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Abstract

Background: Syndromic congenital heart disease (CHD) is among the most severe conditions in the pediatric popu-
lation. Copy number variant (CNV) is an important cause of syndromic CHD, but few studies focused on CNVs related
to these patients in China. The present study aimed to identify pathogenic CNVs associated with syndromic CHD in
the Chinese population.

Methods: A total of 109 sporadic patients with syndromic CHD were applied chromosomal microarray analysis
(CMA). Phenotype spectrum of pathogenic or likely pathogenic CNVs was analyzed. CHD-related genes were prior-
itized from genes within pathogenic or likely pathogenic CNVs by VarElect, OVA, AMELIE, and ToppGene.

Results: Using CMA, we identified 43 candidate CNVs in 37/109 patients. After filtering CNVs present in the general
population, 29 pathogenic/likely pathogenic CNVs in 24 patients were identified. The diagnostic yield of CMA for
pathogenic/likely pathogenic CNVs was 23.1% (24/104), excluding 5 cases with aneuploidies or gross chromosomal
aberrations. The overlapping analysis of CHD-related gene lists from different prioritization tools highlighted 16 CHD
candidate genes.

Conclusion: As the first study focused on CNVs in syndromic CHD from the Chinese population, this study reveals
the importance of CMA in exploring the genetic etiology of syndromic CHD and expands our understanding of these
complex diseases. The bioinformatic analysis of candidate genes suggests several CHD-related genes for further func-
tional research.
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Introduction
Syndromic congenital heart disease (CHD) accounts for
approximately 20% of all patients with CHD [1], plac-
ing a heavy burden on the healthcare system. Extracar-
diac malformations in patients with CHD may influence
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of all genetic causes of syndromic CHD. Copy number
variants (CNVs), including 22q11 deletion, 1p36 deletion,
7q11.23 deletion, and other CNVs account for approxi-
mately 20% [1].

CNVs are crucial structural variants in the human
genome caused by a deletion or duplication of genomic
segments [3]. Identification of CNVs is a concern for
children with congenital structural anomalies or multi-
ple developmental disabilities. Chromosomal microarray
analysis (CMA), including array comparative genomic
hybridization (Array-CGH) and single-nucleotide poly-
morphism array, can identify chromosomal aberrations
in an additional 12—-15% of affected children compared
with karyotyping [4]. Therefore, the American College
of Medical Genetics (ACMG) standards and guidelines
recommend CMA as a first-tier diagnostic strategy for
patients with intellectual disabilities, autism spectrum
disorders, and other multiple congenital anomalies [5].
In 2007, Thienpont et al. evaluated chromosomal aberra-
tion in 60 cases of syndromic CHD from Belgium with
Array-CGH. They found 16.6% (10/60) of patients car-
rying causal CNVs [6]. Later, several studies evaluated
the diagnostic yield of CMA from different countries
or ethnic backgrounds [6-15]. Among these studies,
the two cohorts with the largest sample sizes were the
BCM1 (104 Hispanic/Latino Americans and 99 non-His-
panic patients of European descent) and BCH (260 cases
from American) cohorts [9, 16]. The diagnostic yields of
CMA in the two cohorts were 32.5% (66/203) and 18.1%
(47/260), respectively. Although research on the relation-
ship between CNVs and syndromic CHD is ongoing, no
previous cohort studies have specifically reported CNVs
in syndromic CHD from the Chinese population. In this
study, we aimed to investigate the CNVs in syndromic
CHD from the Chinese population and prioritize critical
candidate genes.

Methods

Subjects and samples

A group of 109 sporadic patients with syndromic CHDs
was recruited for this study. All patients were diagnosed
with CHD and extracardiac malformations. Diagno-
ses were confirmed via imaging, clinical, and laboratory
inspections. Patent ductus arteriosus (PDA) in chil-
dren under one-year-old and patent foramen ovale were
excluded. Peripheral blood samples were collected at the
outpatient clinic and the inpatient ward of the Cardio-
thoracic Surgery Department. The Children’s Hospital of
Fudan University ethics committee approved the study.
The individuals’ parents signed the informed consent for
the study, which follows the principles of the Declaration
of Helsinki.
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Chromosomal microarray analysis

Genomic DNA was extracted from peripheral blood
using a QIAamp DNA Blood Kit (Qiagen). After
enzyme cutting, labeling, hybridization, and purifica-
tion, genomic DNA was submitted for CMA using the
Agilent-CGX 60 K array or Affymetrix CytoScan 750 K
microarray platforms. Details of the microarray technol-
ogy and variant calling have been reported previously
[17, 18]. Detected CNVs meeting the following criteria
were excluded for further analysis: 1) gross chromosomal
aberrations, including the size of CNV over 30 Mb; 2)
CNVs with more than four occurrences in the Database
of Genomic Variants (overlapping more than 50%). The
remaining CNVs were interpreted using X-CNV (http://
119.3.41.228/XCNV/index.php) [19], the DatabasE of
genomiC varlation and Phenotype in Humans using
Ensembl Resources (DECIPHER, https://www.decip
hergenomics.org/) [20], and the Online Mendelian Inher-
itance in Man database (OMIM, https://www.omim.
org/) [21]. CNVs were defined as pathogenic or likely
pathogenic if any of the three web tools indicated patho-
genicity or likely pathogenicity. X-CNV is a web tool to
predict the pathogenicity of CNVs by integrating more
than 30 informative features such as allele frequency,
CNV length, CNV type, and some deleterious scores. In
the development of X-CNV, Zhang et al. [22] reprocessed
high-quality CNV data from multiple sources, including
dbVar, DECIPHER, ClinGen, and the DGV databases.
According to the meta-voting prediction (MVP) score
generated by X-CNV, CNVs were divided into five cat-
egories: pathogenic, likely pathogenic, uncertain, likely
benign, and benign. CN'Vs overlapped with regions inter-
preted by the DECIPHER database were defined as the
corresponding pathogenicity. As for the OMIM data-
base, CN'Vs were considered pathogenic when they pre-
sented genes associated with diseases. Moreover, CNVs
were considered likely pathogenic when they presented
genes associated with phenotypic alterations in the
OMIM database [23]. The genome reference of X-CNV
was GRCh37/hgl9. When tracking CNVs in the DECI-
PHER database (GRCh38), NCBI-remap (https://www.
ncbinlm.nih.gov/genome/tools/remap) was used for the
genome conversion. The flowchart of this study is shown
in Fig. 1.

Phenotype spectrum of syndromic CHD with pathogenic
or likely pathogenic CNVs in this study

To further explore the distribution of the phenotype
spectrum in CNV patients with syndromic CHD, the car-
diac and non-cardiac phenotypes were analyzed. Each
region of pathogenic or likely pathogenic CNVs in this
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[ Tested by Agilent-CGX 60K array or ]
Affymetrix Cytoscan 750K microarray

[ 42 patients positive ]

Remove 2 patients with aneuploidies
Remove 3 patients with gross chromosomal abberations

[ 43 CNVs in 37 patients ]

Filter CNVs that appear more than four
times in DGV (overlapping more than 50%)

[ 34 CNVs in 28 patients ]

Analyze by X-CNV, DECIPHER and the
OMIM database

24 patients with 29 pathogenic or
likely pathogenic CNVs

In silico analysis of 1249 candidate genes

[ CHD-related genes prioritization ]
(VarElect, OVA, AMELIE, ToppGene)

Fig. 1 Flowchart of this study

study was searched in the DECIPHER database, and all
overlapping CNVs were extracted for phenotype analysis.

Gene prioritization to identify CHD candidate genes

We developed a gene prioritization process to identify
CHD candidate genes by integrating various web tools and
databases (Additional file 1: Table S1), including pheno-
type-driven web tools (VarElect [24], OVA [25], and AME-
LIE [26]) and ToppGene [27]. For ToppGene, the training
gene set was generated from RDDC (https://rddc.tsinghua-
gd.org/), Phenopedia [28] (https://phgkb.cdc.gov/PHGKB/
startPagePhenoPedia.action), and DisGeNET [29] (https://
www.disgenet.org/), which contain genes related to CHD
based on research articles and database mining (Addi-
tional file 2: Table S2). 1354 genes were finally defined as
the training gene set [28, 29]. The 1249 input genes for all
web tools were defined from protein-coding genes within
pathogenic and likely pathogenic CNVs in this study by
the UCSC genome browser (Human GRCh37/hg19) [30].
Then, we performed pathway analysis (Additional file 3:
Additional methods) and analyzed the expression profile of
the overlapping prioritized genes between four tools dur-
ing murine cardiogenesis.

Statistical analysis
Statistical analyses were performed using GraphPad Prism
(version 8.0).
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Results

Clinical features and chromosomal imbalances in patients
with syndromic CHD

A total of 109 patients with syndromic CHD under-
went CMA analysis. The cases included 70 males and
39 females, with a mean age of 1.7 years (0-9.6 years).
Among all cardiac phenotypes in this cohort (Table 1),
septal defects were observed in 66.1% (72/109) of the
patients, compound conotruncal defects in 10.1%
(11/109), and obstruction of left ventricular outflow
tract in 7.3% (8/109). The remaining 16.5% (18/109)
of the patients presented septal defects with abnormi-
ties of valves, isolated abnormities of valves, isolated
conotruncal defects, heterotaxy syndrome, and other
cardiac defects. The main extracardiac comorbidities of
all patients were neurodevelopmental disorders (37/109,
33.9%), craniofacial defects (13/109, 11.9%), genitouri-
nary defects (12/109, 11.0%), digestive system defects
(11/109, 10.1%), and musculoskeletal disorders (11/109,
10.1%).

We identified two patients with aneuploidies: one
with trisomy 19 and one with trisomy 21 (Additional
file 4: Table S3, cases 3 and 51). Three patients with
gross chromosomal aberrations were found (Additional
file 4: Table S3, cases 41, 74, and 95). The duplication of
3q26.1-q29 (34.8 Mb) existed in case 41. Case 74 car-
ried the duplications of 18 CNVs, including 2q31.2-q35
(37.2 Mb), 3p26.3-p26.1 (3.6 Mb), 3p26.1-p25.3 (5.6 Mb),
3q28-q29 (6.4 Mb), 4p16.1-p15.32 (6.5 Mb), 4p15.1-pl4
(5.6 Mb), 4q26-q31.3 (36.7 Mb), 5p15.1-p14.1 (11.0 Mb),
6q16.3-q21 (3.8 Mb), 8q21.13-q23.1 (26.2 Mb), 8q23.2-
q23.3 (4.7 Mb), 10q22.3-q25.2 (32.7 Mb), 11pl4.3-
pl1.2 (21.8 Mb), 11q12.1-q13.5 (20.1 Mb), 13q33.3-q34
(1.7 Mb), 17q22-q24.1 (7.9 Mb), 18q22.3-q23 (7.3 Mb),
and 21q21.2-q22.11 (8.6 Mb). The duplications of 2p25.3-
pl11.2 (85.0 Mb), 2q11.1-q37.3 (143.8 Mb), and 20q11.21-
ql3.12 (12.8 Mb) were present in case 95. Apart from
gross chromosomal aberrations, 37 patients carried 43
CNVs in this study. Five previously reported syndromes
involving complex congenital malformations were also
present in this cohort, including 1p36 microdeletion syn-
drome (case 11), DiGeorge syndrome (cases 32 and 66),
Miller—Dieker syndrome (case 76), Cri du Chat syndrome
(case 99), and Smith—Magenis syndrome (case 107). The
overall rate of chromosomal imbalances in patients with
syndromic CHD was 38.5% (42/109).

Pathogenic CNVs in patients with syndromic CHD

CNVs that appear more than four times in DGV (overlap-
ping more than 50%) were regarded as common CNVs, as
reported previously [12]. To find rare pathogenic CNVs,
we filtered common CNVs and analyzed the remain-
ing 34 CNVs by X-CNV, DECIPHER, and the OMIM
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database. 29 pathogenic or likely pathogenic CNVs in
24 patients were finally identified (Table 2). 22q11.2 was
the only recurrent CNV. The 29 CNVs contained 1249
protein-coding genes. WEB-based GEne SeT Analysis
Toolkit (WebGestalt, http://www.webgestalt.org/) [31]
was used for the gene ontology annotation of these genes
(Additional file 5: Fig. S1).

Then, we compared the characteristics of CNVs in
studies of syndromic CHD from different countries or
ethnicities (Table 3). Detailed information on CNVs
for patients from Hungary [10], Greece [7], Brazil [12,
14], Belgium [6, 8], and the Caucasian population [15]
was provided. As shown in Fig. 2A, among cases from
Greece and Brazil, CN'Vs were mainly in chromosome 22.
22q11.2 was the most frequent region (Additional file 6:
Table S4). In China, CNVs were more evenly distributed
across chromosomes. We also compared the sizes of
CNVs per individual (Fig. 2B). The CNV sizes of patients
from Hungary were not provided, so we excluded these
patients. Similar to patients from other countries or eth-
nicities, this study’s most common size of CNVs in syn-
dromic CHD was 1-5 Mb. In addition, we found a higher
percentage of 20—40 Mb CNV sizes in Chinese patients.

Phenotype spectrum of pathogenic or likely pathogenic
CNVs in this study

Syndromic and isolated CHD prevalence in CNV patients
from DECIPHER was analyzed. As shown in Fig. 3 and
Table 4, ten of all CNVs were both related to syndromic
and isolated CHD. The percentage of isolated CHD in
each CNV was much lower than syndromic CHD. Then,
we analyzed the detailed phenotype spectrum in CNV
patients with syndromic and isolated CHD (Table 4).
Septal defects and intellectual disabilities were the most
common cardiac and non-cardiac phenotypes in CNV
patients with syndromic CHD. For isolated CHD, com-
plex conditions were more common, such as tetralogy
of Fallot. Differential disease-associated genes (accord-
ing to OMIM) between isolated CHD from DECIPHER
and syndromic CHD in this study are also analyzed in
Table 4. These genes may be candidate genes for non-car-
diac phenotypes of CNV patients with syndromic CHD.

Candidate gene prioritization

Next, we asked whether genes in these pathogenic or
likely pathogenic CNVs were implicated in the cardiac
phenotypes of patients with syndromic CHD. Among
1249 candidate genes, VarElect, OVA, and AMELIE pri-
oritized 253, 200, and 169, respectively (Additional file 7:
Table S5). With a ToppGene threshold of p-value<0.05
and a ToppNet interaction count of>20, 236 genes
were prioritized (Additional file 7: Table S5). The path-
way enrichment analysis on prioritized genes by the four
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tools is listed in Table S6 (Additional file 8). We also ana-
lyzed the interaction networks of genes prioritized by the
four tools using STRING (Additional file 9: Fig. S2). The
genes prioritized by the four tools were similar to have
interactions. There were 38/253 (15%) isolated genes (no
connection to other genes) in the VarElect set, 18/200
(9%) in the OVA set, 19/169 (11%) in the AMELIE set,
and 33/236 (14%) in the ToppGene set. Furthermore, an
overlapping analysis of prioritized genes from the four
tools was employed (Fig. S3A). Sixteen genes, includ-
ing ACVR2B, B9DI1, FLCN, AGO2, GLDC, MERTK,
RHEB, NT5E, MPDZ, MNX1, SCN3B, THRB, TFAP2A,
SUMFI, VHL, and TXNRD2, were found overlapping
the four tools. We analyzed the expression pattern of
the sixteen overlapping prioritized genes during the
heart development of mice. The primary time window of
heart development in mice is day 7.5-13.5 of embryonic
development (E7.5-E13.5) [32]. As shown in Fig. S3, the
mRNA expression of Acvr2b, Ago2, Mertk, Mpdz, and
Vhi remained high during E7-E14 and decreased after
maturation. These results suggested that these genes may
be involved in heart development.

Discussion

Principal findings

Syndromic CHDs are linked to chromosomal abnormali-
ties [33], CNVs [34], single gene defects, and undeter-
mined causes. In 2010, the ACMG regarded CMA as a
first-tier diagnostic method for developmental disabili-
ties [35]. Then, several studies investigated the diagnostic
yield of CMA in syndromic CHD. However, the sample
sizes were small, and the contribution of CN'Vs in syndro-
mic CHD from the Chinese cohort is not yet discussed.
We used two CMA platforms to identify pathogenic or
likely pathogenic CNVs in 109 subjects with syndromic
CHD from the Chinese population. Whether a CNV con-
tributes to a phenotype is according to various factors,
including how it is inherited, the content of the genes, the
copy number duplication or deletion, the array platform,
and if it exists in the general population. In order to dis-
cuss submicroscopic structural changes of chromosomes,
we removed patients with aneuploidies and gross chro-
mosomal aberrations, filtered common CNVs in the gen-
eral population database (DGV), and finally identified 34
CNVs in 28 patients.

Clinical characteristics in patients with previously reported
syndromes

Five of the 28 patients presented previously reported
syndromes. The 1.3 Mb 1p36.33 deletion in case 11
overlapped the distal critical region of 1p36. The
related phenotypes of this distal region include anterior
fontanel abnormalities, hypothyroidism, cleft palate,
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Fig. 2 Characteristics of CNVs in studies of syndromic CHD from different countries or ethnicities. A Distribution of CNV on different chromosomes.
B Distribution of CNV sizes
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Fig. 3 Percentage distribution of patients with syndromic and isolated CHD, across each pathogenic or likely pathogenic CNV type in this study.
The percentage was summarized by searching the region of each CNV in DECIPHER database

seizures, sensorineural hearing loss, congenital heart deletions. Frequent phenotypes of DiGeorge syndrome
defects, and cardiomyopathy [36]. Case 11 presented (22q11.2 deletion syndrome) include cardiovascular
ventricular septal defect (VSD) and mental retarda- abnormalities, immunodeficiency, subtle but charac-
tion, commonly seen in patients with 1p36 distal region teristic facial features, palatal abnormalities, endocrine
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abnormalities, gastrointestinal abnormalities, and
genitourinary abnormalities [37]. With 22q11.21 dele-
tion, case 32 manifested TOF, right aortic arch (RAA),
athymism, and immunodeficiency, and case 66 exhib-
ited VSD, abnormal facial features, and narrow glottis.
Of these phenotypes, narrow glottis was less frequent
in patients with DiGeorge syndrome. Miller—Dieker
syndrome, or 17p13.3 deletion syndrome, is character-
ized by various dysmorphic features. Chen et al. sum-
marized 29 cases with Miller-Dieker syndrome. They
found that lissencephaly, corpus callosum dysgenesis/
agenesis, and conotruncal heart defects were detected
prenatally in 41% (12/29), 17% (5/29), and 14% (4/29) of
the cases, respectively [38]. Several other studies have
also observed lissencephaly, epilepsy, craniofacial dys-
morphisms, and congenital anomalies in patients with
Miller—Dieker syndrome [39]. In case 76 with 17p13.3
deletion, mental retardation and VSD were observed.
However, central nervous system anomalies were not
determined due to this patient’s lack of magnetic reso-
nance inspection. Cri du Chat syndrome (5p deletion)
is characterized by the typical cry, severe mental and
developmental retardation, and sensitive alterations.
Less frequent characteristics, including cardiac, skele-
tal, genitourinary, metabolic, or immune abnormalities,
may also be present [40]. In case 99 with 5p15.33-
p15.31 deletion, we identified VSD, mental retarda-
tion, and motor retardation, matching the symptoms
of patients with 5p deletion. Dysmorphism and vis-
ceral disorders (including congenital heart disease),
neurocognitive impairment, and sleep—wake rhythm
disorders are common phenotypes of Smith—Magenis
syndrome (17p11.2 deletion) [41]. In this study, case
107 with 17p11.2 deletion presented VSD, developmen-
tal disorder of speech and language, and motor retar-
dation. These phenotypes were within the phenotype
spectrum of Smith—Magenis syndrome.

CNV pathogenicity prediction

Several approaches have been developed to predict CNV
pathogenicity, including SVScore [42] (based on single-
nucleotide polymorphism pathogenicity scores within
CNV intervals), ACMG guidelines [22] (based on indi-
vidual opinions on a series of scoring items), haploin-
sufficiency score [43], etc. X-CNV is a newly developed
“one-stop” estimation tool that integrates diverse public
data of CNVs and outperforms the SVScore, AnnotSV
[44], and ClassifyCNV [45]. Therefore, X-CNV is a
comprehensive approach to providing the pathogenic
annotations of CNVs. Apart from X-CNV, we also used
DECIPHER and the OMIM database to predict the
pathogenicity of the 34 CNVs. Considering these three
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predicting methods, we determined 29 pathogenic or
likely pathogenic CNVs in 24 patients. Among these
CNVs, only del 22q11.21 was discovered recurrent in
cases 32 and 66, indicating a high degree of heterogeneity
of CNVs in syndromic CHD.

Diagnostic yield of CMA in syndromic CHD cohorts

from different countries or ethnic backgrounds

We summarized the diagnostic yield of CMA in syn-
dromic CHD cohorts from different countries or eth-
nic backgrounds (Table 4), and it varied from 10.3 to
67.3%. The difference in diagnostic yield may be associ-
ated with the populations included, the platforms used,
and the criteria for pathogenic, likely pathogenic, or
causal CNVs. In our study, the diagnostic yield of CMA
was 23.1% (24/104), excluding 5 cases with aneuploidies
and gross chromosomal aberrations. It is higher than
18.1% (47/260) in the BCH cohort but lower than 32.5%
(66/203) in the BCM1 cohort. Then, recurrent CNVs
were compared in our study and previously reported
cohorts. Among the 11 reported cohorts summarized in
Table 4, the causal CNVs of syndromic CHD in the BCH
cohort were not listed. Thus, we compared the remaining
10 cohorts with ours to find recurrent CNVs (Additional
file 10: Table S7). 31 recurrent CN'Vs were found among
all cohorts, and the deletions of 22q11.21, 1p36.33,
17p13.3, 17pll.2, 17q25.3, 11q23.3-q25, 13q33.1-q34,
and 5@35.3 were recurrent in our study and previously
reported cohorts. The top two recurrent regions of all
CNVs in our cohort and previously reported cohorts
were 22qll and 1p36 deletions, consistent with the
EHRA/HRS/APHRS/LAHRS expert consensus statement
[1]. Heterogeneous phenotypes of CHD and extracardiac
malformations were observed in syndromic CHD from
different countries and ethnicities. We summarized each
study’s top 3 cardiac and extracardiac malformations
(Table 3). In patients carrying pathogenic or likely patho-
genic CNVs from Greece, Brazil, China, and the Cauca-
sian population, simple CHD, such as septal defects, was
most common. In two studies that included patients from
Belgium, we found that isolated conotruncal and septal
defects were the most frequent cardiac phenotypes. Fur-
thermore, neurodevelopmental disorders were the most
common extracardiac comorbidities of patients from
Greece and China. Craniofacial defects were the most
frequent extracardiac comorbidities in cases from Bel-
gium, Brazil, and the Caucasian population.

Of all CNVs non-recurrent between our cohort and
previously reported cohorts, 3q25.33-q26.1 deletion
(case 17), 8q24.21-q24.3 duplication (case 5), and 3p26.3-
p24.2 duplication (case 102) were not published previ-
ously. Case 17 presented double outlet right ventricle
(DORYV), transposition of the great arteries (TGA), VSD,
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pulmonic stenosis (PS), PDA, abnormal right coronary
artery branch, hydrocele, and genu valgum. Chang et al.
[46] identified 3q25 deletion in 12 patients. They found
that the CNV was associated with developmental delay,
microcephaly, synophrys, epicanthus, ptosis, blepharo-
phimosis, broad nasal bridge, ear abnormalities, and car-
diac defects. Among these phenotypes, cardiac defects
overlapped between patients with 3q25 deletion and case
17 with 3q25.33-q26.1 deletion. Case 5 carried two path-
ogenic CNVs, 13q33.1-q34 deletion, and 8q24.21-q24.3
duplication. He et al. discovered that patients carrying
13933-q34 deletions had a high risk of developmental
disability, facial deformity, CHD, and other malforma-
tions [47]. 8q24.21 is a hot spot associated with cancer,
but the relationship between 8q24.21-q24.3 and CHD or
other congenital malformations is not discussed yet. The
phenotypes of case 102 were VSD, atrial septal defect
(ASD), hypothyroidism, and developmental delay. Previ-
ous studies have discovered 3p26.3 microduplication in
some patients with non-syndromic intellectual disability
[48, 49]. Their CNV lengths were shorter than case 102,
indicating that the inconsistent phenotypes of 3p26.3
duplication may be attributed to different lengths of CNV
intervals.

Discovering novel CHD candidate genes by CNV detection

Previous studies have demonstrated that the number
of candidate genes of different prioritization tools var-
ied significantly. Qiao et al. used five prioritization web
tools to identify candidate genes of subjects with intel-
lectual disabilities and found a discrepancy in candidate
gene sets of different web tools [50]. Jayaraman et al. used
the software ENDEAVOUR, ToppGene, and DIR to rank
candidate genes of leukemogenesis [51]. They found that
the top 100 ranked genes from each tool differed, and
only 54 genes overlapped in priority gene lists from these
prediction approaches. As prioritization web tools using
various databases and algorithms, many recent stud-
ies have recommended combining multiple web tools to
identify critical candidate genes [52—54]. In this study, we
used four gene prioritization tools to prioritize candidate
genes of CHD within pathogenic or likely pathogenic
CNVs. Our data also showed discrepancies in different
priority lists (Additional file 11: Fig. S3A). The pathway
enrichment analysis showed that the priority lists were
enriched in different pathways associated with heart
development. Thus, the combination of multiple web
tools is necessary to identify phenotype-related genes
and find critical candidate genes comprehensively. The
overlapping analysis between priority lists suggested 16
genes as candidate genes associated with CHD. Further-
more, 31.3% (5/16) of the overlapping prioritized genes
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between four tools showed a high mRNA expression
during the critical time window of heart development in
mice. Cardiac phenotypes were observed in the targeted
homozygous null allele mice of 87.5% (14/16) of the pri-
oritized genes according to the MGI database, indicating
that the prioritization process can highlight CHD-related
genes. Of note, mice homozygotes for the targeted null
alleles of Acvr2b, B9d1, and Gldc exhibit septal defects,
which can be observed in the corresponding patients.

The sixteen prioritized genes were associated with
eleven cases, and four carried abnormal copy numbers of
at least two prioritized genes (cases 77, 102, 103, and 107).
Previous studies have discovered that genetic disturbance
in CHD is a multi-factorial, polygenic etiology [55, 56].
Single-nucleotide variants analyses in patients with CHD
have also demonstrated that oligogenic or polygenic vari-
ants may contribute together to the pathogenesis of CHD
[57, 58]. As there are dosage alterations of multiple genes
in each CNYV, it highlights efforts to understand the roles
of multiple genes in the phenotypes. Morrow et al. sum-
marized the molecular genetics of 22q11.2 deletion syn-
drome and highlighted the combined roles of the loss of
TBX1, CRKL, and DGCRS in 22q11.2-caused congenital
malformations. Other genes mapped to this region, such
as COMT, PRODH, and PIK4CA, may contribute to cog-
nitive and behavioral problems in patients with 22q11.2
deletion [59]. In this study, case 102 carried duplication
of VHL, SUMFI1, and THRB, which were prioritized.
Other genes, including CAV3, COLQ, CRELD1, RABSA,
RAFI1, RARB, SLC6A6, CRBN, PPARG, and WNT7A,
were also associated with cardiovascular system pheno-
types according to the MGI database. Although the pri-
oritization process identified several CHD-related genes,
the consideration of the possibility that multiple genes on
each CNV may contribute to the phenotypes together is
needed. Further model organism research should focus
on this issue and comprehensively uncover the polygenic
etiology of syndromic CHD.

Another issue is that certain ethnic or racial groups
tend to have more CHD-susceptible variants and influ-
ence the prevalence and outcomes of CHD [60]. For
example, a meta-analysis revealed that MTHFR gene
677 T polymorphism was a genetic risk factor in the
development of CHD in the Chinese population [61].
Lahm et al. [62] also identified multiple risk loci for all
major CHD subgroups in patients of German ethnicity.
In this study, we detected several CN'Vs from the Chinese
population and provided a unique source for identify-
ing novel CHD candidate genes. For each CNV, we listed
CHD-related genes for the reference of future functional
studies. And the sixteen overlapping genes are consid-
ered to be the most likely candidate CHD genes.
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Strengths and limitations

Our study focused on patients with syndromic CHD in
the Chinese population, which enabled us to discuss the
role of CNVs in both CHD and multiple extracardiac
abnormalities. However, there are some limitations in
our study. Firstly, we only included sporadic cases, and
the parents of all cases were not included. Secondly, as
the extracardiac phenotypes were variable in our study,
finding the relationship between CNVs and a specific
extracardiac phenotype was not easy. Therefore, we only
described the phenotype spectrum of each pathogenic or
likely pathogenic CNV in syndromic CHD from DECI-
PHER database and this study. Moreover, the gene pri-
oritization process was only performed for CHD-related
genes. In the future, syndromic CHD involving a specific
subtype of extracardiac malformations with larger sam-
ple size is needed further to delineate the correlation
between CNV and syndromic CHD.

Conclusions

This study firstly applied CMA and bioinformatic analysis
to explore syndromic CHD-related CNVs and genes from
the perspective of the Chinese population. The pathogenic
or likely pathogenic CNVs found in this study extended
our understanding of the chromosomal aberrations in
syndromic CHD. The combination of prioritization tools
was essential in prioritizing CHD candidate genes and
helping discover the pathogenesis of syndromic CHD.
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