which divided and

increased the cell number (red line) at a similar rate to the

wild-type (black line). Previously, we examined a number

of ts and deletion mutants, and found that those mutants

that failed to reduce cell length under low glucose were

rare [51]. The tor1-D mutant shown here and ssp1 mutants

shown by Hanyu et al. [51] fail to reduce cell length under

0.08 per cent glucose.

3.8. Mitosis and cell division are delayed in tor1-D
At 368C, tor2-S was unable to grow in the nutrient-rich

medium owing to its inability to properly use nutrients. As

a result, the cells become short and round after one or two

rounds of cell division (a few rounds of division are allowed

in growth-deficient cells). The tor2-S mutant failed to exit

from the G0 phase at 368C, and remained small and round

after the nutrient was replenished and cells were cultured at

368C [23]. To examine whether tor1-D could properly exit

from G0 phase, G0 cells of tor1-D were made under conditions

of nitrogen starvation at 268C for 24 h. Resulting G0 cells that

looked normally round and small were harvested and trans-

ferred to rich YPD medium at 378C. As shown in the FACS

patterns (figure 4a), DNA replication (S phase) for the tor1-D
mutant occurred at around 3–4 h after transfer to the YPD

medium at 378C, which was the same timing observed for

wild-type G0 cells to return to S phase upon nutritional replen-

ishment. However, 40,6-diamidino-2-phenylindole (DAPI)

staining of chromosomal DNA indicated that the first mitosis

occurred about 7–8 h for the tor1-D mutant, showing consider-

able delay compared with wild-type tor1þ (figure 4b).

The frequencies of mitotic binucleated and septated cells,

together with cell length, were measured for the wild-type

and tor1-D. The average timings for S phase, M phase and

cytokinesis (CK) are indicated by the arrows in figure 4a,b.

While the timing of S phase was identical between wild-type

and tor1-D, the timings of mitosis and CK were delayed by

2 h in tor1-D (red line). The cell length in tor1-D reached a pla-

teau, at which point the cells were 30 per cent longer than the

wild-type. The viability of tor1-D remained high (approx.

100%) at 378C, while cell division was arrested. Taken

together, tor1-D could exit from G0 and enter S phase with

normal timing, but the G2–M transition was delayed while

apparent cell growth continued (cell length increased).

3.9. The tor1-D mutant displays delayed spindle
and aberrantly bright actin structures

The mitotic spindle in tor1-D was observed with an anti-tubulin

antibody (TAT1), and the frequencies of cells showing the spin-

dle were measured (red, figure 4c). The appearance of the

spindle was 2–3 h delayed compared with wild-type.

Figure 4d shows the short and long spindle by anti-tubulin,

DNA by DAPI and actin by phalloidin in wild-type (top) and

tor1-D (bottom), respectively. Unlike staining in the wild-type,

mutant tor1-D displayed highly bright actin stain at one cell

tip in interphase and at the equator in mitosis. In interphase,
intense actin localization was seen at only one of the two tips

in all of the cells examined, strongly suggesting that the new

end failed to grow in tor1-D. In the wild-type, actin localization

was bipolar after new end take-off (NETO) [52]. In electronic

supplementary material, figure S1, more micrographs showing

bright actin distributions at monopolar cell ends in interphase

and at mitotic equator in tor1-D mutant are shown. Almost

100 per cent of tor1-D cells show the actin abnormality pheno-

type. The tor1-D mutant thus displayed the aberrant and

asymmetric accumulation of actin at the ends of interphase cells.

3.10. Tor1-D is resistant to latrunculin A and overrides
the deletion of Clp1/Flp1

In order to determine whether the delay in spindle formation

was due to the activation of the CK checkpoint, which

requires Clp1/Flp1 (similar to Cdc14 phosphatase) [53,54],

the double mutant strain tor1-D Dclp1 was constructed

(figure 4e; electronic supplementary material, figure S2).

While control single-mutant Dclp1 cells displayed decreased

cell length compared with wild-type cells at 368C, the

double mutant cells showed elongated phenotype that was

indistinguishable from the single-mutant tor1-D cells. Cell

length measurements in wild-type, single tor1-D, double
tor1-D Dclp1 and single Dclp1 at 368C suggested that the

delayed CK in tor1-D was not dependent on Clp1/Flp1.

Sensitivity to the actin polymerization inhibitor latrunculin

A was subsequently tested. As shown in figure 4f, the control

Dclp1 mutant strain was sensitive to latrunculin A, while the

double tor1-D Dclp1 mutant strain and the single tor1-D
mutant strain were not. The control separase ts mutant strain

cut1-206 showed mild resistance at 268C. We further examined

the latrunculin sensitivity of tor1-D and tor2-S at the semi-per-

missive temperature (electronic supplementary material, figure

S3). Both mutants were found to be considerably resistant to

latrunculin at the permissive and/or semi-permissive tempera-

ture. Interestingly, the drug partly rescued tor2-S at 338C. The

double mutant tor1-D Dclp1 produced colonies nearly nor-

mally at 368C in the presence of latrunculin. Considering

that actin polymerization is inhibited by the drug [55], tor1-
D and tor2-S might contain excessively polymerized actin

that might inhibit colony formation. This finding is consistent

with the cytological phenotype of tor1-D.

In order to determine whether the contractile ring in tor1-D
cells was normal, we constructed wild-type and tor1-D strains

in which chromosomally integrated and GFP-tagged Myp2/

Myo3, the heavy chain of the myosin II complex [56], were

expressed under the native promoter. As shown in figure 4g,

GFP-tagged Myp2 in tor1-D at 378C for 8 h was not intensely

fluoresced like actin, and showed the normal-looking contrac-

tile ring during the period of CK. Taken together, while actin

was abundant in tor1-D during interphase and mitosis, the

defect was not found in the CK checkpoint nor in the contrac-

tile ring during mitosis. The above results are the basis for the

further characterizations of mutant strains.

3.11. Cdc2 activation for mitosis may be delayed in
tor1-D after the release from the G0 phase

To determine whether the G2–M delay observed in tor1-D
was due to the delay of Cdc2 activation, we employed anti-

body against Tyr15 PO4 (Cdc2) (a gift from T. Hunt [57]) to
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at 268C for 24 h, and then released into nitrogen-replenished rich YPD medium at 378C for 11 h. (a) The DNA content of cells after release from G0 was examined
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monitor phosphorylated Tyr15 residue of Cdc2 after the

release from the nitrogen-starved G0 phase (figure 5). For

other controls, antibodies against Cdc2 (PSTAIR), cyclin

Cdc13, securin Cut2 and PAS are also shown.

Cdc2 Tyr15 was phosphorylated in the G0 phase of wild-

type cells (the band indicated by the asterisk), consistent with

a notion that the G0 phase contains the inactive Cdc2 as well

as abundant Rum1, a Cdc2 inhibitor [58,59]. The Cdc2 Tyr15

PO4 band decreased around 3–5 h at the timing of the S to M

phase (figure 4a,b; the degree of synchrony is not high). This

timing roughly coincided with that of the disappearance of
abundant Rum1 and the appearance of S phase cyclin [58].

In tor1-D mutant cells, the timing of the decrease of Cdc2

Tyr15 PO4 was greatly delayed until 9–11 h, roughly

coinciding with the timing of M and cell division. Wu &

Russell [59] showed that Cdc2 Tyr15 phosphorylation

occurs under nitrogen starvation though the level of Cdc13

decreases. Considering the presence of Wee1 function under

nitrogen starvation as the fact, it is surprising that premature

mitosis can twice occur in the presence of Wee1. We hence

consider that unidentified kinase in addition to Cdc2 may

be implicated in Y15 phosphorylation in the cell division
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Figure 5. Dephosphorylation of Cdc2 Tyr15 PO4 is delayed in tor1-D mutant cells. The wild-type (tor1þ) and tor1-D mutant were first nitrogen-starved at 268C for
24 h in the EMM2-N medium, and then shifted to the replenished rich YPD medium at 378C. The experimental design is identical to that in figure 4a – c. Aliquots of
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cycle arrest under nitrogen starvation. Sty1 mitogen-activated

protein kinase (MAPK) is a candidate kinase that causes the

size-shortening cell division [26,60].

The intense increase of Cdc13 occurred in wild-type

around the S–M phase. The band intensities of Cdc13, Cut2

and phosphorylated PAS started to increase about 4 h, at

the timing of S phase in both wild-type and tor1-D. The

band intensity of PAS was much higher in tor1-D than that

in wild-type, which is consistent with the result shown in

figure 2d. Note that PAS was present in the G0 phase, but

decreased temporally after the release. Taken together, the

tor1-D mutation caused a great delay in the dephosphorylation

of Cdc2 Tyr15 PO4, presumably delaying the activation of

mitotic Cdc2 kinase, but parameters such as the timing of

the increase for cyclin Cdc13, Cut2 and PAS after the release

were basically identical to those of the wild-type.

3.12. Rapamycin suppresses the cut1 and cut2 mutants
As a negative genetic interaction existed between overproduced

Cut1 and mutants of TORC2 regulatory subunits [33], the effect

of rapamycin on the ts phenotype of the cut1 and cut2 mutants

was tested. To our surprise, the ts phenotype of separase/cut1
and securin/cut2 mutants was rescued by rapamycin

(0.005 mg ml21). Rapamycin rescued cut1-21 and cut1-693 at

338C, and cut2-447 at 34.58C, as shown in figure 6a. Rapamycin

also suppressed the ts phenotype of cut1-206 and cut2-EA2
mutants (indicated by red and blue arrows, respectively) at

308C, a restrictive temperature for these strains (electronic sup-

plementary material, figure S4). These data show that all of the

three cut1 and two cut2 ts alleles examined were suppressed by

a very low concentration of rapamycin, suggesting that the

rescue was highly effective and not allele-specific. The degree

of suppression for cut1 seemed to be stronger than for cut2
mutants. The control strain tor2-S showed strong drug sensi-

tivity at 338C, a semi-permissive temperature. The hyper-

sensitive and rescue effects by rapamycin show that Tor2 and

securin–separase respond to rapamycin in opposing manners.

3.13. Fkh1 is deeply implicated in the suppression of
cut1 and cut2 mutants

We then tested the effect of Fkh1 on rapamycin-mediated

suppression of separase/cut1 mutants. Three separase
mutants, cut1-206, -693 and -21, were crossed with Dfkh1.

Resulting double mutants were cultured in the absence

or the presence of rapamycin (0.005 and 0.05 mg ml21).

The rescue by rapamycin for cut1-21 and cut1-693 at

the semi-restrictive temperature was abolished in Dfkh1
(figure 6b; electronic supplementary, figure S5). For the

case of cut1-206 Dfkh1, synthetic rescue already occurred at

308C in the absence of rapamycin (electronic supplemen-

tary material, figure S5). This intriguing observation is

discussed below.

Even stronger suppression was found for the double

mutant cut2-447 Dfkh1 in the absence of rapamycin at 338C
and 34.58C (figure 6c). The suppression effect was further

strengthened by the addition of rapamycin. This unexpected

result suggested that Fkh1 acts on securin–separase in two

ways, in the presence and the absence of rapamycin. Fkh1

may enhance the instability of Cut2 protein in the absence

of rapamycin, and is required for the ts phenotype of the

cut2 mutant.
3.14. Separase and securin mutants are rescued by the
TORC1 mutation tor2-S

We then tested a hypothesis that rapamycin-sensitive tor2-S
mutation could substitute rapamycin addition in the above

experiments. The double mutant tor2 cut1 might represent

a situation similar to single cut1 mutant in the presence

of rapamycin. Two double mutants of cut1-206 or cut1-
693 were made with tor2-287 (original ts isolate having

the same mutation site to tor2-S [23]) and tor2-S (con-

structed by substitution through chromosome integration).

The synthetic rescue at 308C and 338C was strong for all

of the combinations of cut1 tor2 double mutants (figure

6d ). We also tested whether the same was true for the

case of securin/cut2 mutation. At 308C, the synthetic

rescue was clearly observed for the double cut2 tor2
(cut2-EA2 tor2-S). Taken together, diminishing the catalytic

subunit Tor2 of the TORC1 greatly alleviates the require-

ment of separase Cut1 and securin Cut2 in S. pombe.

Thus, separase/Cut1–securin/Cut2 complex, the central

player of chromosome segregation, was deeply implicated

in the nutrient sensor TORC1 in a manner suggesting

that their functions may be opposing.



33ºC 34.5ºC

34.5ºC26ºC

33ºC30ºC

36ºC34.5ºC

26ºC 30ºC

30ºC

30ºC

26ºC 33ºC

26ºC 34.5ºC

33ºC

36ºC

wild-type

wild-type

tor2-S
cut1-21

cut1-21
cut1-21Dfkh1

wild-type
cut2-447
cut2-447Dfkh1

wild-type
cut2-447

wild-type

wild-type

vector

vector

-Thi

+Thi

EMM2
33ºC

(OP)
plasmid

cut1+

plasmid
cut1+

wild-type

cut1-206
cut1-206

cut1-693
cut1-693

tor2-287

tor2-S
tor2-S

wild-type

cut1-693
cut1-693

tor1-D
tor1-D

tor1-D

wild-type

cut2-364
cut2-364

tor1-D
tor1-D

wild-type

cut1-206
cut1-206

tor2-S
tor2-S

wild-type

cut2-EA2
cut2-EA2

tor2-S
tor2-S

tor2-287

cut2-447Dfkh1

Dfkh1

cut1-693
cut1-206
cut2-364
cut2-447
cut2-WT
cut2-EA2

wild-type
tor2-S
cut1-21
cut1-693
cut1-206
cut2-364
cut2-447
cut2-WT
cut2-EA2

YPD no drug
YPD no drug

YPD +Rapa
0.005 mg ml–1

YPD +Rapa
0.005 mg ml–1

rapamycin (mg ml–1)

0 0.005 0.05

0.05

0 0.005 0.05

0 0.005 0 0.005 0.05

0 0.005 0.05 0 0.005 0.05

(a)

(b)

(c)

(d)

( f )

(e)
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3.15. Combination of tor1-D and cut1 or cut2 was
additive

To test whether TORC2 mutation tor1-D genetically interacts

with mutations of cut1 or cut2, double mutants were made.

The resulting ts phenotypes of tor1-D cut1-693 and tor1-D
cut2-364 showed additive effects: at 338C, the single mutants

cut1-693 and tor1-D formed colonies, but the double mutant

showed slow formation of colonies (figure 6e top). The

single mutants cut2-364 and tor1-D produced colonies at

34.58C, but the double mutant tor1-D cut2-364 hardly

formed colonies (figure 6e, bottom). A possible explanation

for the additive phenotypes of cut2 and cut1 mutants with

tor1-D is that TORC2 (Tor1) acts in parallel with the Cut1–

Cut2 complex. Securin–separase and Tor1 might share an

essential function.

Another additive effect found was between tor1-D and

plasmid pCUT1, as shown in figure 6f. The colony formation

of tor1-D at 338C, a semi-permissive temperature, was

strongly inhibited when Cut1, under the control of the indu-

cible nmt1 promoter on pCUT1, was overproduced in the

absence of thiamine (2Thi). This result is consistent with

the fact that overproduction of Cut1 was inhibitory to the

colony formation of ste20 [33]. Besides the presumed parallel

function of TORC2 and Cut1–Cut2, the unbalanced high

dosage of Cut1 seems to be harmful to the diminished

situation of TORC2.

3.16. Rapamycin allows cut1-206 to divide, but does
not restore the protein level

To investigate how the cut1-206 mutant was suppressed in

the presence of rapamycin, the mutant strain that expressed

cut1-206-GFP mutant protein under the native promoter

was constructed and grown in the liquid culture in the pres-

ence or the absence of rapamycin (4 mg ml21) at 308C for 46 h.

The mutant cells clearly divided more frequently in the pres-

ence of rapamycin than in its absence, with doubling times of

3.1 and 6.6 h, respectively (figure 7a). This result indicated

that the suppression occurred at the level of doubling time,

and also suggests that the level of the Cut1-206-GFP

mutant protein might increase in the presence of rapamycin.

To test this hypothesis, immunoblot was done for comparing

the levels of mutant Cut1-206-GFP protein in the presence or

absence of rapamycin. Contrary to the hypothesis, the level of

Cut1-206-GFP protein did not increase at all in the presence

of rapamycin. The level at 268C was lower than that of the

wild-type Cut1–GFP, regardless of the rapamycin status

(figure 7b). The level of Cut2 protein was also low in the

mutant cells.

The level of the Cut1-206-GFP protein was further exam-

ined under the suppressed condition in the presence of

rapamycin at 308C for 46 h (figure 7c). The levels of Cut1-

206-GFP and Cut2 did not increase at 308C regardless of

the presence (þ) or the absence (2) of rapamycin. Thus, the

strong rescue of cut1-206 by rapamycin did not accompany

the increase for the level of Cut1 and Cut2. The level of

Rad21, a cohesin subunit that was cleaved by activated separ-

ase/Cut1 [61], also did not change at 308C in the suppressed

(þ rapamycin) or non-suppressed (2drug) condition. Rapa-

mycin suppressed the ts phenotype of cut1 mutation not

through the increase for the level of Cut1 and/or Cut2. We
discuss below how diminishing TORC1 could suppress cut1
and cut2 mutations.
4. Discussion
We were able to critically compare the mutant phenotypes of S.
pombe TORCs by constructing the new mutant tor1-L2045D
(tor1-D), a substitution at the same conserved residue as that

of previously isolated tor2-L2048S (tor2-S). Mutant TORCs pur-

ified from these mutant extracts showed diminished kinase

activities, consistent with the mutation site in the PIK domain.

However, the phenotypes of tor1-D and tor2-S were greatly dis-

tinct and nearly opposite in a number of phenotypes examined.

The amino acid sequences of S. pombe Tor1 and Tor2 are similar

throughout except for the amino terminal region that is

unknown for the functional relevance. How did the similar

mutations produce such different phenotypes? Stably bound

regulatory subunits, such as Mip1 or Ste20, or other proteins

like Fkh1, which might interact with the mutation sites, are

probably crucial for producing such differences. As the single

TOR catalytic subunit can produce both TORC1 and TORC2

in many organisms, including mammals (mTOR), it is of inter-

est to introduce the same mutations of tor1-D and tor2-S into the

genomic TOR, and examine their phenotypes. Phenotypes

specific for TORCs are possibly produced.

The defective phenotypes of S. pombe TORCs have been

intensively studied [22–24,27,28,47,62,63]. While the deletion

mutant Dtor1 is viable, though sterile, and slow in colony for-

mation [27,47], tor1-D single substitution mutant made in this

study is normal in colony formation and cell size at 268C,

and fertile, but fails to form colonies at 378C. The tor2þ gene

is essential for viability, and the tor2-S mutant cells at 368C
resemble the quiescent wild-type cells produced under nitrogen

source starvation, which induces two rounds of mitosis and cell

division in the absence of cell growth [64]. By contrast, Tor1

(TORC2), Ste20, a TORC2 regulatory subunit and TORC2-

related kinases such as Ksg1 and Gad8 are required for prolifer-

ation under low-glucose conditions (S. Saitoh & M. Yanagida

2011, unpublished data). TORC1 and TORC2 may hence be

distinguished in response to different nutrients, such as

amino acids and low glucose, respectively.

The emerging roles of TORC1 and TORC2 in cell size con-

trol are discussed below. On the one hand, it is well known

that Wee1 and Cdc25 control the cell size of dividing S.
pombe [65]. These are cell cycle regulators and control Cdc2

kinase, a master regulator of cell cycle, in opposing ways.

Both Wee1 and Cdc25 affect the cell size via inhibiting and

activating Cdc2 kinase, respectively, but are not required

for cell growth, as cdc25 and wee1 mutant cells can increase

in cell length. On the other hand, cell growth is also involved

in the cell size control; nutrients such as nitrogen and carbon

sources affect the cell size. Under nitrogen-source starvation

as described above, S. pombe cells became small and round.

Under low-glucose conditions, the size of dividing cell is

shortened, probably to keep the short doubling time [50].

As shown in this and earlier studies, two growth-related

kinases, TORC1 and TORC2, are clearly implicated in cell

size control, and their apparent functions in cell size control

are opposite. At 368C, tor1-D cells are elongated, while tor2-
S cells are short. We postulate that Tor1 (TORC2) and Tor2

(TORC1) coordinate to determine the cell size in response

to nutritional conditions, and resemble Cdc25 and Wee1,
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Figure 7. Securin and separase are scarce during rescue. (a) GFP was chromosomally tagged at the C-terminus of the cut1-206 mutant gene. The resulting strain
cut1-206-GFP was cultured at 308C in the presence (rapamycin) or absence (DMSO) of rapamycin (4 mg ml21), and the cell number increase was measured. (b) The
wild-type strain carrying the cut1þ gene was chromosomally tagged with GFP at the C-terminus. The protein levels of the resulting Cut1-GFP and mutant Cut1-206-
GFP proteins were estimated in the presence (4 mg ml21, Ra) or absence (Dm) of rapamycin at 268C by immunoblot using anti-GFP antibodies. For comparison, the
immunoblot of Cut2 and tubulin (loading control) were performed using polyclonal anti-Cut2 and monoclonal anti-TAT1 antibodies, respectively. (c) Lanes 1 and 2
show wild-type Cut1 – GFP and mutant Cut1-206-GFP, respectively, grown in the absence of rapamycin at 268C. Lanes 3 and 4 show mutant cut1-206-GFP cultured
at 308C in the presence or absence of rapamycin (4 mg ml21), respectively. Immunoblot was performed to estimate the levels of the wild-type and mutant Cut1
(GFP). The levels of Rad21, Cut2 and tubulin were also estimated. The addition of rapamycin does not change the level of mutant Cut1-206-GFP. (d ) A speculative
explanation for the distinct mutant phenotypes of tor1-D and tor2-S for the control of mitosis and growth, and the cartoon describing the relationship between TOR
complexes and securin – separase. See §4.
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respectively, regarding the positive and negative roles for cell

division under nutritional supply. A key observation is that

under low glucose concentration, the wild-type cell length is

shortened, but the length of dividing tor1-D cells is elongated.

In other word, tor1-D mutant cells fail to reduce cell length in

response to limited glucose concentrations. This failure may

be related to aberrantly intense and monopolar actin localiz-

ation in interphase cells. We further showed that the delay

phenotype of tor1-D is not due to CK checkpoint, but due to

the delay of dephosphorylation timing of Cdc2 Tyr15 PO4 for
the mitotic entry. Negative and positive genetic interactions

between mutants of TORC2 and cdc25 or wee1, respectively,

have been reported [62,63]. Tor1 may be required for Cdc2

kinase activation via direct or indirect activation of Cdc25 or

through inhibition of Wee1.

The TORC2 mutant tor1-D is moderately sensitive to

rapamycin at the semi-permissive temperature, while tor2-S
is highly sensitive at 268C. The sensitivity requires the pres-

ence of FKBP12-like Fkh1, as expected from previous

studies [12,46,47]. In the absence of rapamycin, however,
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Fkh1 still affected Tor2: the ts phenotype of tor2-S at

33–34.58C was suppressed by the deletion of Fkh1. The

FKBP of higher eukaryotes does not interact with the rapamy-

cin-interacting FRB domain in the absence of rapamycin [66].

Schizosaccharomyces pombe Fkh1 might influence the function

of Tor2 via a domain other than FRB. Fkh1 may negatively

regulate the stability of Tor2 mutant protein, such that the

Tor2-S mutant protein is restored in the absence of Fkh1.

Strong functional implication of Fkh1 to mitosis was

obtained. The ts phenotype of securin/cut2 and separase/

cut1 was rescued by the deletion of Fkh1 in the absence of

rapamycin. The rescue was particularly strong for cut2
mutant. The mechanism for this rescue is unclear, but protein

conformation of Cut2 seems to be strongly affected by Fkh1 in

the absence of rapamycin. Hence Fkh1, a protein-folding accel-

erator, is required for the ts cut2 phenotype through

destabilizing mutant Cut2 protein. Note that mammalian

securin is non-essential, though intense chromosome instabil-

ity leading to cancer can be caused by overproduction.

Conformation-sensitive phenotypes of S. pombe cut1 and cut2
mutants were previously reported [67]; high concentrations

of osmotic compound (1.2 M sorbitol) or salt (0.6 M KCl) res-

cued cut1 and cut2 mutants. In this rescue, the level of mutant

Cut1–Cut2 complex increased in a manner dependent on the

actions of stress-responsive MAPK Sty1/Spc1. Rescue by rapa-

mycin, however, did not accompany the protein level increase

of Cut1 and Cut2, suggesting that only small amounts of Cut1

and Cut2 may be needed in rapamycin-treated cells.

How do we explain the synthetic rescue of securin/cut2
and separase/cut1 mutations by either rapamycin addition

or tor2-S mutation? The balance between TORC1 and

securin–separase appears to be crucial for avoiding premature

mitosis and chromosome missegregation (figure 7d). There is a

popular belief that growth opposes cell division. Similar to this

concept, mitosis may be restrained, while Tor2 (TORC1) is

active. Securin–separase may have to be intensely active,

when Tor2 is abundant. Conversely, when the TORC1 activity

of dividing cells is diminished, the requirement of securin–

separase may be greatly alleviated. These considerations

explain many results obtained in this study. TORC1 may pre-

vent premature entry into mitosis, so that tor2-S or rapamycin-

treated cells alter strikingly the mode of mitosis and cell div-

ision, leading to small cells even in the rich medium. Wild-

type cells brought under nitrogen starvation actually commit

premature mitosis with regard to cell size, which is consistent

with the notion that TORC1 becomes inactive upon removal of

nitrogen source (reviewed by Yanagida et al. [68]).

Schizosaccharomyces pombe may have abundant TORC1

activity in the regular vegetative culture medium, which

may explain why rapamycin shows little effect on cell div-

ision of wild-type cells [32]. Under such conditions, the

levels of Cut1–Cut2 might be abundant to balance against

TORC1. When Tor2-mediated growth support is diminished

in mutant cells, however, only a tiny amount of Cut1–Cut2

may be sufficient. Note that biologically important events

such as immunological responses are suppressed in mamma-

lian cells by rapamycin. In sharp contrast, Tor1 (TORC2)

seems to act in parallel with mitosis through regulating

the CDK activation and actin localization. Tor1 appears to

have a forward role in the progression of mitosis because of

its presumed function in determining the timing of mitosis.

Tor1 and Cut1–Cut2 may coordinate chromosome segre-

gation and cell division, thereby ensuring determination of
appropriate cell size (short size in low glucose). In other

organisms, such as S. cerevisiae, TORC2 is known to be related

to actin distribution [11,14,20] and is thought to regulate the

cell cycle-dependent polarization of the actin cytoskeleton.

The initiation of bipolar cell elongation in S. pombe is actually

highly complex: more than 30 protein kinases are implicated

[52]. In TORC1 (tor2) mutant, overall actin organization is

reported to be normal [27], but detailed study may be necess-

ary as tor2-S mutant is resistant to latrunculin. In short,

whereas TORC1 and TORC2 are apparently opposing, they

should actually coordinate to support growth and determine

the timing of division. Our previous results [69] showed that

the phenotypes of cut (cell untimely torn) and wee (small)

were both observed in the double mutant of cut1 and wee1.

The suppression of cut1 by tor2 should thus be really a

specific phenotype of tor2. It remains to be determined

whether Cut1 or Cut2 is the direct phosphorylation target

of TORC1 and TORC2 kinases.

While S. cerevisiae TORC1 and TORC2 contain two and one

catalytic subunits, respectively, the present study unequivocally

demonstrated that S. pombe TORC1 and TORC2 each contained

one catalytic subunit in vegetative and G0-quiescent cultures

within the experimental resolution. The present result differs

from that of Hartmuth & Petersen [37], but is consistent with

that of Hayashi et al. [23]. The reason for the difference is unclear,

but might be due to the use of Tor1-HA gene expressed under

non-induced state of the highly inducible nmt1 promoter by

Hartmuth & Petersen, while our study relied on chromosomally

integrated genes expressed under the native promoters. This

issue is important: if TORC1 contained both Tor1 and Tor2 cata-

lytic subunits, the interpretation of our results regarding distinct

phenotypes of tor1 and tor2 mutations would be less straight-

forward. Additionally, we showed that, between proliferation

and quiescence, S. pombe TORC1 and TORC2 constituents

were the same, and their levels were similar. The role of plentiful

TORC1 and TORC2 in quiescence may be storage for the restart

of growth. However, the PAS activity was high in the G0 cells,

so that TORC1 may give a high PAS activity in the G0 phase

cells that do not grow at all. Alternatively, another kinase may

be responsible for the PAS activity in the G0 cells.
5. Material and methods
5.1. Strains, materials and general techniques
Schizosaccharomyces pombe heterothallic haploids 972 h2, 975 hþ

and their derivatives were used. Strains used in this study are

listed in table 1. Complete YPD (1% yeast extract, 2% polypep-

tone and 2% glucose) and minimal EMM2 were used to culture

S. pombe. The phenotype of tor1-D was affected by nutritional

condition: it was somewhat unclear in the synthetic EMM2

medium, but clear in the YPD medium. The nitrogen-starved

G0 phase cells were prepared as follows [71]. The cells were

grown in EMM2 to a concentration of 5� 106 cells ml21 at

268C. They were harvested by vacuum filtration using a nitro-

cellulose membrane (0.45 mm pore size; Millipore, Billerica,

MA), washed in EMM2–N (EMM2 lacking NH4Cl) once on

the membrane, and then resuspended in EMM2–N at a concen-

tration of 5 � 106 cells ml21 and incubated at 268C for 24 h. The

transient G1 cells formed after approximately two divisions

during the first 4–6 h under nitrogen starvation became G0

cells after 12 h [64]. Nitrogen was replenished by adding fresh



Table 1. Schizosaccharomyces pombe strains used in this study.

strain genotype source

NI1123 h2mip1-GFP:hygR this study

NI1121 h2tco89-GFP:natR this study

NI1124 h2ste20-GFP:hygR this study

NI1125 h2sin1-GFP:hygR this study

NI1122 h2bit61-GFP:natR this study

NI1166 h2FLAG-tor2:kanR mip1-GFP:hygR this study

NI1164 h2FLAG-tor2:kanR tco89-GFP:natR this study

NI1167 h2FLAG-tor2:kanR ste20-GFP:hygR this study

NI1168 h2FLAG-tor2:kanR sin1-GFP:hygR this study

NI1165 h2FLAG-tor2:kanR bit61-GFP:natR this study

NI1161 h2FLAG-tor1:hygR mip1-GFP:hygR this study

NI1159 h2FLAG-tor1:hygR tco89-GFP:natR this study

NI1162 h2FLAG-tor1:hygR ste20-GFP:hygR this study

NI1163 h2FLAG-tor1:hygR sin1-GFP:hygR this study

NI1160 h2FLAG-tor1:hygR bit61-GFP:natR this study

NI0001 h2972 laboratory

stock

NI0002 hþ975 laboratory

stock

NI993 h2tor2-L2048S:kanR [23]

NI1079 h2tor1-L2045L:hygR this study

NI1080 h2tor1-L2045S:hygR this study

NI1081 h2tor1-L2045P:hygR this study

NI1082 h2tor1-L2045D:hygR this study

NI1083 h2tor1-L2045N:hygR this study

NI1084 h2tor1-L2045G:hygR this study

NI1048 h2tor1D::hygR this study

NI1145 h2fkh1D::natR this study

NI1215 h2tor2-L2048S:kanR fkh1D::natR this study

NI1213 h2tor1-L2045D:hygR fkh1D::natR this study

NI1046 h2FLAG-tor2:kanR [23]

NI1261 h2FLAG-tor2-287:kanR this study

NI1254 h2FLAG-tor1-L2045L:hygRkanR this study

NI1255 h2FLAG-tor1-L2045D:hygRkanR this study

NN0001 hþura4 cut14-3FLAG:ura4þ this study

NI1212 h2tor2-L2048L:kanR this study

NN0002 h2tor1-L2045D:hygR clp1D::kanR this study

NN0003 h2tor1-L2045L:hygR clp1D::kanR this study

NN0004 h2cut1-206 [41]

NN0005 hþtor1-L2045L:hygR Myp2-

GFP:kanR

this study

NN0006 hþtor1-L2045D:hygR Myp2-

GFP:kanR

this study

NI1022 hþcut1-21 [41]

NI1014 hþcut1-693 [41]

(Continued.)

Table 1. (Continued.)

strain genotype source

NI1012 hþcut1-206 [41]

NI1016 hþcut2-364 [41]

NI1026 h2cut2-447 [39]

NI1035 h2ura4 cut2WT:ura4þ [70]

NI1036 h2ura4 cut2EA2:ura4þ [70]

NI1403 h2cut1-21 fkh1D::natR this study

NI1310 hþcut2-447 [39]

NI1336 hþcut2-447 fkh1D::natR this study

NI1415 hþcut1-206 tor2-287 this study

NI1412 h2tor2-287 [23]

NI1013 hþcut1-693 tor2-L2048S:kanR this study

NI1011 hþcut1-206 tor2-L2048S:kanR this study

NI1050 h2ura4 cut2WT:ura4þ tor2-

L2048S:kanR

this study

NI1051 h2ura4 cut2EA2:ura4þ tor2-

L2048S:kanR

this study

NI1089 hþtor1-L2045D:hygR this study

NI1103 hþcut1-693 tor1-L2045D:hygR this study

NI1335 hþcut2-364 tor1-L2045D:hygR this study

NI1316 h2leu1 tor1-L2045D:hygR this study

NI1399 hþcut1-GFP:kanR this study

NI1401 hþcut1-206-GFP:kanR this study

NN0007 hþcut14-208 this study

NI1407 h2cut1-693 fkh1D::natR this study

NI1405 h2cut1-206 fkh1D::natR this study
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EMM2 medium to reach a concentration of 1� 106 cells ml21.

None of the strains used for nitrogen starvation was an auxo-

troph. FACScan analysis was performed as described

previously [71]. For the culture of S. pombe in limited glucose

[50], cells grown in EMM2 containing 2 per cent glucose were

collected by centrifugation and washed in 0.08 per cent glucose

medium, and cultured in EMM2 medium containing 0.08 per

cent glucose. Rapamycin was obtained from Sigma-Aldrich

(St Louis, MO). For immunoblot, anti-Tyr15 PO4 (Cdc2; a gift

from Dr Tim Hunt), anti-TAT1 (a gift from Dr Keith Gull)

and anti-FLAG M2 (Sigma) were used. Anti-PAS antibody

(Cell Signaling Technology, Inc., Danvers, MA) was used for

immunoblot as described previously [49]. The Dclp1 strain

was provided by the Yeast Genetic Resource Centre (YGRC).

5.2. Isolation of temperature-sensitive tor1-D strain
To construct various mutant strains substituted at the L2045

residue of Tor1 to L, S, P, D, N or G, the carboxy-terminal

2.3 kb of the tor1þ open reading frame was cloned into the

pHYG- or pKAN-derivative plasmids (containing the anti-

biotic-resistant marker), which were PCR mutagenized for

different substitutions. Chromosome integration onto the

endogenous tor1þ locus was followed, and the resulting

integrant strains were tested for ts phenotype. tor1-D was

the only mutant showing the ts phenotype.
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5.3. Examination of the association between target of
rapamycin complex catalytic and regulatory
subunits

The TORC catalytic and regulatory subunits were tagged by

FLAG and GFP, respectively. FLAG-tagged Tor1 and Tor2

strains were made previously [23]. To tag genomic mip1þ,

tco89þ, ste20þ, sin1þ and bit61þ with the sequence encoding

GFP at the carboxy-terminus, these open reading frames

were amplified by PCR and cloned into the plasmids

pHYG (mip1þ, ste20þ and sin1þ) and pNAT (tco89þ and

bit61þ), which contain GFP epitopes and drug markers

(hygromycin and clonNAT, respectively). The resulting plas-

mids were linearized, chromosomally integrated at the

endogenous loci and the resulting integrants were verified

by PCR sequencing. Genetic crossing was done to make

strains that contained GFP-tagged regulatory subunit genes

and FLAG-tagged tor1 or tor2 catalytic subunit genes. In

the immunoprecipitation experiment, strains were lysed in

the extraction buffer (25 mM HEPES–KOH pH 7.5, 200 mM

NaCl, 10% glycerol, 0.1% NP-40, 1 mM phenylmethylsulpho-

nyl fluoride, PMSF) supplemented with protease inhibitor

cocktail (Sigma).

5.4. Strain construction to assay kinase activity in wild-
type and mutant target of rapamycin complexes

To isolate Tor1- and Tor2-containing TORC for the kinase

assay, we constructed two strains in which the 3FLAG epi-

tope was chromosomally tagged at the amino termini of the

tor2-287 [23] or tor1-D mutant gene that was expressed

under the native promoter.

5.5. The gene disruption of fkh1þ gene
For disruption of the fkh1þ gene, one-step gene replacement

was used. 50-upstream (approx. 500 bp) and 30-downstream

(approx. 320 bp) fragments of the S. pombe fkh1þ gene were

amplified by PCR. The fragments were ligated to flank the

clonNAT drug-resistant gene, and the resulting DNA frag-

ment was chromosomally integrated onto the S. pombe
haploid hþ 972 wild-type to replace the wild-type fkh1þ

gene. Gene deletion was verified by PCR.

5.6. Isolation of the strain carrying the cut1-206
mutant gene tagged with GFP

GFP was chromosomally tagged at the carboxy-terminus of

the wild-type and mutant cut1-206 gene. The GFP fragment

used for integration carried the kanamycin-resistant gene

kanRþ and was integrated onto the endogenous wild-type

and mutant cut1-206. Correct integration was verified by
PCR. The resulting chromosomally integrated Cut1–GFP

and Cut1-206-GFP were expressed under the native promoter.
5.7. Target of rapamycin complexes kinase assay
Growing cells (1 � 107 ml21) of FLAG-tagged strains were

lysed in extraction buffer (25 mM HEPES–KOH pH 7.5,

200 mM NaCl, 10% glycerol, 0.1% NP-40, 1 mM PMSF) sup-

plemented with protease inhibitor cocktail (Sigma). Extracts

were centrifuged twice (20 min at 7600 r.p.m. and 30 min at

20 000 r.p.m.), and supernatants (160 or 400 mg of total protein)

were incubated with anti-FLAG M2 affinity gel (Sigma) for 2 h.

Because our data showed that the levels of FLAG–tor2 was

more abundant than those of others in the same amount of

total cell extract, 160 mg of total cell extract for FLAG–tor2

and 400 mg for the other five proteins were used for incubation

with anti-FLAG M2 affinity gel in order to prepare the same

amount of immunoprecipitated TOR proteins. The beads

were then washed with the extraction buffer. Eluates were

obtained by incubation with 150 mg ml21 3x FLAG peptide

(Sigma). To assay the kinase activities, K-LISA mTOR Activity

kit was used according to manufacturer instructions (Merck).

Mammalian recombinant p70S6K-GST fusion protein was

used as the substrate. Phosphorylated S6KT389 was assayed

by enzyme-linked immunosorbent assay (ELISA).
5.8. Microscopy
DAPI staining was performed as described previously [72].

Cells were fixed with 2.5 per cent glutaraldehyde for

20 min on ice, washed three times with phosphate-buffered

saline (PBS) and observed under a fluorescence microscope

after staining with DAPI (25 mg ml21). Alternatively, cells

fixed with paraformaldehyde were observed after staining

with DAPI (0.5 mg ml21), anti-TAT1 (tubulin) antibody and

Rhodamin-conjugated phalloidin (actin, 0.165 mM). A

BZ9000 microscope (Keyence, Japan) was used.
Acknowledgements
We acknowledge the generous support by the CREST pro-

gramme from the Japan Science and Technology

Corporation (JST), and the Okinawa Institute of Science

and Technology Promotion Corporation. We are indebted

to Mitsuko Hatanaka, Haruka Izumi and Yurina Kitamura

for help. We thank Dr Tim Hunt for the antibody against

Tyr15 PO4 (Cdc2) and Dr T. D. Pollard for the Myp2-GFP

strain. N.I. was the recipient of the JSPS fellowship. N.N.

was supported by a Grant-in-Aid for Young Scientists (B)

from the Ministry of Education, Culture, Sports, Science

and Technology, Japan, and a Kyoto University Young

Scientists Start-up Grant.
References
1. Schmelzle T, Hall MN. 2000 TOR, a
central controller of cell growth. Cell
103, 253 – 262. (doi:10.1016/S0092-8674(00)00
117-3)
2. Wullschleger S, Loewith R, Hall MN. 2006
TOR signaling in growth and metabolism.
Cell 124, 471 – 484. (doi:10.1016/j.cell.2006.01.
016)
3. Martel RR, Klicius J, Galet S. 1977 Inhibition of the
immune response by rapamycin, a new antifungal
antibiotic. Can. J. Physiol. Pharmacol. 55, 48 – 51.
(doi:10.1139/y77-007)

http://dx.doi.org/10.1016/S0092-8674(00)00117-3
http://dx.doi.org/10.1016/S0092-8674(00)00117-3
http://dx.doi.org/10.1016/j.cell.2006.01.016
http://dx.doi.org/10.1016/j.cell.2006.01.016
http://dx.doi.org/10.1139/y77-007


rsob.royalsocietypublishing.org
Open

Biol1:110007

16
4. Sehgal SN, Baker H, Vezina C. 1975 Rapamycin
(AY-22,989), a new antifungal antibiotic. II.
Fermentation, isolation and characterization.
J. Antibiotics 28, 727 – 732.

5. Zheng XF, Florentino D, Chen J, Crabtree GR,
Schreiber SL. 1995 TOR kinase domains are required
for two distinct functions, only one of which is
inhibited by rapamycin. Cell 82, 121 – 130.
(doi:10.1016/0092-8674(95)90058-6)

6. Heitman J, Movva NR, Hall MN. 1991 Targets for
cell cycle arrest by the immunosuppressant
rapamycin in yeast. Science 253, 905 – 909.
(doi:10.1126/science.1715094)

7. Koltin Y, Faucette L, Bergsma DJ, Levy MA, Cafferkey
R, Koser PL, Johnson RK, Livi GP. 1991 Rapamycin
sensitivity in Saccharomyces cerevisiae is mediated
by a peptidyl-prolyl cis-trans isomerase related to
human FK506-binding protein. Mol. Cell. Biol. 11,
1718 – 1723.

8. Barbet NC, Schneider U, Helliwell SB, Stansfield I,
Tuite MF, Hall MN. 1996 TOR controls translation
initiation and early G1 progression in yeast. Mol.
Biol. Cell 7, 25 – 42.

9. Beck T, Hall MN. 1999 The TOR signalling pathway
controls nuclear localization of nutrient-regulated
transcription factors. Nature 402, 689 – 692.
(doi:10.1038/45287)

10. Cardenas ME, Cutler NS, Lorenz MC, Di Como CJ,
Heitman J. 1999 The TOR signaling cascade
regulates gene expression in response to
nutrients. Genes Dev. 13, 3271 – 3279. (doi:10.
1101/gad.13.24.3271)

11. Kamada Y, Fujioka Y, Suzuki NN, Inagaki F,
Wullschleger S, Loewith R, Hall MN, Ohsumi Y. 2005
Tor2 directly phosphorylates the AGC kinase Ypk2 to
regulate actin polarization. Mol. Cell. Biol. 25,
7239 – 7248. (doi:10.1128/MCB.25.16.7239-7248.
2005)

12. Loewith R, Jacinto E, Wullschleger S, Lorberg A,
Crespo JL, Bonenfant D, Oppliger W, Jenoe P, Hall
MN. 2002 Two TOR complexes, only one of which
is rapamycin sensitive, have distinct roles in cell
growth control. Mol. Cell 10, 457 – 468. (doi:10.
1016/S1097-2765(02)00636-6)

13. Powers T, Walter P. 1999 Regulation of ribosome
biogenesis by the rapamycin-sensitive TOR-signaling
pathway in Saccharomyces cerevisiae. Mol. Biol. Cell
10, 987 – 1000.

14. Schmidt A, Kunz J, Hall MN. 1996 TOR2 is required
for organization of the actin cytoskeleton in yeast.
Proc. Natl Acad. Sci. USA 93, 13 780 – 13 785.
(doi:10.1073/pnas.93.24.13780)

15. Lempiainen H, Halazonetis TD. 2009 Emerging
common themes in regulation of PIKKs and PI3Ks.
EMBO J. 28, 3067 – 3073. (doi:10.1038/emboj.2009.
281)

16. Inoki K, Ouyang H, Li Y, Guan KL. 2005 Signaling by
target of rapamycin proteins in cell growth control.
Microbiol. Mol. Biol. Rev. 69, 79 – 100. (doi:10.1128/
MMBR.69.1.79-100.2005)

17. Martin DE, Hall MN. 2005 The expanding TOR
signaling network. Curr. Opin. Cell Biol. 17,
158 – 166. (doi:10.1016/j.ceb.2005.02.008)
18. deHart AK, Schnell JD, Allen DA, Tsai JY, Hicke L.
2003 Receptor internalization in yeast requires the
Tor2-Rho1 signaling pathway. Mol. Biol. Cell 14,
4676 – 4684. (doi:10.1091/mbc.E03-05-0323)

19. Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA,
Hall A, Hall MN. 2004 Mammalian TOR complex 2
controls the actin cytoskeleton and is rapamycin
insensitive. Nat. Cell Biol. 6, 1122 – 1128. (doi:10.
1038/ncb1183)

20. Fadri M, Daquinag A, Wang S, Xue T, Kunz J. 2005 The
pleckstrin homology domain proteins Slm1 and Slm2
are required for actin cytoskeleton organization in
yeast and bind phosphatidylinositol-4,5-bisphosphate
and TORC2. Mol. Biol. Cell 16, 1883 – 1900. (doi:10.
1091/mbc.E04-07-0564)

21. Weisman R, Finkelstein S, Choder M. 2001
Rapamycin blocks sexual development in fission
yeast through inhibition of the cellular function of
an FKBP12 homolog. J. Biol. Chem. 276, 24 736 –
24 742. (doi:10.1074/jbc.M102090200)

22. Alvarez B, Moreno S. 2006 Fission yeast Tor2
promotes cell growth and represses cell
differentiation. J. Cell Sci. 119, 4475 – 4485.
(doi:10.1242/jcs.03241)

23. Hayashi T, Hatanaka M, Nagao K, Nakaseko Y, Kanoh
J, Kokubu A, Ebe M, Yanagida M. 2007 Rapamycin
sensitivity of the Schizosaccharomyces pombe tor2
mutant and organization of two highly
phosphorylated TOR complexes by specific and
common subunits. Genes Cells 12, 1357 – 1370.
(doi:10.1111/j.1365-2443.2007.01141.x)

24. Matsuo T, Otsubo Y, Urano J, Tamanoi F, Yamamoto
M. 2007 Loss of the TOR kinase Tor2 mimics
nitrogen starvation and activates the sexual
development pathway in fission yeast. Mol. Cell.
Biol. 27, 3154 – 3164. (doi:10.1128/MCB.01039-06)

25. Otsubo Y, Yamamato M. 2008 TOR signaling in
fission yeast. Crit. Rev. Biochem. Mol. Biol. 43,
277 – 283. (doi:10.1080/10409230802254911)

26. Petersen J, Nurse P. 2007 TOR signalling regulates
mitotic commitment through the stress MAP kinase
pathway and the Polo and Cdc2 kinases. Nat. Cell
Biol. 9, 1263 – 1272. (doi:10.1038/ncb1646)

27. Uritani M, Hidaka H, Hotta Y, Ueno M, Ushimaru T,
Toda T. 2006 Fission yeast Tor2 links nitrogen
signals to cell proliferation and acts downstream
of the Rheb GTPase. Genes Cells 11, 1367 – 1379.
(doi:10.1111/j.1365-2443.2006.01025.x)

28. Weisman R, Roitburg I, Schonbrun M, Harari R,
Kupiec M. 2007 Opposite effects of tor1 and tor2 on
nitrogen starvation responses in fission yeast.
Genetics 175, 1153 – 1162. (doi:10.1534/genetics.
106.064170)

29. Weisman R. 2004 The fission yeast TOR proteins and
the rapamycin response: an unexpected tale. Curr.
Top. Microbiol. Immunol. 279, 85 – 95. (doi:10.
1007/978-3-642-18930-2_6)

30. Urano J, Sato T, Matsuo T, Otsubo Y, Yamamoto M,
Tamanoi F. 2007 Point mutations in TOR confer
Rheb-independent growth in fission yeast and
nutrient-independent mammalian TOR signaling in
mammalian cells. Proc. Natl Acad. Sci. USA 104,
3514 – 3519. (doi:10.1073/pnas.0608510104)
31. Tatebe H, Morigasaki S, Murayama S, Zeng CT,
Shiozaki K. 2010 Rab-family GTPase regulates TOR
complex 2 signaling in fission yeast. Curr. Biol.
20, 1975 – 1982. (doi:10.1016/j.cub.2010.10.026)

32. Weisman R, Choder M, Koltin Y. 1997 Rapamycin
specifically interferes with the developmental
response of fission yeast to starvation. J. Bacteriol.
179, 6325 – 6334.

33. Yuasa T et al. 2004 An interactive gene network for
securin – separase, condensin, cohesin, Dis1/Mtc1
and histones constructed by mass transformation.
Genes Cells 9, 1069 – 1082. (doi:10.1111/j.1365-
2443.2004.00790.x)

34. Shinozaki-Yabana S, Watanabe Y, Yamamoto M.
2000 Novel WD-repeat protein Mip1p facilitates
function of the meiotic regulator Mei2p in fission
yeast. Mol. Cell. Biol. 20, 1234 – 1242. (doi:10.
1128/MCB.20.4.1234-1242.2000)

35. Ochotorena IL et al. 2001 Conserved Wat1/Pop3
WD-repeat protein of fission yeast secures genome
stability through microtubule integrity and may be
involved in mRNA maturation. J. Cell Sci. 114,
2911 – 2920.

36. Wilkinson MG, Pino TS, Tournier S, Buck V, Martin
H, Christiansen J, Wilkinson DG, Millar JB. 1999
Sin1: an evolutionarily conserved component of
the eukaryotic SAPK pathway. EMBO J. 18,
4210 – 4221. (doi:10.1093/emboj/18.15.4210)

37. Hartmuth S, Petersen J. 2009 Fission yeast Tor1
functions as part of TORC1 to control mitotic entry
through the stress MAPK pathway following
nutrient stress. J. Cell Sci. 122, 1737 – 1746.
(doi:10.1242/jcs.049387)

38. Oliveira RA, Hamilton RS, Pauli A, Davis I, Nasmyth
K. 2009 Cohesin cleavage and Cdk inhibition trigger
formation of daughter nuclei. Nat. Cell Biol. 12,
185 – 192. (doi:10.1038/ncb2018)

39. Kumada K, Nakamura T, Nagao K, Funabiki H,
Nakagawa T, Yanagida M. 1998 Cut1 is loaded onto
the spindle by binding to Cut2 and promotes
anaphase spindle movement upon Cut2
proteolysis. Curr. Biol. 8, 633 – 641. (doi:10.1016/
S0960-9822(98)70250-7)

40. Nagao K, Yanagida M. 2006 Securin can have a
separase cleavage site by substitution mutations in
the domain required for stabilization and inhibition
of separase. Genes Cells 11, 247 – 260. (doi:10.1111/
j.1365-2443.2006.00941.x)

41. Funabiki H, Kumada K, Yanagida M. 1996 Fission
yeast Cut1 and Cut2 are essential for sister
chromatid separation, concentrate along the
metaphase spindle and form large complexes.
EMBO J. 15, 6617 – 6628.

42. Yanagida M. 2000 Cell cycle mechanisms of sister
chromatid separation; roles of Cut1/separin and
Cut2/securin. Genes Cells 5, 1 – 8. (doi:10.1046/j.
1365-2443.2000.00306.x)

43. Kim DU et al. 2010 Analysis of a genome-wide set
of gene deletions in the fission yeast
Schizosaccharomyces pombe. Nat. Biotechnol. 28,
617 – 623. (doi:10.1038/nbt.1628)

44. Weisman R, Choder M. 2001 The fission yeast TOR
homolog, tor1þ, is required for the response to

http://dx.doi.org/10.1016/0092-8674(95)90058-6
http://dx.doi.org/10.1126/science.1715094
http://dx.doi.org/10.1038/45287
http://dx.doi.org/10.1101/gad.13.24.3271
http://dx.doi.org/10.1101/gad.13.24.3271
http://dx.doi.org/10.1128/MCB.25.16.7239-7248.2005
http://dx.doi.org/10.1128/MCB.25.16.7239-7248.2005
http://dx.doi.org/10.1016/S1097-2765(02)00636-6
http://dx.doi.org/10.1016/S1097-2765(02)00636-6
http://dx.doi.org/10.1073/pnas.93.24.13780
http://dx.doi.org/10.1038/emboj.2009.281
http://dx.doi.org/10.1038/emboj.2009.281
http://dx.doi.org/10.1128/MMBR.69.1.79-100.2005
http://dx.doi.org/10.1128/MMBR.69.1.79-100.2005
http://dx.doi.org/10.1016/j.ceb.2005.02.008
http://dx.doi.org/10.1091/mbc.E03-05-0323
http://dx.doi.org/10.1038/ncb1183
http://dx.doi.org/10.1038/ncb1183
http://dx.doi.org/10.1091/mbc.E04-07-0564
http://dx.doi.org/10.1091/mbc.E04-07-0564
http://dx.doi.org/10.1074/jbc.M102090200
http://dx.doi.org/10.1242/jcs.03241
http://dx.doi.org/10.1111/j.1365-2443.2007.01141.x
http://dx.doi.org/10.1128/MCB.01039-06
http://dx.doi.org/10.1080/10409230802254911
http://dx.doi.org/10.1038/ncb1646
http://dx.doi.org/10.1111/j.1365-2443.2006.01025.x
http://dx.doi.org/10.1534/genetics.106.064170
http://dx.doi.org/10.1534/genetics.106.064170
http://dx.doi.org/10.1007/978-3-642-18930-2_6
http://dx.doi.org/10.1007/978-3-642-18930-2_6
http://dx.doi.org/10.1073/pnas.0608510104
http://dx.doi.org/10.1016/j.cub.2010.10.026
http://dx.doi.org/10.1111/j.1365-2443.2004.00790.x
http://dx.doi.org/10.1111/j.1365-2443.2004.00790.x
http://dx.doi.org/10.1128/MCB.20.4.1234-1242.2000
http://dx.doi.org/10.1128/MCB.20.4.1234-1242.2000
http://dx.doi.org/10.1093/emboj/18.15.4210
http://dx.doi.org/10.1242/jcs.049387
http://dx.doi.org/10.1038/ncb2018
http://dx.doi.org/10.1016/S0960-9822(98)70250-7
http://dx.doi.org/10.1016/S0960-9822(98)70250-7
http://dx.doi.org/10.1111/j.1365-2443.2006.00941.x
http://dx.doi.org/10.1111/j.1365-2443.2006.00941.x
http://dx.doi.org/10.1046/j.1365-2443.2000.00306.x
http://dx.doi.org/10.1046/j.1365-2443.2000.00306.x
http://dx.doi.org/10.1038/nbt.1628


rsob.royalsocietypublishing.org
Open

Biol1:110007

17
starvation and other stresses via a conserved serine.
J. Biol. Chem. 276, 7027 – 7032. (doi:10.1074/jbc.
M010446200)

45. Jacinto E, Hall MN. 2003 Tor signalling in bugs,
brain and brawn. Nat. Rev. 4, 117 – 126. (doi:10.
1038/nrm1018)

46. Sabatini DM, Pierchala BA, Barrow RK, Schell MJ,
Snyder SH. 1995 The rapamycin and FKBP12 target
(RAFT) displays phosphatidylinositol 4-kinase
activity. J. Biol. Chem. 270, 20 875 – 20 878.
(doi:10.1074/jbc.270.36.20875)

47. Weisman R, Roitburg I, Nahari T, Kupiec M. 2005
Regulation of leucine uptake by tor1þ in
Schizosaccharomyces pombe is sensitive to
rapamycin. Genetics 169, 539 – 550. (doi:10.1534/
genetics.104.034983)

48. Ui M, Okada T, Hazeki K, Hazeki O. 1995
Wortmannin as a unique probe for an intracellular
signalling protein, phosphoinositide 3-kinase.
Trends Biochem. Sci. 20, 303 – 307. (doi:10.1016/
S0968-0004(00)89056-8)

49. Nakashima A, Sato T, Tamanoi F. 2010 Fission yeast
TORC1 regulates phosphorylation of ribosomal S6
proteins in response to nutrients and its activity
is inhibited by rapamycin. J. Cell Sci. 123, 777 –
786. (doi:10.1242/jcs.060319)

50. Pluskal T, Hayashi T, Saitoh S, Fujisawa A, Yanagida
M. 2011 Specific biomarkers for stochastic division
patterns and starvation-induced quiescence under
limited glucose levels in fission yeast. FEBS J 278,
1299 – 1315.

51. Hanyu Y et al. 2009 Schizosaccharomyces pombe cell
division cycle under limited glucose requires Ssp1
kinase, the putative CaMKK, and Sds23, a PP2A-
related phosphatase inhibitor. Genes Cells 14, 539 –
554. (doi:10.1111/j.1365-2443.2009.01290.x)

52. Koyano T, Kume K, Konishi M, Toda T, Hirata D.
2010 Search for kinases related to transition of
growth polarity in fission yeast. Biosci. Biotechnol.
Biochem. 74, 1129 – 1133. (doi:10.1271/bbb.
100223)

53. Mishra M, Karagiannis J, Trautmann S, Wang H,
McCollum D, Balasubramanian MK. 2004 The Clp1p/
Flp1p phosphatase ensures completion of
cytokinesis in response to minor perturbation of
the cell division machinery in Schizosaccharomyces
pombe. J. Cell Sci. 117, 3897 – 3910. (doi:10.1242/
jcs.01244)

54. Trautmann S, Wolfe BA, Jorgensen P, Tyers M,
Gould KL, McCollum D. 2001 Fission yeast Clp1p
phosphatase regulates G2/M transition and
coordination of cytokinesis with cell cycle
progression. Curr. Biol. 11, 931 – 940. (doi:10.
1016/S0960-9822(01)00268-8)

55. Coue M, Brenner SL, Spector I, Korn ED. 1987
Inhibition of actin polymerization by latrunculin A.
FEBS Lett. 213, 316 – 318. (doi:10.1016/0014-
5793(87)81513-2)

56. Bezanilla M, Forsburg SL, Pollard TD. 1997
Identification of a second myosin-II in
Schizosaccharomyces pombe: Myp2p is
conditionally required for cytokinesis. Mol. Biol.
Cell 8, 2693 – 2705.

57. Mochida S, Maslen SL, Skehel M, Hunt T. 2010
Greatwall phosphorylates an inhibitor of protein
phosphatase 2A that is essential for mitosis.
Science (New York, NY) 330, 1670 – 1673. (doi:10.
1126/science.1195689)

58. Shimanuki M et al. 2007 Two-step, extensive
alterations in the transcriptome from G0 arrest to
cell division in Schizosaccharomyces pombe. Genes
Cells 12, 677 – 692. (doi:10.1111/j.1365-2443.2007.
01079.x)

59. Wu L, Russell P. 1997 Roles of Wee1 and Nim1
protein kinases in regulating the switch from
mitotic division to sexual development in
Schizosaccharomyces pombe. Mol. Cell. Biol. 17,
10 – 17.

60. Sajiki K et al. 2009 Genetic control of cellular
quiescence in S. pombe. J. Cell Sci. 122, 1418 –
1429. (doi:10.1242/jcs.046466)

61. Tomonaga T et al. 2000 Characterization of
fission yeast cohesin: essential anaphase
proteolysis of Rad21 phosphorylated in the S
phase. Genes Dev. 14, 2757 – 2770. (doi:10.1101/
gad.832000)

62. Ikeda K, Morigasaki S, Tatebe H, Tamanoi F, Shiozaki
K. 2008 Fission yeast TOR complex 2 activates the
AGC-family Gad8 kinase essential for stress
resistance and cell cycle control. Cell Cycle
(Georgetown, Tex) 7, 358 – 364. (doi:10.4161/cc.7.
3.5245)
63. Schonbrun M, Laor D, Lopez-Maury L, Bahler J,
Kupiec M, Weisman R. 2009 TOR complex 2 controls
gene silencing, telomere length maintenance, and
survival under DNA-damaging conditions. Mol.
Cell. Biol. 29, 4584 – 4594. (doi:10.1128/MCB.
01879-08)

64. Yanagida M. 2009 Cellular quiescence: are
controlling genes conserved? Trends Cell Biol. 19,
705 – 715. (doi:10.1016/j.tcb.2009.09.006)

65. Russell P, Nurse P. 1986 cdc25þ functions as an
inducer in the mitotic control of fission yeast. Cell
45, 145 – 153. (doi:10.1016/0092-8674(86)90546-5)

66. Banaszynski LA, Liu CW, Wandless TJ. 2005
Characterization of the FKBP.rapamycin.FRB ternary
complex. J. Am. Chem. Soc. 127, 4715 – 4721.
(doi:10.1021/ja043277y)

67. Kawasaki Y, Nagao K, Nakamura T, Yanagida M. 2006
Fission yeast MAP kinase is required for the increased
securin – separase interaction that rescues separase
mutants under stresses. Cell Cycle (Georgetown, Tex)
5, 1831 – 1839. (doi:10.4161/cc.5.16.3010)

68. Yanagida M, Ikai N, Shimanuki M, Sajiki K. 2011
Nutrient limitations alter cell division control and
chromosome segregation through growth-related
kinases and phosphatases. Phil. Trans. R. Soc. B
366, 3508 – 3520. (doi:10.1098/rstb.2011.0124)

69. Hirano T, Funahashi S, Uemura T, Yanagida M.
1986 Isolation and characterization of
Schizosaccharomyces pombe cutmutants that block
nuclear division but not cytokinesis. EMBO J. 5,
2973 – 2979.

70. Nagao K, Yoh A, Yanagida M. 2004 Separase-
mediated cleavage of cohesin at interphase is
required for DNA repair. Nature 430, 1044 – 1048.

71. Su SS, Tanaka Y, Samejima I, Tanaka K, Yanagida M.
1996 A nitrogen starvation-induced dormant G0
state in fission yeast: the establishment from
uncommitted G1 state and its delay for return to
proliferation. J. Cell Sci. 109, 1347 – 1357.

72. Adachi Y, Yanagida M. 1989 Higher order
chromosome structure is affected by cold-sensitive
mutations in a Schizosaccharomyces pombe gene
crm1þ which encodes a 115-kD protein
preferentially localized in the nucleus and its
periphery. J. Cell Biol. 108, 1195 – 1207. (doi:10.
1083/jcb.108.4.1195)

http://dx.doi.org/10.1074/jbc.M010446200
http://dx.doi.org/10.1074/jbc.M010446200
http://dx.doi.org/10.1038/nrm1018
http://dx.doi.org/10.1038/nrm1018
http://dx.doi.org/10.1074/jbc.270.36.20875
http://dx.doi.org/10.1534/genetics.104.034983
http://dx.doi.org/10.1534/genetics.104.034983
http://dx.doi.org/10.1016/S0968-0004(00)89056-8
http://dx.doi.org/10.1016/S0968-0004(00)89056-8
http://dx.doi.org/10.1242/jcs.060319
http://dx.doi.org/10.1111/j.1365-2443.2009.01290.x
http://dx.doi.org/10.1271/bbb.100223
http://dx.doi.org/10.1271/bbb.100223
http://dx.doi.org/10.1242/jcs.01244
http://dx.doi.org/10.1242/jcs.01244
http://dx.doi.org/10.1016/S0960-9822(01)00268-8
http://dx.doi.org/10.1016/S0960-9822(01)00268-8
http://dx.doi.org/10.1016/0014-5793(87)81513-2
http://dx.doi.org/10.1016/0014-5793(87)81513-2
http://dx.doi.org/10.1126/science.1195689
http://dx.doi.org/10.1126/science.1195689
http://dx.doi.org/10.1111/j.1365-2443.2007.01079.x
http://dx.doi.org/10.1111/j.1365-2443.2007.01079.x
http://dx.doi.org/10.1242/jcs.046466
http://dx.doi.org/10.1101/gad.832000
http://dx.doi.org/10.1101/gad.832000
http://dx.doi.org/10.4161/cc.7.3.5245
http://dx.doi.org/10.4161/cc.7.3.5245
http://dx.doi.org/10.1128/MCB.01879-08
http://dx.doi.org/10.1128/MCB.01879-08
http://dx.doi.org/10.1016/j.tcb.2009.09.006
http://dx.doi.org/10.1016/0092-8674(86)90546-5
http://dx.doi.org/10.1021/ja043277y
http://dx.doi.org/10.4161/cc.5.16.3010
http://dx.doi.org/10.1098/rstb.2011.0124
http://dx.doi.org/10.1083/jcb.108.4.1195
http://dx.doi.org/10.1083/jcb.108.4.1195

	The reverse, but coordinated, roles of Tor2 (TORC1) and Tor1 (TORC2) kinases for growth, cell cycle and separase-mediated mitosis in Schizosaccharomyces pombe
	Introduction
	Results
	TORC1 and TORC2 contain single, distinct catalytic subunits
	The substitution mutant tor1-L2045D is temperature-sensitive and fertile
	Fkh1 affects Tor1 and Tor2 in the presence or absence of rapamycin
	Mutant target of rapamycin complexes contain the reduced kinase activities
	TORC1 kinase activity might be upregulated in TORC2 tor1-D mutant cells
	Mutants tor1-D and tor2-S have distinct phenotypes
	Cell-length shortening under low glucose does not occur in the tor1-D
	Mitosis and cell division are delayed in tor1-D
	The tor1-D mutant displays delayed spindle and aberrantly bright actin structures
	Tor1-D is resistant to latrunculin A and overrides the deletion of Clp1/Flp1
	Cdc2 activation for mitosis may be delayed in tor1-D after the release from the G0 phase
	Rapamycin suppresses the cut1 and cut2 mutants
	Fkh1 is deeply implicated in the suppression of cut1 and cut2 mutants
	Separase and securin mutants are rescued by the TORC1 mutation tor2-S
	Combination of tor1-D and cut1 or cut2 was additive
	Rapamycin allows cut1-206 to divide, but does not restore the protein level

	Discussion
	Material and methods
	Strains, materials and general techniques
	Isolation of temperature-sensitive tor1-D strain
	Examination of the association between target of rapamycin complex catalytic and regulatory subunits
	Strain construction to assay kinase activity in wild-type and mutant target of rapamycin complexes
	The gene disruption of fkh1+ gene
	Isolation of the strain carrying the cut1-206 mutant gene tagged with GFP
	Target of rapamycin complexes kinase assay
	Microscopy

	Acknowledgements
	References


