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Abstract
Objectives To develop and validate machine learning models to distinguish between benign and malignant bone lesions and
compare the performance to radiologists.
Methods In 880 patients (age 33.1 ± 19.4 years, 395 women) diagnosed with malignant (n = 213, 24.2%) or benign (n = 667,
75.8%) primary bone tumors, preoperative radiographs were obtained, and the diagnosis was established using histopathology.
Data was split 70%/15%/15% for training, validation, and internal testing. Additionally, 96 patients from another institution were
obtained for external testing. Machine learning models were developed and validated using radiomic features and demographic
information. The performance of each model was evaluated on the test sets for accuracy, area under the curve (AUC) from
receiver operating characteristics, sensitivity, and specificity. For comparison, the external test set was evaluated by two radiol-
ogy residents and two radiologists who specialized in musculoskeletal tumor imaging.
Results The best machine learningmodel was based on an artificial neural network (ANN) combining both radiomic and demographic
information achieving 80% and 75% accuracy at 75% and 90% sensitivity with 0.79 and 0.90AUCon the internal and external test set,
respectively. In comparison, the radiology residents achieved 71% and 65% accuracy at 61% and 35% sensitivitywhile the radiologists
specialized in musculoskeletal tumor imaging achieved an 84% and 83% accuracy at 90% and 81% sensitivity, respectively.
Conclusions AnANN combining radiomic features and demographic information showed the best performance in distinguishing
between benign and malignant bone lesions. The model showed lower accuracy compared to specialized radiologists, while
accuracy was higher or similar compared to residents.
Key Points
• The developed machine learningmodel could differentiate benign frommalignant bone tumors using radiography with an AUC
of 0.90 on the external test set.
•Machine learning models that used radiomic features or demographic information alone performed worse than those that used
both radiomic features and demographic information as input, highlighting the importance of building comprehensive machine
learning models.

• An artificial neural network that combined both radiomic and demographic information achieved the best performance and its
performance was compared to radiology readers on an external test set.
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Abbreviations
ANN Artificial neural network
AUC Area under the curve
CI Confidence interval
DICOM Digital Imaging and Communications in Medicine
GNB Gaussian naive Bayes Classifier
NHL Non-Hodgkin’s lymphoma
NOF Non-ossifying fibroma
PNG Portable network graphics
RFC Random forest classifier

Introduction

Conventional radiography is considered to be the initial imag-
ing modality of choice for the diagnostics of bone tumors and
tumor-like lesions [1–3]. Radiography allows accurate visual-
ization of osseous destruction patterns and of periosteal re-
sponse patterns [2]. This enables an assessment of the biolog-
ical activity of bone lesions and with which lesions can be
categorized into aggressive or non-aggressive bone lesions
[4]. Further features, such as matrix mineralization or the tu-
mor architecture, may additionally help to establish a specific
diagnosis and thus make conventional radiographs crucial for
the diagnostic work-up of bone tumors and tumor-like lesions
and the following therapy [5]. Magnetic resonance imaging
may help with narrowing differential or when a lesion is in-
determinate by demonstrating extraosseous tissue components
or the composition of the tumor. However, radiography is
considered the primary imaging method of choice because it
visualizes certain features of bone lesions (e.g. periosteal re-
action, osseous destruction pattern, matrix mineralization)
combined with high resolution, cost-effectiveness, and
accessibility[3, 6].

To standardize the assessment of bone lesions on radio-
graphs, methods enabling the computer-aided extraction of
imaging features can be used. For this purpose, radiomics
have been successfully used to distinguish between benign
and malignant lesions [7–9]. Radiomics make use of the ex-
traction of a multitude of imaging features to deduct an image-
based signature that characterizes a tumor [10]. The radiomic
signatures can then be used as input for machine learning
models to classify the tumor [11]. Machine learning models
include statistical models, decision treemodels, support vector
machines, and artificial neural networks (ANN) [10].
Decision trees such as random forest classifiers (RFC) or sta-
tistical methods such as logistic regression or Gaussian Naive
Bayes classifiers (GNB) are widely used for classification
tasks [12]. A previous study demonstrated the use of radio-
graphic imaging features and demographic information to

build a GNB model for the classification of bone tumors
[13]. Therefore, we hypothesized that combining radiomics
extracted from radiographs with demographic information
may allow for reliable characterization of bone lesions. This
may be particularly helpful for the clinical diagnostic routine,
since the assessment of certain bone lesions requires expertise
in musculoskeletal tumor imaging, which is difficult to ac-
quire outside of a specialized center, due to the rarity with
which these occur.

The aim of this proof-of-concept study was therefore to
develop and validate machine learning models using
radiomics derived from radiographs and demographic infor-
mation to distinguish between benign and malignant bone
lesions on radiographs and compare the performance to radi-
ologists on an external test set.

Materials and methods

Patient selection and dataset

The local institutional review boards approved this retrospec-
tive multi-center study (Technical University Munich and
University of Freiburg). The study was performed in accor-
dance with national (as specified in Drs. 7301-18) and inter-
national guidelines (as specified in European Medicines
Agency guidelines for good clinical practice E6). Informed
consent was waived for this retrospective anonymized study.
Radiographs of all eligible patients with primary bone tumors
obtained at the primary institution between January 1, 2000,
and December 31, 2019, were selected for this study, forming
a consecutive series. The imaging protocols were in accor-
dance with those previously described [1]. Patients included
in this study (n = 880, average age 33.1 years ± 19.4, 395
women) were diagnosed by histopathology which was con-
sidered to be the standard of reference with malignant tumors
(chondrosarcoma, n = 87; osteosarcoma, n = 34; Ewing’s
sarcoma, n = 32; plasma cell myeloma, n = 28; B cell non-
Hodgkin’s (NHL) lymphoma, n = 36; chordoma, n = 6) and
benign tumors (osteochondroma, n = 228; enchondroma, n =
153; chondroblastoma, n = 19; osteoid osteoma, n = 19; giant
cell tumor of bone, n = 44; Non-ossifying fibroma, n = 34;
hemangioma, n = 12; aneurysmal bone cyst, n = 82; simple
bone cys t , n = 24; f ib rous dysplas ia , n = 52) .
Chondrosarcomas included atypical cartilaginous tumors
(grade 1, n = 8), grade 2 (n = 48), and grade 3 (n = 31)
chondrosarcomas. Patients were excluded (n = 51) due to poor
image quality because of artifacts not allowing for any analy-
sis or radiologic assessment of the tumor. Metastases were
excluded as they were not included in the database of the
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university’s musculoskeletal tumor center as primary bone
tumors. All included cases were reviewed by two radiologists
independently (A.S.G., musculoskeletal fellowship-trained ra-
diologist with 8 years of experience, and S.C.F. a radiologist
with 4 years of experience) to ensure that the tumor was cor-
rectly depicted on the radiograph with sufficient quality to
locate and segment the bone tumor. The dataset was split
randomly into 70%/15%/15% for training, validation, and in-
ternal testing.

Additionally, an external test set comprised of 96 patients
from a different institution (Freiburg University Hospital) was
used for further independent testing. Likewise, the external
cohort was selected through the database of another
university’s musculoskeletal tumor center forming a consecu-
tive series.

Since an increasing model performance with a higher num-
ber of training cases was expected all eligible patients with

primary bone tumors from the main institution were included
to obtain as many samples for the development data set as
possible. A sample size of 80–100 cases for the external val-
idation was included, similar to comparable research studies
[14, 15].

Table 1 gives an overview of the patients included in this
study and tumor types.

The imaging data was extracted from Digital Imaging and
Communications in Medicine (DICOM) files as portable net-
work graphics (PNG) files. PNG was chosen to ensure further
lossless image processing. Segmentations of the tumors were
performed blinded to the histopathological and clinical data by
one radiologist (S.C.F.), using the open-source software (3D
Slicer, version 4.7; www.slicer.org) and reviewed by A.S.G.
[16]. To measure the intrareader reliability of the tumor
segmentations, 45 patients were randomly selected from the
data set and an additional segmentation was performed 3

Table 1 Subject characteristics*

Subject characteristics Overall
(n = 880)

Training set
(614/887, 70%)

Validation set
(133/887, 15%)

Test set
(133/887, 15%)

External Test Set
(n = 96)

Age (years ± SD) 33.1 ± 19.4 34.0 ± 19.9 31.8 ± 17.3 30.3 ± 18.5 31.7 ± 22.1

Sex (females) 395 (44.9%) 275 (44.8%) 60 (45.1%) 60 (45.1%) 40 (41.7%)

Malignant subtypes 213 (24.2%) 149 (24.3%) 32 (24.1%) 32 (24.1%) 31 (32.3%)

Chondrosarcoma 87 (9.8%) 61 (9.9%) 13 (9.8%) 13 (9.8%) 11 (11.5%)

Osteosarcoma 34 (3.8%) 24 (3.9%) 5 (3.8%) 5 (3.8%) 7 (7.3%)

Ewing’s sarcoma 32 (3.6%) 22 (3.6%) 5 (3.8%) 5 (3.8%) 5 (5.2%)

Plasma cell myeloma 28 (3.2%) 20 (3.3%) 4 (3.0%) 4 (3.0%) 4 (4.2%)

NHL B cell 26 (2.9%) 18 (2.9%) 4 (3.0%) 4 (3.0%) 4 (4.2%)

Chordoma 6 (0.6%) 4 (0.6%) 1 (0.7%) 1 (0.7%) 0 (0%)

Benign subtypes 667 (75.8%) 465 (75.7%) 101 (75.9%) 101 (75.9%) 65 (67.7%)

Osteochondroma 228 (25.9%) 160 (26.1%) 34 (25.6%) 34 (25.6%) 16 (16.7%)

Enchondroma 153 (17.4%) 107 (17.4%) 23 (17.3%) 23 (17.3%) 12 (12.5%)

Chondroblastoma 19 (0.2%) 13 (2.1%) 3 (2.3%) 3 (2.3%) (2.1%)

Osteoid osteoma 19 (0.2%) 13 (2.1%) 3 (2.3%) 3 (2.3%) 1 (1.0%)

Giant cell tumor of bone 44 (4.7%) 30 (4.6%) 7 (5.0%) 7 (5.0%) 6 (6.2%)

Non-ossifying fibroma 34 (3.9%) 24 (3.9%) 5 (3.8%) 5 (3.8%) 7 (7.3%)

Haemangioma 12 (1.4%) 8 (1.3%) 2 (1.5%) 2 (1.5%) 3 (3.1%)

Aneurysmal bone cyst 82 (9.3%) 58 (9.4%) 12 (9.0%) 12 (9.0%) 8 (8.3%)

Simple bone cyst 24 (2.7%) 16 (2.6%) 4 (3.0%) 4 (3.0%) 5 (5.2%)

Fibrous dysplasia 52 (5.9%) 36 (5.9%) 8 (6.0%) 8 (6.0%) 5 (5.2%)

Location

Torso/head 118 (13.4%) 79 (12.9%) 16 (12.0%) 23 (17.3%) 16 (16.7%)

Upper extremity 234 (26.6%) 166 (27.0%) 28 (21.1%) 40 (30.0%) 29 (30.2%)

Lower extremity 528 (60.0%) 369 (60.1%) 89 (66.9%) 70 (52.6%) 51 (53.1%)

*Data is given as mean ± standard deviation; data in parentheses are percentages. The internal data set was split for training, validation, and testing 70%,
15%, 15%, respectively. The external test set obtained from a different institution was included for further independent testing. Malignant tumors
included chondrosarcoma, osteosarcoma, Ewing’s sarcoma, chordoma, plasma cell myeloma, and b cell non-Hodgkin’s lymphomaNHL. Benign tumors
included osteochondroma, enchondroma, chondroblastoma, osteoid osteoma, non-ossifying fibroma NOF, giant cell tumor, haemangioma, simple and
aneurysmatic bone cyst, and fibrous dysplasia
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months after the initial segmentation. The recorded intrareader
reliability as measured by dice score was 0.92 ± 0.13.

To compare the performance to radiologists, two radiology
residents (C.E.v.S., Y.L.) and two radiologists specialized in
musculoskeletal tumor imaging (A.S.G., P.J.M.) classified the
radiographs of the external test set.

Radiomic feature extraction and machine learning
model development

Image processing, feature extraction, machine learning model
development, and validation were performed on a 16-core
Intel-i9 9900K CPU at 3.60 GHz (Intel), 32GB-DDR4-
SDRAM running Linux system (Ubuntu 18.04 Canonical) and
implemented in Python 3.7.7 (open-source, Python Software
Foundation). Radiomic features were extracted as defined in
the pyRadiomics library (version 3.0, https://www.radiomics.
io/pyradiomics.html) [7]. The image of the DICOM file was
extracted as PNG for further preprocessing. The extracted
features are then used as input for the ML models. Clinical
information such as location of the tumor (torso/head, upper
extremity, lower extremity), age, and sex was also used as input.

First, a RFC was trained using 200 estimators and a max-
imum depth of 3 as defined previously [17]. This model en-
abled a detailed analysis of the relevant radiomic features,
which motivated the classification. The 10 most important
features were selected from the RFC model. Additionally, a
GNB and an ANNwith 3 fully connected layers and 200, 100,
and 100 neurons in each layer were trained using the scikit-
learn 0.22.2 (scikit-learn.org) and fastai library [18]. Figure 1
shows an overview of image processing and analysis steps
that allow radiomic analysis and machine learning model
development. The exact description of the machine learning
methods with the model and training parameters used can be
found as code online (https://github.com/NikonPic/
bonetumor-radiomics).

Model evaluation and statistical analysis

Machine learning models were developed on the training set
and validated on the validation set. The best-performing
models on the validation set were chosen for final evaluation
on the test sets. The model performance reported in this study
was observed on the test sets using confusion matrices, accu-
racy, positive and negative predictive value, precision, recall,
f1-score, receiver-operating characteristics (ROC) with area
under the curve (AUC) analysis, and 95% confidence intervals
(CI) with Clopper-Pearson’s method using scikit-learn 0.22.2
(scikit-learn.org) as previously defined [19]. Sensitivity was
calculated as the number of true positives (correctly identified
malignant bone tumors) divided by the number of true
positives (correctly identified malignant bone tumors) and
number of false negatives (malignant bone tumors
incorrectly classified as benign). Specificity was calculated
as the number of true negatives (correctly identified as
benign bone tumors) divided by the number of true
negatives (correctly identified as benign bone tumors) and
the number of false positives (benign bone tumors
incorrectly classified as malignant). McNemar’s test was
used for statistical comparison and p < 0.05 was assumed to
be statistically significant. Assuming a difference in the
accuracy of 7.5% between the model and the resident as
well as the musculoskeletal radiologist with a desired level
of confidence of 95% using McNemar’s test resulted in at
least 80 as the sample size of a test set. Additionally, the
softmax of the output of the ANN was calculated as an
estimate for the certainty of the prediction. Standard
deviations and confidence intervals of the AUCs were
calculated with pROC (1.16.1) using the DeLong method in
R (3.6.1) [20]. Statistical analyses were performed by B.J.S.
Model training, evaluation, and visualization were performed
by C.E.v.S. (8 years of experience in data analysis) and N.J.
W. (computer scientist with 8 years of experience in statistics
and data analysis).

Fig. 1 Overview of the utilized
pipeline. The image and binary
mask are fed to the pyRadiomics
model to extract all relevant
radiomic features. The extracted
features and clinical information
are then sent to an ANN in order
to distinguish between benign and
malignant tumors
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Results

Radiomic feature evaluation and demographic
information

Overall, more than 200 radiomic features were analyzed. Of
all radiomic features and demographic information, ‘age’ and
‘LLH_firstorder_TotalEnergy’ showed the highest relevance
according to their feature importance with the RFC as also
demonstrated in Fig. 2. To further investigate the discrimina-
tory power of individual features, ANNs were trained for 10
epochs each. Only a single of these ten most relevant features
was used as input. These models showed moderate classifica-
tion performance with AUCs from 0.49 to 0.65 or accuracies
from 52 to 62% depending on the feature that was used, high-
lighting that using a single radiomic feature or a single demo-
graphic variable was not sufficient to accurately distinguish
benign frommalignant primary bone tumors but rather a com-
bination of radiomic and/or demographic information was
needed. Interestingly, of the extracted radiomic features, those
that focused on the intensity of individual and neighboring
pixels, as well as those that reflected inhomogeneity, were
more relevant. Detailed information on the individual
radiomic feature performance can be found in Table 2.

Machine learning model evaluation of combined
radiomics and demographic information

Using the available demographic information, the best per-
forming model was a RFC with 0.75 AUC, 76% accuracy
(101/133, 95% CI: 0.68, 0.83), 41% sensitivity (13/32, 95%
CI: 0.24, 0.59) and 87% specificity (88/101, 95% CI: 0.79,
0.93). In comparison, using the selected radiomic features, the
best performing model was an ANN with an 0.71 AUC, 75%
accuracy (100/133, 95% CI: 0.67, 0.82), 66% sensitivity (21/
32; 95% CI: 0.47, 0.81), and 78% specificity (79/101; 95%
CI: 0.69, 0.86).

Combining radiomic features and demographic informa-
tion as input to an ANN resulted in a remarkable increase in
performance with 0.79 AUC, 80% accuracy (107/133, 95%
CI: 0.73, 0.87), 75% sensitivity (24/32, 95% CI: 0.57, 0.89),
and 82% specificity (83/101, 95% CI: 0.73, 0.89) as well as a
positive and negative predictive value of 57% (24/42, 95%CI:
0.41, 0.72) and 91% (83/91, 95%CI: 0.83, 0.96), respectively.
This model achieved higher accuracy than the model based on

Table 2 Performance on the 10
most significant radiomic and
demographic features alone

Feature AUC Accuracy Sensitivity Specificity

age 0.49 ± 0.01 0.58 ± 0.01 0.33 ± 0.09 0.67 ± 0.05

wavelet-LLH_firstorder_TotalEnergy 0.64 ± 0.01 0.6 ± 0.05 0.73 ± 0.03 0.55 ± 0.08

wavelet-HHH_firstorder_TotalEnergy 0.65 ± 0.02 0.61 ± 0.03 0.71 ± 0.04 0.57 ± 0.05

wavelet-LHH_firstorder_TotalEnergy 0.63 ± 0.01 0.62 ± 0.01 0.71 ± 0.04 0.59 ± 0.03

wavelet-LLH_firstorder_Energy 0.61 ± 0.01 0.58 ± 0.02 0.56 ± 0.05 0.59 ± 0.05

wavelet-HLH_firstorder_TotalEnergy 0.65 ± 0.01 0.55 ± 0.03 0.76 ± 0.03 0.48 ± 0.05

wavelet-HHH_firstorder_Energy 0.6 ± 0.01 0.59 ± 0.03 0.56 ± 0.1 0.59 ± 0.07

original_firstorder_TotalEnergy 0.59 ± 0.02 0.52 ± 0.02 0.78 ± 0.03 0.42 ± 0.03

wavelet-LHL_firstorder_TotalEnergy 0.6 ± 0.01 0.55 ± 0.01 0.67 ± 0.03 0.51 ± 0.03

wavelet-HLL_firstorder_TotalEnergy 0.57 ± 0.02 0.52 ± 0.02 0.72 ± 0.03 0.45 ± 0.04

*Data is given as mean ± standard deviation

Fig. 2 Visualization of the 10 most important features with their relative
importance of the random forest classifier
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demographic information or radiomic features alone and dem-
onstrated an increase in accuracy by 4% and 5% (p = 0.041
and p = 0.023), respectively.

Table 3 shows the classification performances of all devel-
oped models. RFC, GNB, and ANN were used as architec-
tures. For each architecture, models were developed that used
radiomic features only, demographic information only, or a
combination of both radiomic features and demographic
information.

Machine learning model evaluation on the external
test set and comparison with radiologists

On the external test set, the best performing ANN achieved an
AUC of 0.90, an accuracy of 75% (72/96, 95%: 0.65, 0.83), a
sensitivity of 90% (28/31, 95% CI: 0.74, 0.98), and a speci-
ficity of 68% (44/65, 95% CI: 0.55, 0.79) as well as a positive
and negative predictive value of 57% (28/49, 95% CI: 0.42,
0.71) and 94% (44/47, 95% CI: 0.82, 0.99), respectively.

The first radiology resident achieved 72% accuracy (68/96,
95% CI: 0.61, 0.80), 61% sensitivity (19/31, 95% CI: 0.42,
0.78), and 75% specificity (49/65, 95% CI: 0.63, 0.85). In
comparison, the model showed similar accuracy (p = 0.134)

at significantly better sensitivity (p < 0.01) and similar speci-
ficity (p = 0.074).

The second radiology resident achieved 65% accuracy (62/
96, 95% CI: 0.54, 0.74), 35% sensitivity (11/31, 95% CI:
0.19, 0.55), and 78% specificity (51/65, 95% CI: 0.67,
0.88). In comparison, the model showed higher accuracy (p
< 0.01) with better sensitivity (p < 0.01) at lower specificity (p
= 0.023).

The first radiologist specialized in musculoskeletal tumor
imaging achieved 84% accuracy (81/96, 95% CI: 0.76, 0.91),
90% sensitivity (28/31, 95% CI: 0.74, 0.98), and 82% speci-
ficity (53/65, 95% CI: 0.70, 0.90). In comparison, the model
showed lower accuracy (p < 0.01) at similar sensitivity (p = 1)
and lower specificity (p < 0.01).

The second radiologist specialized in musculoskeletal tu-
mor imaging achieved 83% accuracy (80/96, 95% CI: 0.74,
0.90), 81% sensitivity (25/31, 95% CI: 0.63, 0.93), and 85%
specificity (55/65, 95% CI: 0.74, 0.92). In comparison, the
model showed lower accuracy (p = 0.013) at similar sensitiv-
ity (p = 0.248) and lower specificity (p < 0.01).

The prevalence of malignant bone tumors was higher in the
external test set compared to the internal test set, possibly
leading to differences in the performance measures of the
ANN between the internal and external test set.

Table 3 The classification performances of the models on the internal
test set using radiomic features or demographic information alone, as well
as combining both radiomic features and demographic information. As

model architectures, the following three were used: A random forest
classifier (RFC), a Gaussian naïve Bayes classifier (GNB), and an
artificial neural network (ANN)*

Model architecture Score Demographic features Radiomic features Combined: radiomic + demographic features

RFC (200 estimators) AUC 0.75 0.73 0.76

Accuracy 0.76 (101/133;
95% CI: 0.68, 0.83)

0.59 (78/133;
95% CI: 0.50, 0.67)

0.60 (80/133;
95% CI: 0.51, 0.69)

Sensitivity 0.41 (13/32;
95% CI: 0.24, 0.59)

0.84 (27/32;
95% CI: 0.67, 0.95)

0.81 (26/32;
95% CI: 0.64, 0.93)

Specificity 0.87 (88/101;
95% CI: 0.79, 0.93)

0.5 (51/101;
95% CI: 0.40, 0.61)

0.53 (54/101;
95% CI: 0.43, 0.63)

GNB AUC 0.72 0.68 0.68

Accuracy 0.44 (59/133;
95% CI: 0.36, 0.53)

0.76 (101/133;
95% CI: 0.68, 0.83)

0.76 (101/133;
95% CI: 0.68, 0.83)

Sensitivity 0.92 (29/32;
95% CI: 0.75, 0.98)

0.44 (14/32;
95% CI: 0.26, 0.62)

0.44 (14/32;
95% CI: 0.26, 0.62)

Specificity 0.29 (29/101;
95% CI: 0.20, 0.39)

0.86 (87/101;
95% CI: 0.78, 0.92)

0.86 (87/101;
95% CI: 0.78, 0.92)

ANN (200, 100, 100) AUC 0.59 0.71 0.79

Accuracy 0.67 (89/133;
95% CI: 0.58, 0.75)

0.75 (100/133;
95% CI: 0.67, 0.82)

0.80 (107/133;
95% CI: 0.73, 0.87)

Sensitivity 0.38 (12/32;
95% CI: 0.21, 0.56)

0.66 (21/32;
95% CI: 0.47, 0.81)

0.75 (24/32;
95% CI: 0.57, 0.89)

Specificity 0.76 (77/101;
95% CI: 0.67, 0.84)

0.78 (79/101;
95% CI: 0.69, 0.86)

0.82 (83/101;
95% CI: 0.73, 0.89)

*In parenthesis proportions are given as numerical values and 95% confidence intervals (CI) are provided. Area under the curve (AUC) were obtained
from receiver operating characteristics (ROC)
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Figure 3A shows the ROC on the internal test set for the
best performing model, an ANN using both radiomic features
and demographic information, as well as the ANNs based on
demographic information or radiomic features alone.
Figure 3B shows the performance of the best-performing
model on the external test set. Figure 4A and B show the
confusion matrices for the best-performing model — an
ANN combining both radiomic and demographic information
on the internal and external test set, respectively.

Examples of correct and incorrect classifications by
the best performing model

Cases of correct and incorrect classifications by the best per-
forming ANN combining both radiomic features and demo-
graphic information were reviewed to further investigate the
functioning of the model. When reviewing correct classifica-
tions, we could identify cases that showed patterns of malig-
nancy as demonstrated in Fig. 5 A and B or showed the typical
appearance of benign lesions as shown in Fig. 5C and D.
Those cases also showed high certainty of prediction of the
ANN with 86% and 93% certainty, respectively. Figure 6A
and B show a case of a benign tumor that was misclassified as
a malignant tumor with a low prediction certainty of 54%.
This may have occurred due to the pathological fracture of
the benign tumor. Figure 6C and D show a case of correct
classification of a malignant tumor with a low to moderate
prediction certainty of 67%.

Discussion

In this study, machine learning models based on radiomics
and demographic information were developed and validated
to distinguish between benign and malignant bone lesions on
radiographs and compared to radiologists on an external test
set. Overall, machine learning models using the combination
of radiomics and demographic information showed a higher
diagnostic accuracy than machine learning models using
radiomics or demographic information only. The best model
was based on an ANN that used both radiomics and demo-
graphic information. On an external test set, this model dem-
onstrated lower accuracy compared to radiologists specialized
in musculoskeletal tumor imaging, while accuracy was higher
or similar compared to radiology residents.

Interestingly, when evaluating individual radiomic features
only, features that reflect large differences in densities of neigh-
boring pixels and inhomogeneity showed the highest discrim-
inatory power indicating malignancy. This is in line with other
studies assessing the ability of radiomic features based on mag-
netic resonance imaging, computed tomography (CT), and pos-
itron emission tomography (PET)-CT in order to distinguish
between benign and malignant lesions in different types of
diseases as it may be a reflection of moth-eaten appearance or
a very inhomogeneous destruction pattern andmay therefore be
more often detected in malignant bone tumors compared with
benign bone tumors.[9, 21, 22]. Of the evaluated demographic
features, age showed the highest discriminatory power, which
is in accordance with previous studies [1, 20].

Fig. 3 A shows the receiver operating characteristics (ROC) on the in-
ternal test set for three artificial neural networks (ANN). One ANN was
based on demographic information alone (red). Another ANN was based
on radiomic features alone (yellow). A third ANN was based on the
combination of demographic information and radiomic features (blue).

The ANN based on both demographic information and radiomic features
displayed the highest discriminatory power. B shows the ROC on the
external test set for the ANN combining demographic and radiomic
features
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Moreover, previous studies used a combination of radio-
graphic features and demographic information to assess bone

tumors on radiographs [13, 23, 24]. Kahn et al used Bayesian
networks to differentiate among 5 benign and 5 malignant

Fig. 4 A shows a confusion matrix of the overall best performing model,
an artificial neural network (ANN) combing both radiomic and demo-
graphic information on the internal test set.B shows the confusion matrix

of the same model on the external test set obtained from another institu-
tion for further, independent testing

Fig. 5 A and B Example of a
malignant tumor in the tibia of a
33-year-old male with a
chondrosarcoma. A shows the ra-
diograph and B shows the seg-
mentation for the radiomics ex-
traction. The artificial neural net-
work model combining both de-
mographic and radiomic infor-
mation correctly predicted a ma-
lignant tumor with a certainty of
86%. C and D Example of a be-
nign tumor in the proximal tibia
of a 15-year-old male with a non-
ossifying fibroma. A shows the
radiograph and B shows the seg-
mentation for the radiomics ex-
traction. The artificial neural net-
work model using the combina-
tion of both, the demographic and
radiomic information, correctly
predicted a benign tumor with a
certainty of 93%
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lesions achieving 68% accuracy [24]. Bao H. Do et al used a
naive Bayesian model to differentiate primary and secondary
bone tumors using 710 cases achieving 62% primary accuracy
to differentiate between 10 distinct diagnoses [13]. Yet, these
approaches used radiologist-defined semantic features only
assessed on radiographs as input for the models, thus depend-
ing on the quality of the readings of the radiologists. In con-
trast, in this study, radiomic features containing first-, second-,
and higher-order statistics were combined with patient data as
input for sophisticated machine learning models [10].
Additionally, it needs to be noted that the sample sizes of all
of the above mentioned previous studies on radiographic fea-
ture assessment of bone tumors were smaller than in this
study, and performances were not evaluated on a separate

hold-out test set or an external test set, in contrast to current
best practices as performed in this study [3, 25, 26].

Due to the varying settings in which patients with bone
lesions present, a quantitative method for image analysis
may guarantee the highest quality of bone tumor diagnostics
in the shortest time. Therefore, automated quantitative evalu-
ation techniques of conventional radiographs obtained during
the clinical routine diagnostic workup in patients with bone
lesions are needed since these are independent of the experi-
ence level in evaluating conventional radiographs of the
treating physicians. In this proof-of-concept study, we were
able to develop a machine learning model using both radiomic
features extracted from radiographs and demographic infor-
mation with an accuracy higher or similar compared to

Fig. 6 A and B Example of a
misclassified tumor from a 41-
year-old female with an
enchondroma and a pathological
fracture through the tumor. A
shows the radiograph and B
shows the segmentation for the
radiomics extraction. The artifi-
cial neural network model com-
bining both demographic and
radiomic information incorrectly
classified this tumor as malignant
with a certainty of 54%. C and D
Example of a malignant tumor
from a 45-year-old diagnosed
with a chondrosarcoma. A shows
the radiograph and B shows the
segmentation for the radiomics
extraction. The artificial neural
network model combining both
demographic and radiomic infor-
mation correctly predicted a ma-
lignant tumor with a certainty of
67%
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radiology residents. Therefore, a model such as this imple-
mented into the clinical routine pipeline may support inexpe-
rienced or moderately experienced radiologists or physicians
in enhancing the quality of their decision-making regarding
their diagnosis and consequently the further management or
referral of these patients. More specifically, a model such as
this may help with ‘ruling-in’ malignant lesions, particularly
when the treating physician or the radiologist has limited ex-
perience. The patient could then be referred to a specialized
center and a biopsy may be performed to secure the diagnosis.

This study has limitations. First, radiomic analysis of the
tumor was only performed on a single radiograph without
considering more available projections. Second, the applied
technique relied on manual segmentations of the bone tumor.
However, automated segmentations of bone tumors on radio-
graphs may be developed in the future. Third, the ANN is
limited by the information entailed in a radiograph and may
be improved with additional information obtained from mag-
netic resonance imaging. Fourth, the demographic informa-
tion included the location of the tumor, age, and sex; however,
the medical history and clinical symptoms such as pain level
and duration were also important and their use may be ex-
plored in future studies. Also, the developed models can cur-
rently only differentiate between benign andmalignant lesions
and not between the different tumor subtypes. However, a
multitude of bone tumors, particularly malignant tumors, can-
not be differentiated further by radiography alone, as indicated
by the low accuracies in the previous studies mentioned
above. In particular, some x-ray features of benign and malig-
nant bone tumors may overlap, such as in low-grade
chondrosarcoma showing a benign growth pattern or in giant
cell tumor of bone sometimes demonstrating an aggressive
growth pattern and periosteal reaction. Moreover, the dataset
included only patients with histopathological diagnoses of the
osseous lesions, since histopathology was considered to be the
standard of reference in our study. Therefore, this may have
created a selection bias that we cannot account for, since from
certain bone lesions such as NOFs or fibrous dysplasia, histo-
pathology is usually only obtained under circumstances in
which bone stability seems endangered or the lesion itself
appears to be ‘atypical’. Finally, bone metastases were not
included in the current study, while they make up a large part
of the malignant bone lesions.

This study is therefore considered to be a proof-of-concept
study and the developed machine learning models need to be
tested, optimized, and further evaluated in larger datasets also
including bone metastases and additionally consisting of con-
ventional radiographs with the final diagnosis of bone lesions
based on the clinical and imaging consensus as well as on
histopathology in future studies.

In conclusion, a machine learning model using both
radiomic features and demographic information was devel-
oped that showed high accuracy and discriminatory power

for the distinction between benign and malignant bone tumors
on radiographs of patients that underwent biopsy. The best
model was based on an ANN that used both radiomics and
demographic information resulting in an accuracy higher or
similar compared to radiology residents. A model such as this
may enhance diagnostic decision-making especially for radi-
ologists or physicians with limited experience and may there-
fore improve the diagnostic work up of bone tumors.
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