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Abstract

Deep learning, in recent times, has made remarkable strides when it comes to impressive

performance for many tasks, including medical image processing. One of the contributing

factors to these advancements is the emergence of large medical image datasets. How-

ever, it is exceedingly expensive and time-consuming to construct a large and trustworthy

medical dataset; hence, there has been multiple research leveraging medical reports to

automatically extract labels for data. The majority of this labor, however, is performed in

English. In this work, we propose a data collecting and annotation pipeline that extracts

information from Vietnamese radiology reports to provide accurate labels for chest X-ray

(CXR) images. This can benefit Vietnamese radiologists and clinicians by annotating data

that closely match their endemic diagnosis categories which may vary from country to

country. To assess the efficacy of the proposed labeling technique, we built a CXR dataset

containing 9,752 studies and evaluated our pipeline using a subset of this dataset. With an

F1-score of at least 0.9923, the evaluation demonstrates that our labeling tool performs

precisely and consistently across all classes. After building the dataset, we train deep

learning models that leverage knowledge transferred from large public CXR datasets. We

employ a variety of loss functions to overcome the curse of imbalanced multi-label data-

sets and conduct experiments with various model architectures to select the one that deliv-

ers the best performance. Our best model (CheXpert-pretrained EfficientNet-B2) yields an

F1-score of 0.6989 (95% CI 0.6740, 0.7240), AUC of 0.7912, sensitivity of 0.7064 and

specificity of 0.8760 for the abnormal diagnosis in general. Finally, we demonstrate that

our coarse classification (based on five specific locations of abnormalities) yields compa-

rable results to fine classification (twelve pathologies) on the benchmark CheXpert dataset

for general anomaly detection while delivering better performance in terms of the average

performance of all classes.
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Introduction

Radiography has always been one of the most ubiquitous diagnostic imaging modalities so far,

while chest X-ray (CXR) is the most commonly performed diagnostic X-ray examination [1].

CXRs has an important role in clinical practice, effectively assisting radiologists to detect

pathologies related to the airways, pulmonary parenchyma, vessels, mediastinum, heart, pleura

and chest wall [2]. In recent years, great advances in GPU computing and research in the fields

of machine learning have led to the trend of automating CXR image diagnostics [3–9] and

many other X-ray modalities [10–13]. In addition, the availability of large-scale public datasets

[14–19] has sparked interest in study and application, with some of them already being used

and integrated into the Computer-Aided Diagnosis (CAD) system to reduce the rate of CXR

misdiagnosis.

Several datasets, including CheXpert [14], MIMIC-CXR [15], PadChest [16], Chest-xray8,

Chest-xray14 [17] and VinDr-CXR [19, 20], VinDr-PCXR [21, 22], had a significant impact

on increasing labeling methods and model quality. Building a reliable CXR dataset for a spe-

cific project, on the other hand, remains a difficult and challenging task because medical data

is difficult to obtain due to numerous restrictions on patient information confidentiality, and

label quality is heavily influenced by the doctors’ experience and subjective opinion [1]. This is

costly and time-consuming but essential, especially for a task that tackles specific challenges,

such as focusing on a certain set of patients or illnesses. In such a way that adopting the afore-

said large-scale datasets is sometimes ineffective, possibly because the image quality, labeling,

or data characteristics are no longer appropriate. Additionally, CXR images and medical

reports corresponding to each examination are also stored in hospital storage systems such as

Picture Archiving and Communication System (PACS) and Hospital Information System

(HIS) during the radiology process. This is a tremendous available resource to build large-

scale CXR datasets in which the annotation can be automatically interpolated from the free

text report without any involvement of radiologists. Therefore, pipelines or methods to create

datasets from available resources are always valuable.

Some previous works also developed methods to relabel public large datasets or constructed

a new one. Wang et al. [17] proposed a method for extracting a hospital-scale CXR dataset

from the PACS via an unified weakly-supervised multi-label image classification and disease

localization formulation by applying natural language processing (NLP) techniques. NegBio

[23], a rule-based algorithm that utilizes universal dependencies and subgraph matching,

known as providing regular expression infrastructure for negation and uncertain detection in

radiology reports. Filice et al. [24] investigated the benefit of utilizing AI models to create

annotations for review before adjudication in order to speed up the annotation process while

sacrificing specificity. Johnson et al. [15] extracted and classified mentions from the associated

reports using two NLP tools, CheXpert and NegBio, before aggregating them to arrive at the

final label. To construct structured labels for the images, Irvin et al. [14] created an automated

rule-based labeler to extract observations and capture uncertainties contained in free-text radi-

ology reports. Padchest [16] labeled the majority of the dataset using a recurrent neural net-

work with an attention mechanism. This dataset contains excerpts from Spanish radiology

reports, however the labels have been mapped to biological vocabulary unique identifier codes,

making the resource useful regardless of the language. RadGraph [25] introduced a new data-

set of clinical entities and relations annotated in full-text radiology reports taken from CheX-

pert and MIMIC. This research made use of a novel information extraction schema that

extracts clinically relevant information associated with a radiologist’s interpretation of a medi-

cal image.
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More advanced NLP approaches, such as Bidirectional Encoder Representations from

Transformers (BERT) [26], are used in some studies. Chexpert++ [27], a BERT-based, high

fidelity approximation labeler applied to CheXpert, is significantly faster, fully differentiable,

and probabilistic in outputs. VisualCheXbert [28] utilized a biomedically-pretrained BERT

model to map directly from a radiology report to the image labels, with a supervisory signal

determined by a computer vision model trained to detect medical conditions from chest X-ray

images. CheXbert [29] is a BERT-based approach to medical image report labeling that

exploits both the scale of available rule-based systems and the quality of expert annotations.

Dictionary-based heuristics are another popular way for creating structured labels from

free-text data. For instance, MedLEE [30] utilizes a pre-defined lexicon to convert radiology

reports into a structured format. Mayo Clinic’s Text Analysis and Knowledge Extraction Sys-

tem (cTAKES) [31] tool combines dictionary and machine learning methods, and uses the

Unified Medical Language System https://www.nlm.nih.gov/research/umls/index.html

(UMLS) for dictionary inquiries. Dictionary-based NLP systems have a key flaw is that they do

not always establish high performance when handling in-house raw clinical texts, especially

those with misspellings, abbreviations, and non-standard terminology. On top of that, the

mentioned systems only cover English language and cannot handle non-English clinical texts.

Languages other than English, including Vietnamese, do not have sufficient clinical materials

to build a medical lexicon. In nations where English is not the official language, this has been a

huge obstacle in building clinical NLP systems. In current work, our data pipeline can be

applied for the available data in PACS and HIS, which can assist minimize data labeling costs,

time, and effort while reducing radiologists’ involvement in the workflow. We propose a set of

matching rules to convert a typical radiology report to the normal/abnormal status of classes.

Other than the above-mentioned differences in labeling methods, our label selection is also

different from previous studies. So far, most of the studies were developed for classifying com-

mon thoracic pathologies or localizing multiple classes of lesions. For instance, most deep

learning models were developed on the MIMIC-CXR [32] and CheXpert [33–35] datasets for

classifying 14 common thoracic pathologies on CXRs in recent years. The earlier dataset

ChestX-ray14 [17], an expansion of ChestX-ray8 [17], including the same set of 14 findings

has been used to develop deep learning models [36, 37]. Nevertheless, these approaches are far

different from how Vietnamese radiologists work. In clinical practice, a CXR radiology report

always includes four descriptions that correlate to four fixed anatomical regions of the thorax:

chest wall, pleura, pulmonary parenchyma and cardiac. Therefore, it is not practical for Viet-

namese radiologists to utilize a CAD system that provides suggestions for the presence of 14

diseases. Typically, when examining a CXR image, radiologists analyze that image by region;

consequently, it is more convenient for the system to indicate the abnormality of each area,

eliminating the need to match the lesion type with the region being viewed. To address the

realistic demand of Vietnamese radiologists, we developed a system to classify CXRs into 5

classes depending on the position of pathologies: chest wall, pleura, parenchyma, cardiac

abnormality and the existence of abnormalities in the CXRs, if any. When tested on the bench-

mark CheXpert dataset, we found that this coarse classification produces results comparable to

the detailed classifier of 14 findings in terms of abnormal class and gives better results in terms

of macro average F1 score of all classes.

Our work was developed on the dataset collected at Phu Tho General Hospital—a Vietnam-

ese provincial hospital. To develop trainable images with corresponding labels, DICOM files

in PACS are matched with radiology reports retrieved from HIS. By extracting data from radi-

ology reports, generating normal/abnormal status of 5 classes and treating it as the ground-

truth reference, we can conclude that there were positive results when classifying CXRs

according to 5 groups of pathologies, which are modeled after the radiologist’s description in
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their medical report. Unlike the automatic data labeling methods mentioned above, our pro-

posed method is simple yet accurate by filtering the descriptions alluding to no findings first,

then searching for phrases implying abnormalites in each position. Therefore, the labeling pro-

cess is strictly controlled through stages, making it easy to detect errors and correct them. In

addition, adding a manual step to the labeling process helps us deal with misspellings, which

was neglected by the previous method. In this step, we also find infrequent phrases, adding

them to our list of phrases indicating abnormality to make it more complete. Furthermore, a

report always includes descriptions corresponding to four fixed anatomical regions of the tho-

rax, thus by generating set of labels matching these regions, we can minimize the chance that a

label is uncertain.

Material and method

Dataset building pipeline

Our proposed pipeline consists of five steps: (1) data collection, (2) PA-view filtering, (3) XML

parser, (4) data matching and (5) data annotation. Fig 1 illustrates the above five steps in detail.

Firstly, DICOM files stored in PACS will be acquired and filtered to retain only posterior-ante-

rior (PA) view CXRs by the PA classifier application programming interface (API). Mean-

while, radiology reports stored in HIS as XML files will be parsed to attain some specific

information. Afterward, DICOM files and radiology reports belonging to the same patient will

be matched to generate pairs of DICOM-XML files of the same examination. Once a DICOM

file has been determined to match with an XML files, that DICOM file will be converted to

JPG format and the XML file will be the subject of a labeling tool to generate a set of corre-

sponding labels. At the end of the procedure, we can obtain a trainable dataset which includes

JPG images and their corresponding labels.

Data collection. We retrospectively collected chest radiography studies from Phu Tho

General Hospital, which were performed within five months from November 2020 to March

2021, along with their associated radiology reports. The ethical clearance of these studies was

approved by the Institutional Review Board (IRB) of Phu Tho General Hospital. With this

approval, the IRB allows us to access their data and analyze raw chest X-ray scans using our

VinDr’s platform, which will be used for data filtering. The need for obtaining informed

patient consent was waived because this retrospective study did not impact clinical care or

workflow at the hospitals, and all patient-identifiable information in the data has been

removed.

We decided to select four types of pathologies because of their prevalence in the medical

reports and clinical practice. An example of a typical description extracted from a radiology

report is shown in Fig 2. The description is divided into four main categories: lungs, cardiac,

pleura and chest wall by most Vietnamese radiologists. From the four groups of pathology, we

Fig 1. Overview diagram of the process of collecting and building medical image dataset. The process consists of five

steps: data collection from PACS and HIS, PA-view filtering, XML parser, data matching and data annotation.

https://doi.org/10.1371/journal.pone.0276545.g001
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create an annotation set consisting of five classes, with the first four classes corresponding to

these four groups and the other indicating the presence of abnormalities on CXRs, if any.

PA-view filtering. The collected data was mostly of Posterior-Anterior (PA)-view CXR,

but also included a large number of outliers such as images of body parts other than chest,

low-quality images or images with different views than PA-view. To guarantee that only CXRs

of PA-view will be retained, we ran an API that is powered by VinDr’s platform https://vindr.

ai/vindr-lab. The API takes a DICOM file as an input and returns the probability that the

image saved in that file is a PA-view CXR. The DICOM file will proceed to the next stage of

data pre-processing if this probability exceeds 0.5—a normalized threshold; else, the file will be

marked as ignored.

XML parser. We use the same procedure for the XML parsing and data matching process

as in our previous study [38], shown in Fig 3. The figure illustrates the procedure of extracting

radiology reports from HIS. Each assessment and treatment session was saved in the Extensi-

ble Markup Language (XML) file format by HIS. A session includes all information of the

patient between check-in and check-out time. The XML parser can read the header of a session

that includes SESSION_ID, PATIENT_ID, CHECK_IN_TIME, and CHECK_OUT_TIME.

These attributes are shared among all radiology reports belonging to the same session and will

Fig 2. The description in a typical radiology report in Vietnam. The description is divided into four main categories:

chest wall, pleura, lungs (parenchyma) and cardiac.

https://doi.org/10.1371/journal.pone.0276545.g002

Fig 3. Radiology reports extraction process for CXR examinations collected from HIS [38]. The original

Vietnamese counterparts are put inside square brackets.

https://doi.org/10.1371/journal.pone.0276545.g003
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be used to link to the corresponding DICOM file. All reports are also interpreted using the

XML parser to obtain the SERVICE_ID, REPORT_TIME, and DESCRIPTION properties.

Only reports with a SERVICE ID matching the values expressly assigned by the Vietnamese

Ministry of Health for chest radiography were preserved to exclude extraneous reports.

Data matching. To match the DICOM file with the corresponding XML file, we have sim-

ulated the algorithm in [38], which is depicted in Fig 4. Since the HIS and PACS are linked by

PATIENT_ID, this key is used by the matching algorithm to determine whether the DICOM

file and radiography report belong to the same patient. Moreover, REPORT_TIME must be

within 24 hours of STUDY_TIME, which is a regulated protocol of the hospital. Finally,

STUDY_TIME has to be between CHECK_IN_TIME and CHECK_OUT_TIME. If all of the

conditions are fulfilled, the DICOM file and the radiology report are matched.

One problem we encountered here is that one DICOM file matched multiple reports and

vice versa, because their STUDY_TIME attributes were separated by a period of less than 24

hours. In such a short period of time, the examination results are often the same, the reason

for taking additional radiographs may be due to the poor quality of the first image. Therefore,

the description from the reports is usually the same, and this DICOM file is assigned to one of

Fig 4. Algorithm for matching a DICOM file obtained from PACS with a radiology report collected from HIS.

https://doi.org/10.1371/journal.pone.0276545.g004
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the matched reports. In several cases where the descriptions in the reports are different, the

DICOM file will be given to a radiologist to review and match the correct report.

Data annotation. After extracting descriptions that match the DICOM files, we developed

a simple labeling algorithm that takes the radiologists’ description as input and returns a list of

five binary elements, corresponding to the presence or absence of abnormalities belonging to 5

classes. Fig 5 illustrates the major steps of data annotation, which is implemented in semi-auto-

mated manner, including (1) pattern filtering, (2) keyword detection (3) abnormality interpo-

lating and (4) manually labeling.

Pattern Filtering The dataset we obtained from Phu Tho General Hospital is unbalanced,

with the majority of the images exhibiting no pathology. We have obtained 1,568 different

templates from all the descriptions. Filtering descriptions that are elements of the predeter-

mined set of templates (specifically 11 templates imply no findings) would help us save a sig-

nificant amount of time when it comes to data labeling. A CXR is considered normal if one of

11 templates exactly appears in the DESCRIPTION of the corresponding radiology report.

Keyword detection After pattern filtering, most of the instances without pathologies are

retained. In this step, we have to handle most of the abnormality descriptions and some

remaining normality ones. Keyword detection is divided into four sub-stages, which could be

performed simultaneously, to detect keywords indicating abnormalities in the chest wall,

pleura, parenchyma, and mediastinum. To find keywords for each class, e.g. chest wall, we

break down the radiologist’s description into 4 categories (categories are separated by “-”

(dash) in the radiology descriptions). From the sentences in the chest wall category, we gather

keywords indicating abnormalities, such as “fracture”, “osteoporosis”, “bone fusion surgery”

to create the fixed set of keywords. Descriptions containing keywords in the chest wall set will

be annotated as 1 for the corresponding class, similarly for the pleura, parenchyma, and cardio

classes. Some common keywords setting for the four classes are listed in Table 1.

Fig 5. Semi-automated data annotation pipeline. The system consists of 4 steps, the first 3 steps are automatic and the

last one is carried out manually.

https://doi.org/10.1371/journal.pone.0276545.g005

Table 1. Examples of Vietnamese keywords indicate abnormalities in chest wall, pleura, parenchyma, cardiac clas-

ses and abnormality out of these four group. English translations are enclosed in square brackets.

Class name Keywords

Chest wall (bone) Gãy xương [Bone fracture]

Thưa xương [Osteoporosis]

Tiêu xương [Bone resorption]

Pleura Dày màng phổi trái/phải [Left/right pleural thickening]

Mờ góc sườn hoành màng phổi trái/phải [Left/right costophrenic angle blunting]

Tù góc sườn hoành trái/phải [Loss of the left/right costophrenic angle]

Parenchyma Dày thành phế quản [Bronchial wall thickening]

Dày tổ chức kẽ [Interstitial pulmonary thickening]

Dải mờ giữa phổi trái/phải [Opacity between left/right lung

Cardio Quaiđộng mạch chủ (đmc) vồng [Ascending aortic arch]

Hı̀nh tim trái/phải to [Enlarged /right cardiomegaly]

Giãn cung thất trái/ phải [Left/right ventricular arch dilatation]

Other abnormality Liềm hơi dưới vòm hoành trái/phải [Sickle of air below the left/right diaphragm]

https://doi.org/10.1371/journal.pone.0276545.t001
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Abnormality interpolating The first four classes have been annotated at the keyword

detection stage, here the abnormality class labeling is implemented by inferring from those

others. Abnormality value will be set to 1 (positive) if any of the other classes are noted as

anomalies or has any other anomaly even though it does not belong to the four groups above.

Manual Labeling Descriptions that neither belong to the 11 normality templates nor con-

tain any of the keywords in the four fixed sets have a high probability of being misspelled or

describing rare pathologies or including pathologies that cannot be assigned to one of the four

main regions. To handle such cases, we inspected them to correct spelling mistakes manually,

then forwarded confusing descriptions to a radiologist of Phu Tho General Hospital for anno-

tating. These cases account for less than 0.5% of the total descriptions, thus labeling the remain

is not a time-consuming task, that minimizes the doctor’s involvement in data labeling.

Over five months, we obtained the total number of 12.367 XML files and 12,376 DICOM

files coresponding to 11,088 studies. 10,847 DICOM files were PA chest radiographs, and

10,002 of them matched with information extracted from XML files. Table 2 details the num-

ber of positive and negative samples of the five classes in the collected dataset. For model devel-

opment, we split the dataset into training and validation sets with the ratio of 7/3 and one

constraint is that the distribution of each class in training and validation sets is approximated

to the distribution of the original dataset.

Quality control

To ensure the quality of the dataset is guaranteed, we randomly take 5% of the data to inspect if

there are any inappropriate images or labels that do not match the corresponding report. If any

incorrectness is found, we will find out and correct it, then the 5% selection process is repeated

until no more errors are detected. The inspection was carried out by a medical student majoring

in radiology and was double checked by a radiologist of Phu Tho General Hospital.

Labeler results

We evaluate the effectiveness of the proposed labeling procedure by manually labeling the

samples and considering the result as the ground truth. F1-score will be used as the main met-

ric to evaluate the quality of our labeling tool.

Table 2. Number of instances which contain five labeled observations in training, validation and the whole dataset.

Position of pathology Positive Negative

Chest wall Training 166 Training 6835

Validation 71 Validation 2930

Total 237 (2.37%) Total 9765 (97.63%)

Pleura Training 155 Training 166

Validation 67 Validation 71

Total 222 (2.22%) Total 9780 (97.78%)

Parenchyma Training 1520 Training 6846

Validation 652 Validation 2934

Total 2172 (21.72%) Total 7830 (78.28%)

Cardio Training 548 Training 6453

Validation 235 Validation 2766

Total 783 (7.83%) Total 9219 (92.17%)

Abnormal Training 1976 Training 5025

Validation 848 Validation 2153

Total 2824 (28.23%) Total 7178 (71.77%)

https://doi.org/10.1371/journal.pone.0276545.t002
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Evaluation set. The reported evaluation set consists of 3001 radiology reports from 3001

instances—that totally overlap with the reports in the validation set. We manually annotated

these radiology reports without access to additional patient information. We labeled whether

there is any abnormality in chest wall, pleura, pulmonary parenchyma and cardio following a

list of labeling conventions that was agreed upon ourselves. After we independently labeled

each of the 3001 reports, disagreements were resolved by consensus discussion or radiologist’s

consultation. The resultant annotation serves as ground truth on the report in evaluation set.

Evaluation results. After having the results as the radiologists’ annotation, combined

with the set of labels generated by our method, the evaluation results of each class are listed in

Table 3, with the metrics of precision, recall and F1 score. Overall, our labeling pipeline deliv-

ers the high values of F1 score in all classes, with the lowest figures of 0.9926 and 0.9985—

being recorded in pleura and parenchyma classes, respectively. In chest wall, cardio and abnor-

mal classes, our tool delivers the highest performance, without any mislabeled samples.

Experiment and results

Model development

Chest X-ray interpretation with deep learning methods usually relies on pre-trained models

developed for ImageNet. Nevertheless, it was proved that architectures achieving remarkable

accuracy on ImageNet are unlikely to give the same performance when experienced on the

CheXpert dataset and the choice of model family deliver better improvement than image resiz-

ing within a family for medical imaging tasks [39]. We decided to choose the model family

that has been proved to be highly efficient for CXR interpretation—ResNet50 [40], Dense-

Net121 [41], Inception-V3 [42] and EfficientNet-B2 [43]. We also leverage large public CXR

datasets such as CheXpert to develop pre-trained models and compare the use of some bench-

mark chest X-ray datasets for transfer learning to ImageNet pre-trained models. Furthermore,

the unbalance between classes has a negative impact on our dataset; for example, the chest wall

class has a positive/negative ratio of 0.003. To address this problem, along with the conven-

tional Binary Cross Entropy Loss (BCE), we used and assessed other loss functions established

for multi-label imbalanced datasets, such as Asymmetric Loss (ASL) [44] and Distribution-bal-

anced Loss (DBL) [45].

For each model architecture, we use the Adam optimizer (beta1 = 0.9, beta2 = 0.999 and

learning rate = 1e-3), cooperating with Cosine annealing learning rate with gradual warm-up

scheduler, a batch size of 16, three different loss functions: cross-entropy, distribution-bal-

anced and asymmetric loss, image sizes of 768 and 1024.

Training was conducted on a Nvidia GTX 1080 with CUDA 10.1 and Intel Xeon CPU ES-

2609. For one run of a specific model, we train for 160 epochs and evaluate each model every

413 gradient steps. Finally, checkpoint with the highest F1-score will be considered the best

model for each training procedure.

Table 3. Evaluation results of proposed labeling tool. Evaluation was performed on 3001 samples of the validation set.

Class TP FP TN FN Precision Recall F1 score

Chest wall 71 0 2930 0 1 1 1

Pleura 67 1 2933 0 0.9853 1 0.9926

Parenchyma 652 1 2347 1 0.9985 0.9985 0.9985

Cardio 235 0 2766 0 1 1 1

Abnormal 848 0 2153 0 1 1 1

https://doi.org/10.1371/journal.pone.0276545.t003
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We also used the nonparametric bootstrap [46] to estimate 95% confidence intervals for

each statistic. There are 3,000 replicates are drawn from the validation set, and the statistic is

calculated for each replicate. This procedure generates a distribution for each statistic, by

reporting the 2.5 and 97.5 percentiles, the confidence intervals are obtained and significance is

assessed at the p = 0.05 level.

Experimental result

In this work, chest X-ray classification models were trained on the training set detailed in

Table 2. The models are distinguished from each other based on four attributes: (1) model

architecture, (2) pre-trained dataset, (3) loss function and (4) image size, while sharing the

common training procedure. First, we compare the effect of using pre-trained datasets and the

impact of some loss functions on the multi-label problem. We choose ImageNet and CheXpert

to transfer their knowledge to our target data. BCE—a common loss function, ASL and DBL—

the two loss functions for multi-label issue were used in our experiment. The reported metrics

are macro average (Av.) F1-score, AUC, sensitivity and specificity of the five classes. We only

use ResNet50 architecture to compare these aspects with the same setup hyper parameters.

As we can see in Table 4, model using ASL and CheXpert dataset as pre-trained-initial

parameters give the best result. All the metrics are higher than that of the others, especially

when using ASL. This loss function always gives big value but is very effective because it

heavily “penalizes” misclassified positive samples and hardly penalizes easy negative one.

CheXpert is also useful in spite of containing similar patterns to our target data. We decide to

use pre-trained model by CheXpert and ASL for later experiments.

To discover which family of architectures really fits our dataset, we do more experiments

with Inception-V3, DenseNet121 and EfficientNet-B2, which are reported to perform well

with radiographic images; and two sizes of image 768 and 1024. The result is shown in Table 5,

which indicates that bigger image sizes do not give rise to better results, but affect training

time. In the matter of model architectures, EfficientNet-B2 outperforms the others. In

conclusion, model with EfficientNet-B2 architecture and input size of 768 delivers the best

performance.

Detailed result of our best model is also presented in Table 6. By using ASL, the chest wall

class has improved significantly when increasing to nearly 32% compared to the model using

BCE and not using CheXpert as pre-trained. The pleura class has less samples than the chest

wall, but the results do not improve much after using ASL, possibly because the chest wall class

has a more diverse number of abnormal manifestations in our data, so the model focused

more on this class.

Fig 6 illustrates plots on all tasks. The model achieves the best AUC on pleura class (0.96),

and the worst on chest wall class (0.81). The abnormal class recorded 0.87 AUC, the paren-

chyma and cardiac classes witness figures of 0.86 and 0.92, respectively.

The same procedure is also applied to build the two models of fine classification (detection

of 14 pathologies) and coarse classification (detection of abnormalities in 4 locations in CXR

images), in order to evaluate the effectiveness of the coarse classification compared to the fine

classification. We use the CheXpert benchmark dataset to build and evaluate two models shar-

ing the same configurations to retain the sense of objectivity. The data in the CheXpert dataset

are labeled with 14 classes corresponding to 13 abnormalities in the chest radiograph and an

implication of no findings. We infer where the lesion is in the 4 considered positions based on

the type of lesion indicated in the CheXpert dataset. Table 7 shows the mappings between

CheXpert data labels (14 classes) and the proposed set of labels (5 classes). Comparison of

coarse and fine classification on Table 8. Based on the results shown in the Table 8, it can be
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seen that the coarse classification method gives a higher F1 score in both the abnormal class

and the macro average F1 score.

We also plot Grad-CAMs [47] to give the visual explanations of how the model fulfil predic-

tions. Fig 7 illustrates the original images and their respective Grad-CAMs. In both cases, the

pathologies in the collarbone (nondisplaced fracture) and in the pleura (pleural effusion) were

correctly highlighted. The results are attained when performing with the EfficientNet-B2

architecture, the input size is 768x768, using the CheXpert dataset to build the pretrained

model and apply the asymmetric loss function.

Table 4. Experimental results with different pre-train datasets and loss functions. Model pre-trained on CheXpert dataset and using Asymmetric loss function yields

the best performance.

Pretrained dataset + Loss function Class F1 score AUC Sensitivity Specificity

ImageNet + BCE Bone 0.098 0.6622 0.3239 0.8713

Pleura 0.4196 0.9348 0.4478 0.9843

Parenchyma 0.5742 0.8351 0.6380 0.8378

Cardio 0.4513 0.8605 0.5617 0.9212

Abnormal 0.6366 0.8337 0.7323 0.7761

Average 0.4359 0.8253 0.5408 0.887

ImageNet + ASL Bone 0.3800 0.7123 0.2676 0.9966

Pleura 0.4925 0.9239 0.4925 0.9884

Parenchyma 0.5941 0.8389 0.5982 0.8846

Cardio 0.5278 0.9115 0.6255 0.9367

Abnormal 0.6674 0.8482 0.7123 0.8337

Average 0.5324 0.847 0.5392 0.928

ImageNet + DBL Bone 0.1882 0.6993 0.1010 0.9799

Pleura 0.2647 0.8691 0.403 0.9625

Parenchyma 0.5566 0.8195 0.6748 0.7918

Cardio 0.3929 0.8289 0.4723 0.9208

Abnormal 0.6123 0.8126 0.6993 0.7696

Average 0.4029 0.8059 0.4909 0.8894

CheXpert + BCE Bone 0.0706 0.5412 0.0423 0.9962

Pleura 0.2623 0.8540 0.2388 0.9867

Parenchyma 0.537 0.7921 0.6396 0.0.794

Cardio 0.3872 0.8205 0.4638 0.9208

Abnormal 0.581 0.7789 0.6875 0.7325

Average 0.3676 0.7573 0.4144 0.886

CheXpert + ASL Bone 0.4348 0.7757 0.3521 0.9935

Pleura 0.5323 0.9424 0.4925 0.9918

Parenchyma 0.6274 0.8624 0.6702 0.8706

Cardio 0.5536 0.9197 0.6043 0.9508

Abnormal 0.6777 0.8658 0.7512 0.8165

Average 0.5651 0.8732 0.5741 0.9247
CheXpert + DBL Bone 0.1674 0.6912 0.2535 0.957

Pleura 0.4698 0.9513 0.5224 0.984

Parenchyma 0.5958 0.8450 0.6104 0.8782

Cardio 0.5094 0.9009 0.5745 0.9422

Abnormal 0.6498 0.8493 0.7134 0.8100

Average 0.4758 0.8475 0.5349 0.9143

https://doi.org/10.1371/journal.pone.0276545.t004

PLOS ONE Learning to diagnose common thorax diseases on chest radiographs from radiology reports in Vietnamese

PLOS ONE | https://doi.org/10.1371/journal.pone.0276545 October 31, 2022 11 / 17

https://doi.org/10.1371/journal.pone.0276545.t004
https://doi.org/10.1371/journal.pone.0276545


Table 5. Experimental results with different backbones and input sizes. Model with EfficientNet-B2 architecture and input size of 768 delivers the best performance.

Architecture + Input size Class F1 score AUC Sensitivity Specificity

ResNet50 + 768 Bone 0.4348 0.7757 0.3521 0.9935

Pleura 0.5323 0.9424 0.4925 0.9918

Parenchyma 0.6274 0.8624 0.6702 0.8706

Cardio 0.5536 0.9197 0.6043 0.9508

Abnormal 0.6777 0.8658 0.7512 0.8165

Average 0.5651 0.8732 0.5741 0.9247

ResNet50 + 1024 Bone 0.3929 0.7879 0.3099 0.9935

Pleura 0.4593 0.9184 0.4627 0.9874

Parenchyma 0.6368 0.8599 0.6549 0.8885

Cardio 0.5521 0.9117 0.6766 0.9342

Abnormal 0.6856 0.8647 0.684 0.8774

Average 0.5453 0.8685 0.5576 0.9362

DenseNet121 + 768 Bone 0.2087 0.7097 0.169 0.9891

Pleura 0.4713 0.9491 0.5522 0.9819

Parenchyma 0.6003 0.845 0.6656 0.8467

Cardio 0.4965 0.8909 0.5957 0.9317

Abnormal 0.6524 0.8446 0.7182 0.8096

Average 0.4858 0.8479 0.5402 0.9118

DenseNet121 + 1024 Bone 0.1579 0.6892 0.1268 0.9884

Pleura 0.3515 0.9292 0.6269 0.9557

Parenchyma 0.5777 0.8298 0.6212 0.8531

Cardio 0.4624 0.872 0.5362 0.9335

Abnormal 0.6334 0.8323 0.7252 0.7775

Average 0.4366 0.8305 0.5272 0.9016

InceptionV3 + 768 Bone 0.2529 0.7198 0.1549 0.9983

Pleura 0.45 0.9392 0.5373 0.9806

Parenchyma 0.6015 0.8429 0.6227 0.8757

Cardio 0.556 0.901 0.5702 0.9591

Abnormal 0.6606 0.8476 0.6899 0.843

Average 0.5042 0.8501 0.515 0.9313

InceptionV3 + 1024 Bone 0.3364 0.7454 0.2535 0.9939

Pleura 0.4379 0.9282 0.5522 0.9778

Parenchyma 0.6037 0.8386 0.6319 0.8719

Cardio 0.527 0.8861 0.4979 0.9667

Abnormal 0.6447 0.8411 0.658 0.849

Average 0.5099 0.8479 0.5187 0.9319

EfficientNetB2 + 768 Bone 0.4483 0.8035 0.3662 0.9935

Pleura 0.5085 0.9567 0.4478 0.9928

Parenchyma 0.6354 0.8602 0.6764 0.8744

Cardio 0.5597 0.9196 0.6085 0.9519

Abnormal 0.6970 0.8671 0.6946 0.8825

Average 0.5698 0.8814 0.5587 0.9390
EfficientNetB2 + 1024 Bone 0.3704 0.7600 0.3521 0.9867

Pleura 0.5075 0.9352 0.5075 0.9888

Parenchyma 0.6329 0.8635 0.7178 0.8472

Cardio 0.5132 0.9129 0.6596 0.9226

Abnormal 0.6793 0.8595 0.6745 0.8774

Average 0.5407 0.8662 0.5823 0.9245

https://doi.org/10.1371/journal.pone.0276545.t005
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Table 6. Performance of EfficientNet-B2 on five classes.

Class Macro F1 score (95%CI) Average AUC (95%CI) Average Sensitivity Average Specificity

Chest wall 0.4483

(0.327, 0.559)

0.8035

(0.748, 0.857)

0.3662 0.9935

Pleura 0.5085

(0.387, 0.617)

0.9567

(0.938, 0.973)

0.4478 0.9928

Parenchyma 0.6354

(0.606, 0.664)

0.8602

(0.843, 0.876)

0.6764 0.8744

Cardio 0.5597

(0.507, 0.608)

0.9196

(0.902, 0.936)

0.6085 0.9519

Abnormal 0.6970

(0.673, 0.722)

0.8671

(0.853, 0.882)

0.6946 0.8825

https://doi.org/10.1371/journal.pone.0276545.t006

Fig 6. Area under the ROC curve. Pleura class delivered the highest AUC value, at 0.96 (95% CI 0.94, 0.97) whereas

chest wall class performed the lowest AUC value, with the figure of 0.81 (95% CI 0.75, 0.85).

https://doi.org/10.1371/journal.pone.0276545.g006
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Conclusion

In current work, we propose a semi-automatic process of building an accurate CXR dataset,

which can take advantage of the resources stored in PACS and HIS systems, especially mini-

mizing the intervention of radiologists. We also suggest a coarse classification method based

on the location of abnormalities in radiographs, which can address the realistic demand for

Vietnamese radiologists and be more efficient than classification based on pathology types.

Finally, we demonstrate that building pre-trained models using large CXR datasets can

Table 7. The mappings between CheXpert data labels (14 classes) and the proposed set of labels (5 classes). P and N refer to positive and negative respectively.

Chest wall Pleura Parenchyma Cardio Abnormal

No Finding N N N N N

Enlarged Cardiom N N N P P

Cardiomegaly N N N P P

Lung Lesion N N P N P

Lung Opacity N N P N P

Edema N N P N P

Consolidation N N P N P

Pneumonia N N P N P

Atelectasis N N P N P

Pneumothorax N P N N P

Pleural Effusion N P N N P

Pleural Other N P N N P

Fracture P N N N P

Support Devices N N N N P

https://doi.org/10.1371/journal.pone.0276545.t007

Table 8. Comparison of coarse and fine classification on CheXpert.

Architecture 5 classes 12 classes

Macro F1 score F1 score on Abnormal class Macro F1 score F1 score on Abnormal class

ResNet50 [40] 0.7109 0.9443 0.4849 0.9444

DenseNet121 [41] 0.7208 0.9519 0.4650 0.9438

InceptionV3 [42] 0.7181 0.9491 0.4846 0.9492

EfficientB2 [43] 0.7429 0.9520 0.5044 0.9450

https://doi.org/10.1371/journal.pone.0276545.t008

Fig 7. Original images and respective Grad-CAMs. There is a collarbone (nondisplaced fracture) in the first two

figures, while the last two ones containing pleural effusion in the pleura. Both of these pathologies were correctly

highlighted.

https://doi.org/10.1371/journal.pone.0276545.g007
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significantly improve performance compared to using ImageNet datasets. The models fine-

tuned from CheXpert pre-trained models with asymmetric loss function achieve significant

gains over ImageNet pre-trained models, which we believe will serve as a strong baseline for

future research. We also believe that this method will be applied for other languages which

have the same characteristic and task requirement.
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