
Immunization with Hypoallergens of Shrimp Allergen
Tropomyosin Inhibits Shrimp Tropomyosin Specific IgE
Reactivity
Christine Y. Y. Wai1, Nicki Y. H. Leung1, Marco H. K. Ho2, Laurel J. Gershwin3, Shang An Shu4,

Patrick S. C. Leung4, Ka Hou Chu1*

1 School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China, 2Department of Pediatrics and Adolescent Medicine, The University of

Hong Kong, Hong Kong SAR, China, 3Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis,

California, United States of America, 4Division of Rheumatology/Allergy, School of Medicine, University of California Davis, Davis, California, United States of America

Abstract

Designer proteins deprived of its IgE-binding reactivity are being sought as a regimen for allergen-specific immunotherapy.
Although shrimp tropomyosin (Met e 1) has long been identified as the major shellfish allergen, no immunotherapy is
currently available. In this study, we aim at identifying the Met e 1 IgE epitopes for construction of hypoallergens and to
determine the IgE inhibitory capacity of the hypoallergens. IgE-binding epitopes were defined by three online
computational models, ELISA and dot-blot using sera from shrimp allergy patients. Based on the epitope data, two
hypoallergenic derivatives were constructed by site-directed mutagenesis (MEM49) and epitope deletion (MED171). Nine
regions on Met e 1 were defined as the major IgE-binding epitopes. Both hypoallergens MEM49 and MED171 showed
marked reduction in their in vitro reactivity towards IgE from shrimp allergy patients and Met e 1-sensitized mice, as well as
considerable decrease in induction of mast cell degranulation as demonstrated in passive cutaneous anaphylaxis assay.
Both hypoallergens were able to induce Met e 1-recognizing IgG antibodies in mice, specifically IgG2a antibodies, that
strongly inhibited IgE from shrimp allergy subjects and Met e 1-sensitized mice from binding to Met e 1. These results
indicate that the two designer hypoallergenic molecules MEM49 and MED171 exhibit desirable preclinical characteristics,
including marked reduction in IgE reactivity and allergenicity, as well as ability to induce blocking IgG antibodies. This
approach therefore offers promises for development of immunotherapeutic regimen for shrimp tropomyosin allergy.

Citation: Wai CYY, Leung NYH, Ho MHK, Gershwin LJ, Shu SA, et al. (2014) Immunization with Hypoallergens of Shrimp Allergen Tropomyosin Inhibits Shrimp
Tropomyosin Specific IgE Reactivity. PLoS ONE 9(11): e111649. doi:10.1371/journal.pone.0111649

Editor: Jacques Zimmer, Centre de Recherche Public de la Santé (CRP-Santé), Luxembourg
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Introduction

Food allergy is a type 1 hypersensitivity disorder that affects up

to 10% of the general population [1] and frequently lead to

anaphylaxis. Food-related acute allergic reactions account for up

to 49% of all anaphylaxis-related emergency department (ED)

visits [2–4] and for patients discharged from ED, 54% filled

epinephrine autoinjection prescription within one year [5]. Among

all food allergies, shellfish allergy is one of the most common types

with a prevalence of 0.6% in the world population [6], and is

particularly common in Asian countries [7]. Shellfish is also

considered as one of the four most common food, which could

provoke anaphylaxis [8]. With an emerging trend in both shellfish

production and consumption, the increase in the prevalence of

shellfish allergy is predictable [9]. Improved clinical management

of this disorder is therefore needed, and comprehensive studies of

the molecular characteristics of shellfish allergens and therapeutic

regimens are eminent.

At the molecular level, the muscle protein tropomyosin was

identified as the major shrimp ingestion-related allergen in

Metapenaeus and Penaeus spp [10–12]. Biochemically, tropomy-

osin is a coiled-coiled secondary structure protein of 34–38 kDa

and functions in contractile activities of muscle cells [13]. While

shrimp allergy has long been a model for studying shellfish allergy,

our laboratory has cloned and expressed tropomyosin from

Metapenaeus ensis (Met e 1), which exhibits specific serological

IgE reactivity with serum samples from shrimp allergy patients

[11]. This study has facilitated the subsequent identification of

tropomyosin as an allergen common in crustaceans and mollusks

[14–18]. Greatly attributed to the high amino acid sequence

homology among the crustaceans and mollusks tropomyosins

(93.8% and 77.2%, respectively), as well as a 61.4% sequence

homology between the arthropods and mollusks tropomyosins, this

protein is believed to be the major cross-reactive shellfish pan-

allergen [13,19]. Specifically, there are more than 99% sequence

homology between the two most common reference shrimp

allergens Met e 1 and the tropomyosin from Penaeus aztecus
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(Pen a 1) [12]. Met e 1 and Pen a 1 are therefore ideal model

allergens, to be engineered for shrimp allergy immunotherapy

studies but also possibly at other tropomyosin-induced shellfish

allergies.

Although food avoidance and epinephrine injection are

currently the first-line treatments in patients with anaphylaxis,

allergen-specific immunotherapy (SIT) is the major strategy for

clinical management of allergy as it has the capacity to modify the

course of the disease. However, conventional modalities for SIT

using native allergens are constrained due to the potential risk of

allergic side-effects during treatment. In this context, hypoallergen

with low/no IgE reactivity is desirable for SIT. Notably, the

nature of allergenic epitopes and hypoallergens might greatly

affect the SIT outcome such as the induction and generation of

blocking antibodies, shifting of the Th1/Th2 paradigm and

induction of peripheral tolerance by recruitment of regulatory T

cells [20–25]. Molecular characterization of allergens, exemplified

by the identification of IgE-binding epitopes, is thus imperative for

the design of safer immunotherapy regimens [26]. Ayuso et al.

have applied the concept of a hypoallergenic mutant by

introducing 12 point mutations into the eight IgE-binding epitopes

[27] within the five allergenic regions of Pen a 1 [28]. Although

this mutant showed a reduction of allergenic potency of 90–98%

in humanized rat basophilic leukemia (RBL) release assay,

maximal releases were similar between the mutant and wild-type

Pen a 1. This result suggests that other significant allergenic

epitopes may exist in addition to the eight allergenic sites reported,

thus additional approaches are necessary to construct a hypoaller-

gen of shellfish tropomyosin.

To circumvent this issue, we have chosen a two-pronged

approach in designing shrimp tropomyosin hypoallergens. In this

study, the first objective is to define the major IgE-binding epitopes

of Metapenaeus tropomyosin Met e 1. The second objective of this

study is to construct hypoallergenic derivatives of Met e 1 by

introducing point mutations within the IgE-binding epitopes

identified, or by deleting these epitopes. The IgE reactivity,

allergenicity, immunogenicity and the inhibitory potential of the

hypoallergen-induced antibodies towards IgE antibodies of sub-

jects allergic to shrimp and Met e 1-sensitized mice [29] are

characterized and compared to the wild type allergen Met e 1.

Herein, we specifically used serum samples from children and

adolescents allergic to shrimp in mapping the IgE-binding

epitopes. Previous study reported greater epitope diversity among

children allergic to shrimp than adult patients [30] and outgrown

of shellfish allergy is rarely reported [31,32]. We therefore believe

that the use of pediatric serum samples could resolve an epitope

profile of Met e 1 that is comprehensive, clinically relevant and

common among shrimp allergy patients in any age group. The

hypoallergens constructed based on this epitope profile should also

be applicable in immunotherapy targeting at both pediatric and

adult patients.

Materials and Methods

Serum samples
Serum samples were obtained from 12 subjects (aged 3–17

years) with confirmed clinical history of allergic responses to

shrimp and positive skin prick test (Table S1). Specific IgE

reactivities to purified recombinant shrimp tropomyosin Pen a 1

and Met e 1 were characterized by ImmunoCAP and ELISA,

respectively. None of the recruited subjects have other allergies.

Serum samples (n = 8) obtained from healthy, non-atopic volun-

teers without Met e 1-specific IgE were used as a negative control.

Ethics statement
A written consent was obtained from the parents of the children

enrolled in the study (Institutional Review Board of the University

of Hong Kong/Hospital Authority Hong Kong West Cluster, Ref.

No. UW10-115). The use and storage of human sera were

approved by the Joint Chinese University of Hong Kong - New

Territories East Cluster Clinical Research Ethics Committee with

a written informed consent (CREC Ref. No. CRE-2010-514). All

animal protocols were approved by the Animal Experimentation

Ethics Committee, The Chinese University of Hong Kong (ref

No. 11/006/GRF and 463911), in accordance with the Depart-

ment of Health (Hong Kong) guidelines in Care and Use of

Animals. All experiments were performed under licenses granted

from the Government of Hong Kong Special Administrative

Region.

Identification of allergenic epitopes
There were three independent methods used to predict the

immunodominant allergenic epitopes including 1) computational

prediction of IgE binding epitopes, 2) ELISA against overlapping

peptides that span the entire Met e 1 sequence, and 3) dot-

immunoblotting of overlapping peptides against the entire Met e 1

sequence. 18 overlapping peptides spanning the full-length (274

amino-acids) Met e 1 were commercially synthesized (GenScript).

Each peptide had 20 amino acids (except for peptide 18 that

contains 19 amino acids) with five amino acids overlapping with

the adjacent peptides at the N-terminus. Individual peptides were

dissolved in distilled water, aliquoted and stored at 220uC until

required.

1) Three computational models from the Immune Epitope

Database (IEDB) Analysis Resource were employed to predict

the major linear IgE-binding epitopes of Met e 1, including

Bepipred Antibody Epitope Prediction, Kolaskar & Tongaon-

kar Antigenicity model and Emini Surface Accessibility

Prediction. Bepipred Antibody Epitope Prediction predicts

the location of IgE-binding epitopes based on the hidden

Markov model and propensity scale method [33]. The

Kolaskar & Tongaonkar Antigenicity model is based on the

physiochemical properties of amino acid residues [34]. Emini

Surface Accessibility Prediction is based on the calculation of

the surface accessibility scale [35].

2) For peptide ELISA, 3 mg of each peptide were coated on 96-

well plates (Nunc, maxisorp) in 0.05 M carbonate buffer

overnight. After blocking with 1% BSA/PBS for 1.5 h, the

plates were incubated with individual serum samples (150

dilution) at room temperature for 2 h. Thereafter, the plates

were incubated with biotinylated goat anti-human IgE

(Vector) in 11000 dilution for 45 min followed by incubation

with Avidin D, Peroxidase labeled antibody (Vector) in 11000

dilution for 30 min. The plates were then developed with

TMB substrate reagent set (BD Biosciences) for 15 min and

the reaction was terminated by 2 N H2SO4. Absorbance was

measured at 450 nm using an ELISA plate reader (Bio-Rad).

All absorbance values were background-corrected, in which

the background absorbance was the OD value of Met e 1-

coated wells incubated with secondary and tertiary antibodies

only. All the above procedures were performed at room

temperature. The plates were washed with PBS/0.5% Tween-

20 (PBST) three times and PBS once between each step and

all dilutions were made in 1% BSA/PBS.

3) For dot-immunoblotting, 3 mg of each peptide (3 mL) were

spotted onto a 0.2 mm nitrocellulose membrane (Bio-Rad).

The membrane was allowed to air-dry and thereafter fixed
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with 2.5% glutaraldehyde/PBS for 10 min [36]. The

membrane was incubated with diluted serum (150 dilution)

overnight at 4uC after a 2-h blocking in 3% skim milk/TBS.

The membrane was incubated with mouse monoclonal anti-

human IgE-alkaline phosphatase antibody (Sigma Aldrich) at

12000 dilution for 1 h at room temperature followed by signal

development with NBT/BCIP (Roche). All dilutions were

made with 3% skim milk/TBS and all washing steps were

performed with TBST) once and TBS three times with

shaking.

Design of hypoallergenic shrimp tropomyosins
With the high structural flexibility and spontaneous unfolding

property of tropomyosin [37], we believe that the possibility of

having only one single amino acid per epitope that is crucial for

IgE binding is unlikely. Restricted homologous substitution may

not be sufficient to result in tropomyosin variants with greatly

reduced IgE reactivity. Therefore, the amino acid sequence of Met

e 1 was compared to the non-allergenic fish tropomyosins of four

species Salmo salar (Atlantic salmon; GenBank accession number

NP_001117128.1), Epinephelus coioides (orange-spotted grouper;

ADG29138.1), Siniperca chuatsi (Mandarin fish; AEK21799.1)

and Thunnus thynnus (Atlantic bluefin tuna; BAD01050.1) (Fig.

S1). All nine identified IgE-binding regions in Met e 1 were

converted into the homologous sequence of fish tropomyosins and

49 point mutations in total were introduced to construct the

mutation mutant MEM49 (Fig. 1A & B). To construct the deletion

mutant, all nine IgE-binding epitopes were deleted (Fig. 1B). This

mutant, named MED171, contained only 171 amino acid

residues. The amino acid sequences of MEM49 and MED171

were reverse translated using MEGA 5.0 and the encoding

sequences of the two mutants were synthesized commercially by

GenScript. Synthetic genes of each of the mutants were cloned

into pET30(a)+ (Novagen) expression vector via EcoRV and

HindIII restriction sites. The sequences and reading frame of

MEM49 and MED171 in the plasmid were confirmed by

dideoxynucleotide sequencing.

Preparation of recombinant wild type and mutant shrimp
tropomyosin

cDNA coding for the full length shrimp tropomyosin Met e 1

and the encoding sequences of MEM49 and MED171 were

cloned into His-tag expression vector pET30(a)+ (Novagen) and

expressed in Escherichia coli BL21 (DE3) (Invitrogen) by culturing

in MagicMedia (Invitrogen) at 37uC overnight. His-tagged

recombinant Met e 1 (rMet e 1), MEM49 and MED171 were

purified using the HisPur Cobalt Spin Column (Thermo Scientific)

according to the manufacturer’s instructions. Protein concentra-

tion was determined by BCA assay (Sigma Aldrich) while the

purity was determined by Sodium dodecyl sulfate-polyacrylamide

gel electrophoresis (SDS-PAGE) and Coomassie blue staining.

Mice sensitization and immunization
3–4 weeks old female Balb/c mice were acquired from the

Laboratory Animal Services Centre, The Chinese University of

Hong Kong. All animals were maintained on a shrimp-free diet

and housed in pathogen-free conditions. To induce Met e 1

hypersensitivity in mice, sensitization was performed as described

previously by intragastric administration of 0.1 mg of recombinant

tropomyosin plus cholera toxin on days 0, 12, 19 and 26 and

challenged on day 33 [29]. Mice fed with phosphate-buffered

saline plus cholera toxin were included as controls. Blood samples

were collected 4 h after the challenge for antibody analysis.

For immunization experiments, 5–6 weeks old female Balb/c

mice were intraperitoneally immunized three times on days 0, 7

and 14 with 0.1 mg purified rMet e 1, MEM49 or MED171

adsorbed to 1 mg Al(OH)3. Blood was collected 4 h after the last

injection for the determination of antibody levels.

Direct ELISA
To examine the IgE reactivity to rMet e 1, MEM49 or

MED171, 96-well ELISA plates were coated with 5 mg/mL of

either rMet e 1, MEM49 or MED171 in 0.05 M carbonate buffer

overnight at 4uC, blocked with 1% BSA/PBS for 2 h and

incubated with serum samples from shrimp allergy subjects or Met

e 1-sensitized mice (110 dilution) overnight at 4uC. After washing,

plates were incubated with biotinylated anti-human (Vector) or

anti-mouse IgE antibodies (BD Pharmigen) and Avidin D,

Peroxidase labeled antibody (Vector), each at 11000 dilution at

room temperature for 1 h and 30 min, respectively. The plates

were then developed with TMB substrate reagent set (BD

Biosciences) for 15 min and the reaction was terminated by 2 N

H2SO4.

To determine the reactivity of IgG and IgG2a antibodies raised

in rMet e 1, MEM49 and MED171 immunized mice, sera in serial

dilutions (1400 to 125600) were incubated in the rMet e 1,

MEM49 or MED171 coated plates (5 mg/mL) for 2 h at room

temperature. The plates were then incubated with goat anti-mouse

IgG or anti-mouse IgG2a (Southern Biotech) in 12000 dilution for

45 min followed by incubation with Avidin D, Peroxidase labeled

antibody (Vector) in 11000 dilution for 30 min. The plates were

then developed with TMB substrate reagent set (BD Biosciences)

for 5 min and the reaction was terminated by 2 N H2SO4.

Passive cutaneous anaphylaxis
Passive cutaneous anaphylaxis was performed to determine the

in vivo allergenicity of MEM49 and MED171. Backs of naı̈ve

Balb/c mice were shaved, followed by intradermal injection of

Met e 1-specific IgE-containing sera (undiluted sera in a total

volume of 100 mL) under isoflurane narcosis. Two hours later,

mice were injected intravenously with a mixture of 100 mL of

0.5% Evan’s blue dye (Sigma Aldrich) and 0.1 mg rMet e 1,

MEM49 or MED171. Thirty minutes after dye-rMet e 1

administration, mice were sacrificed by cervical dislocation and

skins of their backs were immediately inverted for the measure-

ment of blue region diameters.

Competitive inhibition ELISA
Competitive inhibition ELISA was performed to evaluate the

blocking capacity of hypoallergen-induced blocking antibodies.

Briefly, rMet e 1 was used to coat 96-well plates (5 mg/mL)

overnight at 4uC and blocked with 1% BSA/PBS for 2 h. Plates

were then washed and blocked with 100 mL of 110 diluted sera

from mice immunized MEM49, or MED171 overnight at 4uC.

Thereafter, 100 mL of sera from shrimp allergy patients or Met e

1-sensitized mice at a predetermined dilution (110–120 dilution)

were added and incubated at room temperature for 2 h. The wells

were then washed and followed by the addition of biotinylated

anti-human or anti-mouse IgE antibodies, HRP-Avidin D and

developed as described above. The blocking ability of the induced

IgG antibodies was determined using the equation [(ODno inhibitor–

ODinhibitor)/ODno inhibitor]6100% and expressed as percentage

inhibition.

Hypoallergens of Shrimp Tropomyosin Met e 1
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Statistical analysis
Data were presented as mean 6 SEM. The statistical

comparison was determined by one-way analysis of variance

(ANOVA) followed by the Student-Newman-Keuls test using

SigmaStat 3.1. The difference was considered statistically signif-

icant at p,0.05.

Results

IgE-binding epitopes of Met e 1 and hypoallergen design
By ELISA, sera from patients with shrimp allergy (n = 12) had

significantly higher IgE reactivity against five peptides (P3, P5,

P10, P13 and P16) when compared with other peptides (p,0.05)

(Fig. 2A). None of the sera from control subjects (n = 8) showed

IgE-binding activity towards these or other peptides (data not

shown).

Allergenic regions on Met e 1 were also defined based on the

intensity of peptide spots and the frequency of recognition in dot-

immunoblotting (Fig. 2B). A peptide with .50% recognition (6

out of 12 patients) or an epitope score (calculated by the

summation of the IgE reactivity score (strong reactivity: 3; median:

2; low: 1)) higher than the mean intensity score (8.83, calculated by

adding all epitope scores and dividing by 18 peptides) was defined

as a major IgE-binding epitope. Based on these criteria, eight

peptides (P1, P3, P10, P11, P15, P16, P17 and P18) were identified

as the major Met e 1-specific IgE-binding sequences. The

discrepancy in epitopes determined by ELISA and dot-immuno-

blotting (Fig. 2C) was apparently due to assay sensitivity and

peptide presentation on different materials in the two assays.

Three online immunoinformatics models were applied to define

the IgE epitopes. (Fig. 2C & Fig. S2). Seven epitopes, with six to 16

amino acid residues in length, were identified using Emini Surface

Accessibility Prediction based on the surface probability score (Fig.

S2A). Ten allergenic regions, between six to 19 amino acid

residues in length, were defined under the Kolaskar & Tongaonkar

Antigenicity model based on the antigenic propensity score (Fig.

S2B). Using Bepipred Antibody Epitope Prediction, 15 regions

from one to 28 amino acid residues in length were recognized as

IgE-binding epitopes (Fig. S2C). In comparing the predictions by

these three models, Emini Surface Accessibility Prediction and

Bepipred Antibody Epitope Prediction yielded very similar epitope

results (.85% similarity, calculated as the degree of overlapping

amino acid residues), while the prediction by Kolaskar &

Tongaonkar Antigenicity deviated from those of the other two

models. Only six regions resulted in consensus between Emini

Surface Accessibility Prediction and Kolaskar & Tongaonkar

Antigenicity, but with a low degree of overlap ranging between

14% and 37%.

Data obtained by ELISA and dot-immunoblotting, as well as

from the three predictions models, were combined and equally

weighted for defining the major IgE-binding epitopes (Fig. 2C).

Logically, sequences that are determined as IgE reactive both

experimentally and by modeling studies are more likely to

represent IgE-binding epitopes in the native protein. Therefore,

only regions that were suggested as IgE reactive by at least one of

the experimental assays, and at least two other of the above assays

or models, were considered as major epitopes [38]. Altogether,

nine major IgE-binding epitopes of Met e 1 ranging from five to

twenty-one amino acid residues in length were identified, namely

Figure 1. Design of two hypoallergenic mutants. MEM49 was constructed by substitution of 49 different amino acid residues within the nine
Met e 1 epitopes to the homologous fish tropomyosin sequence. MED171 was constructed by deletion of epitopes E1 to E9 of Met e1. (A) Location of
the IgE-binding epitopes in tropomyosin. The IgE epitopes designated as E1–E9 are shown in boxes and the location of the 49 amino acid residues in
Met e 1 that are converted in MEM49 are also shown as one letter amino acid code. (B) Schematic representation of Met e 1, MEM49 and MED171.
Epitopes E1 to E9 in Met e 1 are represented as black boxes and the number of amino acids in each epitope is indicated. Amino acid residue changes
in MEM49 are shown as *. MED171 is a truncated peptide with the epitopes E1–E9 deleted. (C) SDS-PAGE of Met e 1, MEM49 and MED171 after
Coomassie Blue staining. Note the 35 kDa molecular weight of Met e 1 and MEM49 and the expected smaller size of MED171 compared to Met e 1.
doi:10.1371/journal.pone.0111649.g001
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E1–E9, with positions at Met e 125–30, Met e 143–60, Met e 187–103,

Met e 1146–154 Met e 1161–165, Met e 1191–211, Met e 1236–241, Met

e 1247–255 and Met e 1269–281, respectively (Fig. 1A). Based on

these epitopes, we constructed two tropomyosin mutants, by site-

directed mutagenesis (MEM49) and epitope deletion (MED171).

The locations of the IgE epitopes and their corresponding amino

acid changes in mutants MEM49 and MED171 are shown in

Fig. 1A and B. Approximately 4 mg of purified soluble recombi-

nant proteins of MEM49 and MED171 could be obtained from 1

liter of E.coli culture. SDS-PAGE analysis of purified recombinant

proteins of the mutation mutant MEM49 and the deletion mutant

MED171 showed a 35-kDa MEM49 band and a 27-kDa

MED171 band, compared to a 35 kDa rMet e 1 band (Fig. 1C).

Immunoreactivity of tropomyosin mutants
Sera from 8/8 shrimp allergy patients and Met e 1-sensitized

mice showed a marked decrease in IgE reactivity to MEM49 and

MED171 (Fig. 3). Reactivity of MEM49 and MED171 towards

patient IgE decreased by an average of 71.4% and 77.4% relative

to Met e 1, respectively (Fig. 3A & B), while that to mouse IgE

decreased by an average of 90.5% and 97.6%, respectively

(Fig. 3C & D). Notably, the IgE-binding reactivity of MED171

was significantly lower than that of MEM49 (p,0.05) when tested

with mouse sera. In addition to in vitro reduction in IgE reactivity,

both MEM49 and MED171 did not trigger mast cell degranu-

lation in passive cutaneous anaphylaxis assays. In contrast to a .

2.5 cm blue region induced by intradermal injection of Met e 1-

specific IgE and intravenous injection of Met e 1 with Evan’s blue

dye, no Evan’s blue dye extravasation could be induced by

intravenous injection of either hypoallergens (Fig. 3E). More

Figure 2. Determination of Met e 1 IgE-binding epitopes. Epitopes were determined by ELISA, dot-immunoblotting and three prediction
models Emini Surface Accessibility Prediction Kolaskar & Tongaonkar Antigenicity model and Bepipred Antibody Epitope Prediction. (A) Histogram of
the IgE binding reactivity against the Met e 1 peptides as determined by ELISA. (B) Histogram of IgE binding reactivity against the Met e1 peptides as
determined by dot-immunoblotting. (C) Alignment of Met e 1 IgE-binding epitope sequences as determined by ELISA, dot-immunoblotting and each
of the three prediction models.
doi:10.1371/journal.pone.0111649.g002
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importantly, none of the MEM49- or MED171-immunized mice

produced Met e 1-recognizing IgE antibodies (OD 0.07160.001

and 0.09260.003, respectively) and hypoallergen-specific IgE

antibodies, comparing to an IgE level of OD 0.40560.056 upon

Met e 1 immunization (Table 1). These clearly demonstrated that

both MEM49 and MED171 had marked reduction in their

in vivo allergenicity.

Hypoallergen-immunized mice produced Met e 1-
specific IgG antibodies and inhibited IgE binding to Met
e 1

Mice immunized with either rMet e 1, MEM49 or MED171

produced robust IgG antibodies that recognized rMet e 1 with OD

1.77860.037, 0.57160.082 and 1.08960.085, respectively (Ta-

ble 1). Moreover, IgG antibodies induced by MED171 exhibited

better rMet e 1 recognition when compared to those induced by

MEM49 at all tested dilutions (Fig. 4A). It is noteworthy that only

the hypoallergens MEM49 and MED171, but not Met e 1, could

induce the production of Met e 1-specific IgG2a antibodies

(Fig. 4B). We further examined if the sera IgG antibodies from

hypoallergen-immunized mice were able to block Met e 1-specific

IgE from binding to rMet e 1 by competitive inhibition ELISA.

Serological IgG from MEM49 and MED171 were able to inhibit

46.263.41% and 45.963.54% of IgE from shrimp allergy patients

from binding to Met e 1, respectively (Fig. 4C). MEM49- and

MED171-IgG could better inhibit mouse IgE binding to Met e 1

with average of 82.563.24% and 87.662.84%, respectively

(Fig. 4D).

Discussion

Knowledge of the IgE-binding epitopes of allergens is funda-

mental for designing hypoallergenic derivatives, which are

regarded as one of the best candidates applicable in SIT.

Successful SIT using hypoallergens has been well demonstrated

in mouse models of respiratory allergies [39–42] as well as in

clinical trials on birch pollen allergy patients [43–45]. The fish

parvalbumin mutant Mut-CD/EF that displays a 95% reduction

in IgE reactivity and ability to induce blocking IgG antibodies

might represent the only best-known hypoallergen among all the

most common food allergens [46]. Meanwhile, hypoallergens of

the major shellfish allergen tropomyosin that could be translated

into specific immunotherapy are unavailable.

Although several shrimp allergens including arginine kinase

[47,48], sacroplasmic calcium-binding protein [49,50], myosin

light chain [51,52] and troponin C [51] have been identified and

registered by the IUIS-allergen database, tropomyosin is reactive

to .80% patients allergic to shrimp and is regarded as the major

shrimp and shellfish cross-reactive allergen [10,11]. Herein, we

have defined the IgE-binding epitopes of the shrimp tropomyosin

Met e 1 by ELISA, dot-immunoblotting and three online models

as prediction tool represents an emerging strategy in epitope

mapping studies among food and drug allergies [38,53,54]. Using

this combination, we aimed to achieve higher accuracy, including

a lower chance of missing important epitopes, more complete

recovery and a higher resolution of epitopes. Using this approach,

nine major IgE-binding Met e 1 epitopes were identified. These

epitopes range from five to twenty one amino acid residues in

length, with some of these allergenic regions longer than the IgE-

binding epitopes of other allergens [53,55–57]. This variation may

be due to the relatively simple coiled-coiled secondary structure of

tropomyosin and/or the high flexibility of this molecule [37],

possibly resulting in the higher proportion of surface-exposing IgE-

binding sequences. The discovery that six IgE-binding epitopes
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identified in our work overlap with those previously reported for

Pen a 1 [27,28] is not surprising because the two proteins only

have one amino acid difference at residue 69. The three Met e 1

IgE epitopes (E1, E5 and E7) newly identified in this study

(Fig. 2A) may partly account for the limited success of a Pen a 1

hypoallergen in reducing allergenicity to shrimp tropomyosin [27].

Incidentally, serum samples from adults were used in the Pen a 1

study while serum samples from children and adolescents were

used in determining the IgE-binding epitopes of Met e 1. The

presumed greater epitope diversity in children with shrimp allergy

than adults [30] may account for the additional epitopes revealed

in the present study. Interestingly, some of the Met e 1 epitopes

predicted by Bepipred Antibody Epitope Prediction are only one

to five amino acid residues apart. Although this model was

designed for continuous B cell epitope prediction, a recent study

suggests that the results are similar to the predicted discontinuous

B cell epitopes [58]. Hence, the epitopes predicted by this model

may possibly represent the discontinuous epitopes of Met e 1,

although more sophisticated experiments such as crystal structure

resolution of allergen/IgE complex could be conducted to confirm

the identity of the discontinuous epitopes of Met e 1. Nevertheless,

the identification of previously unidentified IgE-binding epitopes

in our study as compared to the study on Pen a 1 may be partly

explained by the characterization of both linear and discontinuous

IgE-binding epitopes here.

In the immunotherapy of allergy, a major goal is to reduce IgE-

mediated side-effects during the course of immunotherapy. The

two major strategies to reduce IgE reactivity include mutating the

amino acid residues involved in IgE-binding, and disrupting the

three-dimensional structure of the allergen [59]. Based on our IgE-

epitope data, we constructed two hypoallergenic derivatives of Met

e 1.

First, hypoallergen MEM49 was constructed by replacing 49

amino acid residues within the nine Met e 1 IgE-binding epitopes

with the homologous tropomyosin sequences of fish. Tropomyosin

sequences of more than ten fish species are available on GenBank.

Herein, we have chosen tropomyosin sequences from four

common edible fish species, Salmo salar, Epinephelus coioides,
Siniperca chuatsi and Thunnus thynnus for comparison. To our

knowledge, these fish tropomyosins have not been documented as

ingestion-related allergens (however, see Liu et al. which shows

that tilapia tropomyosin may be related to autoimmune diseases

[60]) and are thus valid candidates for such a homologous

conversion. The advantage of homologous substitution is that

MEM49 would retain its natural conformation and thereby

ensuring a strong allergen-specific IgG response [61]. On the other

Figure 3. In vitro and in vivo IgE reactivity and allergenicity of the hypoallergens. Reactivity of (A) MEM49 and (B) MED171 to IgE from
shrimp allergy patients (n = 8) and reactivity of (C) MEM49 and (D) MED171 to IgE of Met e 1-sensitized mice (n = 8) in ELISA. (E) In vivo IgE reactivity
and allergenicity of Met e 1, MEM49 and MED171 as determined by PCA assay. Note that the in vitro and in vivo IgE reactivity and allergenicity of
MEM49 and MED171 are significantly lower than those of Met e 1, as shown by the significantly lower absorbance value at 450 nm and absence of
Evan’s blue dye extravasation.
doi:10.1371/journal.pone.0111649.g003
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hand, we believe that with the high structural flexibility of

tropomyosin and its spontaneous unfolding property [37], the

possibility of having only one single critical amino acid per epitope

that is responsible for IgE binding is unlikely. Therefore, restricted

homologous substitution may not be sufficient to significantly

reduce the IgE-binding reactivity of the variant. Hence, all the

identified IgE-binding regions in Met e 1 were converted into the

homologous sequence of fish tropomyosins.

The second hypoallergen MED171 was designed by deleting all

IgE-binding epitopes, which results in a smaller-sized truncated

tropomyosin variant of only 171 amino acid residues. With the

disruption of all epitopes and possibly its structural flexibility as in

tropomyosin, IgE reactivity and allergenicity of MED171 should

be more significantly abolished. From our data, both variant

showed significant reduction in their in vitro reactivity towards

Met e 1-specific IgE from patients and sensitized mice. Both of

them also lost their in vivo allergenicity in inducing mast cell

degranulation or IgE synthesis. Direct ELISA also demonstrated

that the IgE reactivity of MED171 is significantly lower than

MEM49 when tested with sera from Met e 1-sensitized mice (2.4%

IgE reactivity retained comparing to 9.5% in MEM49), which

matches with our initial expectation.

We noted that most of the human shrimp tropomyosin CD4+ T

cell epitopes mapped by Ravkov et al. [62] remain intact in both

hypoallergens and therefore, both MEM49 and MED171 should

retain their immunogenicity in inducing IgG antibodies. This is

supported by our data that a robust Met e 1-specific IgG response

was induced by MEM49 and MED171. Notably, we specifically

detected the production of IgG2a antibodies in mice immunized

with MEM49 or MED171, but not with the wild type allergen Met

e 1. The Th1-driven allergen-specific IgG2a antibody in mouse

and IgG4 antibody in human induced during SIT are considered

to be blocking antibodies and correlate well with clinical

improvements [63–71]. The fast-acting blocking IgG antibodies

provides protection possibly through the formation of IgG/

FccRIIb complex on mast cells that down-regulates IgE receptor

FceRI signaling and mast cell degranulation [70,72], sequestration

of the circulating allergen by the induced IgGs [73], and/or IgE

internalization facilitated by the formation of IgG/FccRIIb

immune complex [74]. In fact, our study provides evidence that

a MEM49- or MED171-based treatment may bring forth this

beneficial effect, because we found that both hypoallergens were

able to induce strong Met e 1-specific IgG2a responses even a pro-

Th2 adjuvant was used during immunization. Such production of

specific IgG2a and absence of Met e 1-specific IgE might

correspond to the Th1-driving potential of the two hypoallergens.

Most importantly, these antibodies were able to significantly block

IgE of both shrimp allergy subjects and Met e 1-sensitized mice

Figure 4. Immuno-reactivity of hypoallergens and inhibitory potential of the induced IgG antibodies. Reactivity of the rMet e 1-,
MEM49- and MED171-induced (A) IgG and (B) IgG2a antibodies towards the wild type allergen rMet e 1. Note that specific IgG2a could only be
induced by the hypoallergens. Inhibitory potential of the induced IgG towards Met e 1-specific IgE from (C) shrimp allergy subjects (n = 8) and (D)
Met e 1-sensitized mice (n = 8) determined by competitive inhibition ELISA. Percentage inhibition was calculated by [(ODno inhibitor–ODinhibitor)/ODno

inhibitor]6100%. Note that the MEM49- and MED171-induced IgG antibodies could significantly inhibit IgE of shrimp allergy patients and Met e 1-
sensitized mice from binding to Met e 1.
doi:10.1371/journal.pone.0111649.g004
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from binding to Met e 1. Such inhibitory and Th1-inducing

potential are beneficial and it is likely that a MEM49- or

MED171-based vaccine will modulate shrimp tropomyosin-

induced allergic responses.

To our knowledge, this is the first study providing experimental

evidence of a shellfish allergen-specific IgG blocking antibodies

induced by hypoallergens. Our results demonstrate significant

decrease in the in vivo and in vitro IgE reactivity and allergenicity

of the two designer shrimp tropomyosin hypoallergens MEM49

and MED171 when compared to the wild type allergen Met e 1

and more importantly, robust IgG antibodies’ responses with

inhibitory potential to Met e 1-specific IgE antibodies of shrimp

allergy subjects and Met e 1-sensitized mice. Finally, this work

signifies an important discovery that could potentiate the

development of prophylactic and/or therapeutic therapies in

shellfish allergy.

Supporting Information

Figure S1 Comparison of the tropomyosin sequences for the

construction of hypoallergen MEM49. Tropomyosin sequence of

Met e 1 was compared to that of four fish species Salmo salar
(Atlantic salmon), Epinephelus coioides (orange-spotted grouper),

Siniperca chuatsi (Mandarin fish) and Thunnus thynns (Atlantic

bluefin tuna). Amino acid deviations within each IgE-binding

epitope (framed) were identified and subsequently mutated into

the homologous sequence of fish tropomyosins (bold letters shaded

in gray) for the construction of hypoallergen MEM49.

(TIF)

Figure S2 Computational prediction of tropomyosin IgE-

binding epitopes. (A) Surface probability score of each amino

acid residue of Met e 1 in Emini Surface Accessbility Prediction.

(B) Antigenic propensity score of each amino acid residue of Met e

1 in Kolaskar & Tongaonkar Antigenicity. (C) Epitope score of

each amino acid residue of Met e 1 in Bepipred Linear Epitope

Prediction.

(TIF)

Table S1 Clinical characteristics and shrimp tropomyosin-

specific IgE of the shrimp allergy patients included in this study.

12 patients 3–17 years old with documented history of shrimp

allergy were recruited in this study for mapping the major IgE-

binding epitopes of Met e 1 and characterizing the IgE reactivity

of the hypoallergens.

(DOCX)
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74. Uermösi C, Zabel F, Manolova V, Bauer M, Beerli RR, et al. (2014) IgG-

mediated down-regulation of IgE bound to mast cells: a potential novel
mechanism of allergen-specific desensitization. Allergy 69: 338–347.

Hypoallergens of Shrimp Tropomyosin Met e 1

PLOS ONE | www.plosone.org 10 November 2014 | Volume 9 | Issue 11 | e111649


