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A B S T R A C T   

Prediction models for major nutrients of rice were built using near-infrared (NIR) spectral data based on the 
artificial neural network (ANN). Scientific interpretation of the weight values was proposed and performed to 
understand the wavenumbers contributing to the prediction of nutrients. NIR spectra were acquired from 110 
rice samples. Carbohydrate and moisture contents were predicted with values for the determination coefficient, 
relative root mean square error, range error ratio, and residual prediction deviation of 0.98, 0.11 %, 44, and 7.3, 
and 0.97, 0.80 %, 27, and 5.8, respectively. The results agreed well with ones reported in the previous studies 
and acquired by the conventional partial least squares (PLS)-variable importance in projection method. This 
study demonstrates that the combination of NIR and ANN is a powerful and accurate tool to monitor nutrients of 
rice and scientific interpretation of weights can be performed to overcome black box nature of the ANN.   

Introduction 

Along with wheat, rice (Oryza sativa L.) is one of the main staple 
foods worldwide. The general quality evaluation of rice has been con-
ducted for physical properties, such as grain surface, milling date, va-
riety, and production area, as well as for major nutrients, such as 
carbohydrates, crude proteins, crude fats, and moisture (Rathna Priya, 
Eliazer Nelson, Ravichandran, & Antony, 2019; Birla et al., 2017). Wet 
analysis methods are used for the evaluation of the nutrients. The 
analysis methods differ for each nutritional component, and it takes time 
for sample preparation and analysis. For example, the acid hydrolysis 
and Röse − Gottlieb method are mainly used for crude fat analysis, and it 
takes at least 2 h to analyze a sample (Luo, Xing, Wang, Peng, & Li, 2017; 
Marto et al., 2018). 

Currently, visible/near-infrared (NIR) spectroscopy is widely used in 
the food industry for the rapid evaluation of nutrients (Sampaio, 

Castanho, Almeida, Oliveira, Brites, 2019; Burns & Ciurczak, 2007). The 
NIR analysis method is non-destructive and enables minimal sample 
preparation. Moreover, it can be done rapidly compared to wet analysis 
methods and allows simultaneous determination of multiple nutrients. 
However, when food is analyzed by NIR, the absorption peaks of the 
major nutrients, such as carbohydrate, crude protein, crude fat, and 
water, overlap (Burns & Ciurczak, 2007). Therefore, the development 
and application of an effective data analysis method are very important. 
Chemometrics is a powerful tool that is gaining momentum in the 
analysis of NIR data. Principal component analysis (PCA) and partial 
least squares (PLS) have been widely used to study NIR data. Quanti-
tative and predictive analysis of unknown samples has been done using 
PLS (Sampaio et al., 2019). 

Recently, artificial neural network (ANN) has emerged as an alter-
native tool for evaluating the complex relationships between variables. 
ANN has been successfully applied to process NIR data obtained from 
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biodiesel (Skvaril, Kyprianidis, & Dahlquist, 2017), asparagus (Richter, 
Rurik, Gurk, Kohlbacher, Fischer, 2019), green tea (Yu, Low, & Zhou, 
2018), wheat flour (Barbon Junior et al., 2020), chicken meat (Kato 
et al., 2020), and infant formula (Liu et al., 2021). One of the critical 
advantages of ANN over conventional statistical methods is that both 
linear and nonlinear relationships can be predicted without prior 
transformations. In addition, ANN is flexible because it can be used 
either for regression or classification. Therefore, ANN can be a powerful 
tool to analyze NIR data. 

When ANN is used, avoiding overfitting is very important. Over-
fitting occurs when the model learns too many details in the training 
data so that the model becomes effective in predicting data in the 
training set but not in the test set. Overfitting of ANN is evaluated by 
having a separate data set for testing. Typically, 20 ~ 30 % of the data 
are reserved for testing. Another important drawback of the ANN 
approach is that scientific interpretation is difficult. It is considered to 
have a ‘black box’ nature because of the difficulty in extracting useful 
relational information (Zhang, Beck, Winkler, Huang, Sibanda, & Goyal, 
2018). The model can provide good correlation or classification. How-
ever, usefulness of ANN for study can be limited unless we understand 
meaning of the variables used to construct the ANN. Therefore, there has 
been continuous effort in computer science community to build inter-
pretable and/or explainable neural network (Zhang, Wu, & Zhu, 2018; 
Zhang, Tiňo, Leonardis, & Tang, 2021; Islam, Ahmed, Barua, Begum, 
2022). 

Recently, it was proposed that weight interpretation can be used to 
understand the scientific interpretation ANN model built based on ul-
trahigh resolution mass spectra obtained from coal contaminated soils. 
It was shown that the compounds contributing to coal contents of soil 
could be identified by weight interpretation (Solihat et al., 2022). 
However, the weight interpretation has not been applied to study data 
obtained from food. In this study, constructed predictive models for 
nutrients using an ANN was developed from the NIR spectra of 110 rice 
samples. Scientific interpretation of the predictive model was based on 
its weight values, and conventional PLS analysis was implemented for 
comparison with the results and interpretations of the proposed method. 
To the best of our knowledge, this is the first study to use the weight 
analysis for scientific interpretation of the ANN model of NIR data ob-
tained from food. 

Materials and methods 

Sample preparation 

A total of 110 rice samples of different origins and varieties were 
purchased from the Korean local markets. Rice samples from different 
origins were used to obtain as wide range of nutrient values as possible. 
The rice was comminuted to a particle size of 500 μm using a variable 
speed rotor mill (Pulverisette 14 classic line, Fritsch, GmbH, Idar- 
Oberstein, Germany), then transferred to a 10 mL transparent vial 
with a height of 5 cm, and the inlet of the vial was sealed with Teflon 
tape to minimize external contamination. The rice powder samples were 
stored at − 20 ℃ for 24 h to maintain the same external conditions, and 
further stored at room temperature for 24 h before NIR and nutrient 
analysis. 

Nutrient analysis 

Crude protein 
The crude protein was analyzed using an automatic protein analyzer. 

In the preparation process for decomposition of the test solution, 
approximately 1 g of rice powder sample was precisely taken and placed 
in a decomposition tube, and 2 tablets of a decomposition accelerator (1 
tablet: 3.5 g K2SO4/3.5 mg Se, 1000 Kjeltabs Se/3.5, FOSS, Hillerod, 
Denmark) and 12 mL of concentrated sulfuric acid were added. Then, it 
is decomposed at 420 ℃ for 60 min in a decomposition device and 

cooled to room temperature. 80 mL of distilled water was added to the 
test solution, 25 mL of a mixing indicator (0.1 % methyl red/0.1 % 
bromocresol green/4 % boric acid) was mixed, and then put into an 
erlenmeyer flask and analyzed in an automatic analyzer (AUTOMATIC 
PROTEIN/FAT ANALYZER, FOSS, Hillerod, Denmark). The crude pro-
tein was calculated through Eq. (1). Atomic weight of nitrogen is 
recorded as (14.01). The sulfuric acid molarity is denoted by M. The 
nitrogen Kjeldahl coefficient is recorded as F (5.95). 

Crude protein (%) =
(HCl(mL) − Blank test (mL) ) × M × 14.01

Sample volume (mg)
× F × 100

(1)  

Crude fat 
Crude fat analysis was performed using the acid decomposition 

method and the Roese-Gottlieb method. About 2 g of rice powder sample 
was put into a beaker, 2 mL of ethanol and 10 mL of hydrochloric acid 
were added, it was heated while mixing for 20 to 40 min in a water bath 
at 70 to 80 ℃. After that, 10 mL of ethanol is added, and 10 g of the test 
solution cooled to room temperature is put into a majonnier tube. Add 
water to the majonnier tube to make 11 mL test solution, and mix while 
heating to 40 ℃ ~ 50 ℃. To the test solution, 1.5 mL of ammonium 
hydroxide and 10 mL of ethanol were added and mixed well. Next, add 
25 mL of ether to mix the test solution, open the cap and blow off the 
ether vapor. Close the cap again, mix for 1 min, add 25 mL of benzine 
and mix for 1 min. When the supernatant liquid was completely trans-
parent through centrifugation at 600 rpm, the supernatant liquid was 
transferred to an erlenmeyer flask, and 15 mL of ether and benzine were 
added to the remaining test solution, and the above operation was 
repeated 3 times. Finally, wash the cap outlet and funnel of the 
majonnier tube with a 1:1 vol ratio mixture of ether and benzine, which 
mix with the test solution in an erlenmeyer flask. After the solvent of the 
test solution was blown out in a water bath, it was dried for constant- 
weight in a dryer at 100 ± 2 ℃ and the crude fat was calculated 
through Eq. (2). The weight of blank sample plate is recorded as (W0, g). 
The weight of the sample plate containing the crude fat is marked with 
(W1, g). And the sampling weight is denoted by (S, g). 

Crude fat (%) =
W1 − W0

S
× 100 (2)  

Moisture 
Moisture was analyzed using the atmospheric pressure heating dry-

ing method. In this method, the sample is dried under atmospheric 
pressure at a temperature of 105 ℃ slightly higher than the boiling point 
of water, and the reduced moisture content is measured. Add 5 g of rice 
powder sample to the pre-heated and constant-weighted sample plate, 
and dry for 5 h in a dryer at 110 ℃. Then, after cooling for 30 min in a 
desiccator, the total weight of the sample plate and the sample is 
measured. Dry the sample plate for 2 h and repeat the above analysis 
until the constant- weight is reached. The moisture content of the 
constant-weighted sample was calculated through Eq. (3). The weight of 
blank sample plate is recorded as (W0, g). The weight of the sample plate 
containing the moisture is marked with (W1, g). And the sampling 
weight after drying is indicated by (W2, g). 

Moisture (%) =
W1 − W2

W1 − W0
× 100 (3)  

Ash 
Ash was analyzed by direct ashing method. The sample was put in a 

constant-weight incineration crucible, preliminarily carbonized in an 
electric muffle furnace (JSMF-270T, JSR, Gongju, Korea), and then 
incinerated for 12 h so that the entire sample became grayish-white 
color in an incinerator (J-FM3, JISICO, Seoul, Korea) at 550 to 600 ℃. 
Then, after cooling to 200 ℃, it was allowed to cool in a desiccator to 
obtain the constant-weight and calculated as a percentage (%) of the 
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weight of the sample through Eq. (4). The weight of blank sample cru-
cible is recorded as (W0, g). The weight of crucible and sample before 
ashing is marked with (W1, g). The crucible and ash weight after drying 
is indicated by (W2, g). 

Ash(%) =
W2 − W0

W1 − W0
× 100 (4)  

Carbohydrate 
Carbohydrates were calculated as 100 minus the sum of the other 

nutrients content (crude protein, crude fat, moisture and ash). 
The list of rice and their nutrient values are listed in supplementary 

material table S1. 

NIR analysis 

An FT-IR/NIR spectrophotometer and the NIR reflectance accessory 
(NIRA; Frontier, PerkinElmer, Inc., Waltham, MA, USA) were used in 
this study. FT-IR spectra (50 scans per spectrum) were recorded at a 
resolution of 16 cm− 1 using the CaF2 beam splitter and InGaAs detector 
(optimum range: 10000 ~ 4000 cm− 1). The measurement was done 
from powdered rice sample placed in a 10 mL transparent vial at a height 
of about 5 cm. 50 scans of data were averaged for each spectrum. After 
each measurement, the sample was vortexed for 1 min and seven 
repeated measurements were performed. The NIR was calibrated 
through a matrix scan. To achieve random sample particle distribution, 
the sample was blended using a vortex mixer (KMC − 1300 V, Vision 
Scientific, Co., Daejeon, Korea) for 5 min before each measurement. 
Each rice sample was analyzed seven times to confirm reproducibility. 
As a result, a total of 770 spectra were obtained from 110 rice samples. 
The obtained NIR spectra are provided in Fig. S1. 

Neural network regression and PLS regression 

Neural network regression 
The NIR data were combined using the ‘outerjoin’ function in 

MATLAB (version R2021b; MA, USA). The neural network regression 
(NNR) was performed using the Deep Learning Toolbox in MATLAB. The 
regression model was built based on randomly selected 616 spectra 
obtained from 88 rice samples, and the remaining 154 spectra from 22 
rice samples were used to test the ANN model. The prediction model for 
carbohydrate content was generated using regression learner with one 
hidden layer having 25 nodes. K-fold cross-validation with n = 5 and 
sigmoid activation function were used. Data standardization was not 
used. Models for moisture, fat, and protein contents were built under the 
same conditions as those used for carbohydrate content. 

A feed-forward neural network with three layers (an input layer, a 
hidden layer, and an output layer) was used in this study. The layers are 
pictorially described in Fig. 1. The raw NIR spectra was used for the 
input layer. The hidden layer receives the information from the input 
layer and processes them according to the Eq. (5). The obtained value is 
sent to the output layer which will also process the information from the 
hidden layer and give the output based on the Eq. (6). The intercon-
nection of the nodes between the layers can be divided into two basic 
classes, namely the feedforward neural network and recurrent neural 
network. 

The input signals are the NIR absorbance values of rice measured at i 
wavenumber (Ai). There is one input node per wavenumber in a spec-
trum. The weighted input signals in the input nodes are transferred to 
the hidden layer. Node i in the input layer is connected to node j in the 
hidden layer by the weighting factor Wij. These weights are adjusted 
during the learning process. The value of node m (Nm) in the hidden 
layer is calculated by Eq. (5). 

Nm = (w1m × A1)+ (w2m × A2)+⋯+(wnm × An)+ bm (5) 

Fig. 1. Schematic representation of the feed-forward neural network used in this study.  
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The predicted value (V) is calculated by combining the values for the 
nodes, as shown in Eq. (6). 

V = (w1 × N1)+ (w2 × N2)+⋯+(wm × Nm)+ b (6) 

The final weight value (wn in Eq. (6)) can be examined to determine 
the top contribution nodes. The larger the weight value, the greater the 
contribution. The nodes with a major contribution can be further 
examined to determine the wavenumbers that contribute to the nodes. 
The larger the weight of the node (wnm in Eq. (5)), the larger the 
contribution of the corresponding wavenumber. 

PLS regression 
The PLS regression analysis was done using the Statistics and Ma-

chine Learning Toolbox in MATLAB. The ‘plsregress’ function was used 
for the analysis. Variable importance in projection (VIP) scores were 
calculated as the weighted sum of the squared correlations between the 
PLS components and the original variable (Cocchi, Biancolillo, & Marini, 
2018). 

Fig. 2. Plots presenting a) correlation between measured and predicted carbohydrate contents of 88 (left) and 22 (right) rice samples based on the ANN model, b) 
weights of nodes used to predict the final value (refer to equation (2), and c) weight values of 11th node and VIP score from PLS analysis. 
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Results and discussion 

Carbohydrate of rice 

The developed prediction model for carbohydrate content was 
applied to 616 NIR spectra used for the prediction and 154 NIR spectra 
reserved for evaluation. The obtained values from the seven replicates 
were averaged and the averaged values are provided in Fig. 2a. The data 
obtained from 88 rice samples were used to build the ANN model and 
ones from 22 rice samples were to test the model. The raw data used to 
plot Fig. 2b are tabulated in Table S2. There was a good correlation (R2 

= 0.98 and 0.93) between the measured and predicted carbohydrate 
contents for both data sets. Moreover, the relative root mean square 
error of calibration (rRMSEC) and of prediction (rRMSEP) were 0.11 % 
and 0.22 %, respectively, for 616 and 154 NIR data sets, respectively. 
The range error ratio (RER) and the residual prediction deviation (RPD) 
were 44 and 7.3 for the prediction model. Based on the results obtained 
from the evaluation data set, we are confident that overfitting is not a 
problem for the developed model of carbohydrate content. 

To further examine the validity of the proposed model, the weights of 
the ANN were analyzed. As discussed in section 2.4, one interesting 
characteristic of ANN is that the weights of the predicted values can be 

Fig. 3. Plots presenting a) correlation between measured and predicted moisture contents of 88 (left) and 22 (right) rice samples based on the ANN model, b) weights 
of nodes used to predict the final value (refer to equation (2), and c) weight values of 10th node and VIP score from PLS analysis. 
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examined to identify the nodes with a major contribution (refer to Eq. 
(6)). The weights of the predicted values are plotted in Fig. 2b. These 
data suggest that node 4, 11, 15, and 21 have major contributions to the 
prediction, and the weights associated with node 11 have the largest 
values. The weight values of node 11 are provided in Fig. 2c. 

High positive weight values were observed at approximately 5630 ~ 
5500 cm− 1, 4790 cm− 1, 4540 cm− 1 (box a, b, and c in Fig. 2c). In pre-
vious studies, it was reported that the OH stretching/CO stretching 
combination and the CH combinations of polysaccharides presented a 
NIR peak around 4440 cm− 1 (Burns & Ciurczak, 2007; Cozzolino, Phan, 
Netzel, Smyth, & Sultanbawa, 2021; Li, Wang, Du, Diallo, & Xie, 2017) 
and the peak at 4790 cm− 1 can be assigned to the CH combinations in 
sugars (Baeva et al., 2020). The broad peak at 5630 ~ 5500 cm− 1 can be 
associated with the CH2 stretching overtones (Baeva et al., 2020). The 
previously reported peak locations match well with those observed in 
this study. 

The data presented in Fig. 2b show that the interpretation based on 
neural network calculation is consistent with the current knowledge on 
carbohydrate NIR spectra. These findings can serve as evidence of val-
idity for the current approach. 

To compare the ANN approach with the conventional method, PLS 
analysis was performed on the carbohydrate content of rice and NIR 
data. For the PLS calculation of carbohydrate content, ten PLS compo-
nents were used. The plot of the percentage of variance explained by the 
PLS components is presented in Fig. S2a. Six PLS components could 
explain 84 % of the variance. The prediction results based on the PLS 
components are presented in Fig. S2b. R2 was 0.84 when six factors were 
used. It is apparent that better prediction is observed by employing 
neural network calculation compared to the conventional PLS method. 
The VIP scores were calculated, and the results were plotted versus 
wavenumber (Fig. 2c, bottom). The VIP score can be used to find the 
variables (in this case, the wavenumber) that contribute to the predicted 
y-values. The peak at 4790 cm− 1 had high VIP values, and it agreed well 
with the results from ANN. However, differences between ANN and PLS 
were also observed. For example, the broad peak between 5630 ~ 5500 
cm− 1 had high weight values but low VIP values. 

Moisture of rice 

For the evaluation of the developed moisture content prediction 
model, the training set of 616 NIR data and prediction set of 154 NIR 
data were respectively applied. The calculation results are shown in 
Fig. 3a. There was a good correlation (R2 = 0.97 and 0.96) between the 
measured and predicted moisture content for both data sets. The 
rRMSEC and rRMSEP between measured and predicted values were 
0.85 % and 1.5 % for the 616 and 154 NIR data sets, respectively. The 
RER and RPD were 27 and 5.8 for the predictive model. The good cor-
relation obtained from the evaluation data set suggests that overfitting is 
not a problem with the developed moisture content model. 

The wavenumbers contributing to the prediction of moisture content 
were investigated by examining the weights of the nodes. The weights of 
the 25 nodes to the output value are plotted in Fig. 3b. Node 7, 10, and 
11 had higher weight values than the other nodes, and node 10 had the 
largest weight value. 

All three nodes (7, 10, and 11) had strong and broad positive weight 
values at 6800 ~ 5890 cm− 1 and 5190 ~ 4980 cm− 1 (box a and b in 
Fig. 3c). It is well documented that moisture produces a broad peak at 
6940 cm− 1 (first overtone of O–H stretches) and another at 5210 cm− 1 

(O–H stretch/deformation combination, second overtone of O–H 
bends) (Li et al., 2019; Jin, Shi, Yu, Yamada, & Sacks, 2017; Guan, Liu, 
Huang, Kuang, & Liu, 2019). The positive weight values observed at 
around 4500 cm− 1 (box c in Fig. 3c) have been assigned to water bound 
to minerals or protein in previous studies (Roberts & Cozzolino, 2017; 
Yüceer & Caner, 2020). 

The PLS analysis was performed on the moisture content, and the 
results are shown in Fig. S3. The PLS of moisture content was calculated 

through ten PLS components. The percentage of variance explained by 
the PLS component is shown in Fig. S3a. In Fig. S3b, five PLS compo-
nents could demonstrate for 92 % of the variance and R2 was 0.92. It was 
found that the neural network calculation method was better than the 
conventional PLS method for predicting moisture content. The VIP 
scores were calculated, and the VIP score versus wavenumber plot was 
shown in Fig. 3c (bottom). The moisture prediction results were shown 
the peaks with high VIP scores at 5190 ~ 4980 cm− 1 and 4560 cm− 1, 
which matched the ANN results well. However, differences were also 
observed in ANN and PLS results. For example, the broad peak between 
6800 ~ 5890 cm− 1 had high weight values but low VIP values. 

Protein of rice 

The calculated protein content prediction model was applied to the 
NIR spectrum, respectively, and the results are shown in Fig. 4a. The 
correlation between protein contents measured values and predicted 
values in both data sets was observed as R2 = 0.98 (left) and 0.92 (right), 
indicating that this was a good predicted result. The rRMSEC and 
rRMSEP between the measured and predicted values were 0.7 % (left) 
and 1.2 % (right) for 616 and 154 NIR data sets. When the RER and RPD 
values were checked for accuracy evaluation to verify their suitability 
for analysis, the RER and RPD were confirmed to be suitable for pre-
dictive analysis of protein content at 31 and 7.0 for predictive models. 

By examining the weights of the nodes, the wavenumbers contrib-
uting to the prediction of protein content were investigated. The weights 
of 25 nodes to the output value are plotted in Fig. 4b. Node 10, 12, and 
23 had appreciably higher weight values than the other nodes, and node 
23 had the largest weight value. 

The nodes have positive weights at 5950 ~ 5750 cm− 1 (box a in 
Fig. 4c), 4880 cm− 1 (box b in Fig. 4c) and 4560 cm− 1 (box c in Fig. 4c). 
An amide bond yields a broad peak at 4650 ~ 4500 cm− 1. Especially, the 
peak at 4900 ~ 4800 cm− 1 is often used to quantify protein (Ishigaki & 
Ozaki, 2020; Ishigaki et al., 2021). In our work, the broad peak at 5950 
~ 5750 cm− 1 (box a in Fig. 4c) also had positive weights. Bands in the 
region of 6250 ~ 5880 cm− 1 have been attributed to the overtones of 
C–H, C–N, and N–H groups of protein (Qiu, Lü, Lu, Xu, Zeng, & Shui, 
2018). Therefore, the interpretation based on ANN agrees with the 
current knowledge on protein analysis from the NIR spectra of rice. 

For comparative evaluation of protein content analysis of ANN 
computations and conventional PLS method, the PLS method was per-
formed with the same data sets. Fig. S4 shown that ten PLS components 
were used to predict protein content and that 75 % ratio of variance 
could be explained by six PLS components (Fig. S4a). The prediction 
results based on six PLS components were presented in Fig. S4b. The 
correlation R2 between the measured value of the protein contents and 
the predicted values was 0.75 for six PLS components. Based on the 
analysis results, it was confirmed that the protein prediction operation 
using artificial neural network computation (R2 = 0.98) was better than 
the conventional PLS calculation (R2 = 0.75). The VIP scores have been 
calculated, and the obtained value versus wavenumber plot is shown in 
Fig. 4c (bottom). For protein prediction, the weight distribution 
matched the VIP score well. The peaks at 5950 ~ 5750 cm− 1, 4880 cm− 1 

and 4560 cm− 1 had high VIP scores and weight values. 

Fat of rice 

A prediction model was generated and evaluated for fat content and 
applied to 616 and 154 NIR spectra, respectively. The calculated results 
are provided in Fig. 5a. Like that observed for the carbohydrate, mois-
ture, and protein contents, there was a good correlation (R2 = 0.92 and 
0.87) between the measured and predicted fat contents for both sets of 
data. However, the rRMSEC and rRMSEP between the measured and 
predicted values was 8.5 % and 10.7 % for 616 and 154 NIR data sets, 
respectively. The RER and RPD were 13 and 3.6 for the prediction 
model. Thus, the prediction was not as accurate as the other nutrients 
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described in the above sections. This lower accuracy of prediction can be 
attributed to the low content of fat in rice, which averaged about 1 % of 
the total weight of rice. 

The weights of 25 nodes to the output value are plotted in Fig. 5b. 
Examining the weight of nodes to the final output, node 8 and 19 had the 
highest positive values. The peaks at 5800 cm− 1 and 4300 cm− 1 had the 
largest positive weights (box a and b in Fig. 5c). In previous studies, the 
peaks with maximum intensity at 5800 cm− 1 and around 4000 cm− 1 

were mainly associated with rice germ (Malegori et al., 2020). There-
fore, the interpretation of the weights is in agreement with the results 
from previous works. 

PLS analysis was performed for the fat content, and the results are 
shown in Fig. S5. For the PLS calculation of fat content, ten PLS com-
ponents were used. The percentage of variance explained by the PLS 
component is shown in Fig. S5a. Six PLS components could explain 86 % 
of the variance, and the prediction results based on six PLS components 
are presented in Fig. S5b. R2 was 0.86 with six PLS components. Fig. 5c 
(bottom) shown the VIP score and wavenumber plot. For the predicted 
values of the fat content, the distribution were consistent with the VIP 
scores. The representative peaks of the fat contents, 5800 cm− 1 and 
4300 cm− 1, both had high VIP scores and weight values. Therefore, it 
was concluded that both techniques successfully identified the 

Fig. 4. Plots presenting a) correlation between measured and predicted protein contents of 88 (left) and 22 (right) rice samples based on the ANN model, b) weights 
of nodes used to predict the final value (refer to equation (2), and c) weight values of 23th node and VIP score from PLS analysis. 
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important variables (wavenumbers) contributing to fat content. 

Conclusions 

In this study, ANN was applied to construct prediction models for the 
carbohydrate, protein, moisture, and fat contents of rice. A very accurate 
prediction can be achieved based on the proposed method. The RPD 
values of the ANN based models for carbohydrate, moisture, protein, 
and fat were 3.27, 5.8, 7.0 and 3.6. The RER values for the nutrients 
were 44, 27, 31, and 13. Pinto, Ribeiro and Farinas (2018) suggested 
that RPD and RER values of the model should be larger than 3 and 10, 

respectively (Pinto, Ribeiro, & Farinas, 2018). Therefore, excellent 
models for prediction of the nutrients can be built based on ANN. In 
addition, a scientific interpretation of the weight values was made to 
understand the wavenumbers contributing to the prediction of nutrients. 
The interpretation, which was based on the weight values, was in good 
agreement with the conventional PLS method. In addition, ANN pro-
vided improved prediction compared to PLS. This study shows that the 
NIR − ANN combination is a powerful tool to monitor the nutrient status 
of rice. The approach used in this study can be applied to other types of 
food, and further study is currently being conducted in this area. 

Fig. 5. Plots presenting a) correlation between measured and predicted fat contents of 88 (left) and 22 (right) rice samples based on the ANN model, b) weights of 
nodes used to predict the final value (refer to equation (2), and c) weight values of 19th node and VIP score from PLS analysis. 
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