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Abstract
Ferroptosis, a type of iron-dependent programmed cell death distinct from apoptosis, necroptosis, and other types of cell 
death, is characterized by lipid peroxidation, reactive oxygen species production, and mitochondrial dysfunction. Accu-
mulating evidence has highlighted vital roles for ferroptosis in multiple diseases, including acute kidney injury. Therefore, 
ferroptosis has become a major focus for translational research. However, despite its involvement in pathological conditions, 
there are no pharmacologic inhibitors of ferroptosis in clinical use. In the context of drug repurposing, a strategy for iden-
tifying new uses for approved drugs outside the original medical application, we discovered that vitamin K1 is an efficient 
inhibitor of ferroptosis. Our findings are strengthened by the fact that the vitamin K antagonist phenprocoumon significantly 
exacerbated ferroptotic cell death in vitro and also massively worsened the course of acute kidney injury in vivo, which is of 
utmost clinical importance. We therefore assign vitamin K1 a novel role in preventing ferroptotic cell death in acute tubular 
necrosis during acute kidney injury. Since the safety, tolerability, pharmacokinetics, and pharmacodynamics of vitamin K1 
formulations are well documented, this drug is primed for clinical application, and provides a new strategy for pharmaco-
logical control of ferroptosis and diseases associated with this mode of cell death.
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Introduction

Acute kidney injury (AKI) occurs in up to 20% of hospital-
ized patients and is a major clinical problem that is asso-
ciated with high mortality and morbidity [1]. Therapy for 
AKI currently consists of supportive measures in addition 
to removal of trigger factors [2]. Despite major scientific 
efforts, there is currently no established therapy that can 
halt pathological cell death in the kidney, as it occurs during 
acute tubular necrosis in AKI. In recent years, it has become 

evident that the cell death form ferroptosis is the most patho-
physiologically relevant form of cell death in acute tubular 
necrosis during AKI [3–5]. First recognized as a distinct 
entity in 2008 [6], and named in 2012 [7], ferroptosis is a 
form of inflammatory cell death, characterized by excessive 
iron-dependent lipid peroxidation in the plasma membrane 
[8, 9]. Three major enzymatic protective mechanisms have 
been described that guard cells against this lethal accumula-
tion of lipid peroxides: (1) cytosolic glutathione peroxidase 
4 (GPX4) catalyzes the reduction of lipid peroxides in a 
glutathione (GSH)-dependent manner, which relies on cel-
lular cystine import via the system  xc

− transporter [3, 7, 10]; 
(2) ferroptosis suppressor protein 1 (FSP1), an oxidoreduc-
tase of the plasma membrane dependent on coenzyme Q10 
[11, 12]; and (3) dihydroorotate dehydrogenase (DHODH), 
which mainly reduces lipid peroxides in mitochondria [13]. 
If these protective mechanisms are inactivated by pharma-
cological agents or in the context of pathological conditions, 
ferroptosis occurs, as is the case in AKI. Once activated, fer-
roptosis spreads to neighboring cells due to its propagative 
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nature [14, 15], leading to pronounced kidney cell death and 
organ failure [3–5].

Ferroptosis can be efficiently inhibited by specific antioxi-
dant substances active in lipid membranes [16, 17], although 
no substance is yet in clinical use as a ferroptosis inhibi-
tor. Therefore, the identification of a safe, stable, and clini-
cally applicable ferroptosis inhibitor for use in humans is 
an attractive therapeutic strategy for the treatment of AKI. 
A promising candidate in this respect is vitamin K1, a fat-
soluble vitamin that has been used safely and reliably for 
decades in the prophylaxis of vitamin K deficiency bleed-
ing in neonates [18, 19] and for various ailments in adults, 
without showing toxicity even at very high doses [20–22].

Already in the last millennium, several groups described 
that vitamin K and its derivatives can prevent lipid peroxi-
dation and may even be more potent for this purpose than 
vitamin E (tocopherol) [23–26], which is widely regarded 
as the most important antioxidant protective mechanism of 
biomembranes [27]. Furthermore, reports from the early 
2000s showed that vitamin K can inhibit glutathione deple-
tion-mediated and lipoxygenase-dependent oxidative cell 
death in neurons and oligodendrocytes [28, 29], a type of 
cell death that shares many common features with ferropto-
sis. Based on this, we hypothesized that vitamin K, which is 
already in wide clinical use for other indications, might also 
be a potent inhibitor of ferroptosis, and it could potentially 
be safely used to treat AKI in humans.

Materials and methods

Cell lines

NIH3T3 and HT-1080 cells were obtained from American 
Type Culture Collection (Manassas, VA, USA). Both cell 
lines were cultured in Dulbecco’s modified Eagle’s medium 
(DMEM, Gibco, Thermo Fisher Scientific, Schwerte, Ger-
many) supplemented with 10% (vol/vol) fetal calf serum 
(FCS, PAN-Biotech GmbH, Aidenbach, Germany), 100 U/
ml penicillin, and 100 μg/ml streptomycin (Merck Milli-
pore GmbH, Darmstadt, Germany). For HT-1080 cells, the 
medium was additionally supplemented with MEM NEAA 
(Gibco, Thermo Fisher Scientific).

Murine proximal tubular epithelial cells (MCTs) were a 
generous gift from Alberto Ortiz (Department of Medicine, 
Universidad Autonoma de Madrid, Madrid, Spain). These 
cells were cultured in Roswell Park Memorial Institute 
(RPMI) 1640 medium (Gibco, Thermo Fisher Scientific) 
supplemented with 10% (vol/vol) FCS, 100 U/ml penicil-
lin, and 100 μg/ml streptomycin.

All cell lines were cultured in a humidified 5%  CO2 
atmosphere at 37 °C. Negativity for mycoplasma was rou-
tinely checked using a MycoAlert™ Mycoplasma Detection 

Kit (Lonza, Cologne, Germany). Unless stated otherwise, 
assays were conducted on 1 ×  105 cells in 1 ml of medium.

Mouse embryonic fibroblasts (MEFs) from C57BL/6 J 
mice were generated in our lab from E13.5 embryos as 
described previously [30]. Briefly, after the placenta, yolk 
sac, head, and dark red organs had been removed, embryos 
were finely minced and digested for 20 min in 0.25% trypsin. 
A single-cell suspension was seeded for culture. Primary 
MEFs were cultured in DMEM supplemented with 10% 
FCS, 50 U/ml penicillin, 50 μg/ml streptomycin, and 7 µl/l 
β-mercaptoethanol.

Primary murine proximal tubular cells (PTCs) were 
isolated as described previously [31]. Briefly, 6-week-
old C57BL/6 J mice were sacrificed, their kidneys were 
removed, and the cortices were harvested. Cortex tissue 
was chopped and placed into Hank’s balanced salt solution 
(HBSS, Gibco, Thermo Fisher Scientific), supplemented 
with 15 mM glucose, 1 mM l-alanine, 5 mM glycine and 
15 mM HEPES, to which 0.1% collagenase type 2 (Sigma-
Aldrich, Taufkirchen, Germany) and 96 µg/ml soybean 
trypsin inhibitor (Sigma-Aldrich) were added beforehand. 
Minced cortex tissue was incubated for 30 min at 37 °C. 
Digested cortices were transferred through a 250 µm sieve 
(Thermo Fisher Scientific), briefly centrifuged (170×g 
at room temperature), resuspended, and passed through 
a 100 µm nylon cell strainer (Corning Incorporated, NY, 
USA via Merck). Tubule fragments were collected from 
the sieve using the HBSS solution mentioned above, sup-
plemented with 1% bovine serum albumin. After centrifu-
gation (170×g, 5 min at room temperature), the pellet was 
resuspended in medium consisting of phenol red free 1:1 
DMEM/F12 supplemented with a mixture of 1 × ITS (Gibco, 
Thermo Fisher Scientific), 50 nM hydrocortisone (Sigma-
Aldrich), MEM NEAAs, 1% (v/v) FCS, 100 U/ml penicillin 
and 100 μg/ml streptomycin. Tubule fragments were plated 
on 24-well plates (Cell+, Sarstedt, Nümbrecht, Germany) 
and cultured at 37 °C in a humidified 5%  CO2 atmosphere. 
Over 90% purity of proximal tubular fragments was ensured 
by fluorescence microscopy after staining for the proximal 
tubular marker megalin [32] (antibody sc-515750, Santa 
Cruz Biotechnology, Heidelberg, Germany). Within 1 week, 
cells grew from the tubule fragments, reached 70% conflu-
ency and were used for experiments.

Reagents

Erastin (571203-78-6) and RSL3 (1219810-16-8) were 
bought from Tocris Bioscience (Bio-Techne GmbH, Wies-
baden, Germany). Ferrostatin-1 (SML0583), phenprocou-
mon (SML2365) and iFSP1 (SML2749) were purchased 
from Sigma-Aldrich. Brequinar (HY-108325) was purchased 
from MedChemExpress (via Hölzel Diagnostika, Cologne, 
Germany). Vitamin K1 (phytomenadione) dissolved at 
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a concentration of 10 mg/ml in glycocholic acid, [3-sn-
phosphatidyl]choline, and sodium hydroxide was obtained 
from CHELAPHARM Arzneimittel GmbH (Greifswald, 
Germany).

Flow cytometry analysis of cell death

Phosphatidylserine exposure to the outer cell membrane of 
apoptotic cells or inner plasma membrane of necrotic cells 
and incorporation of 7-amino-actinomycin D (7-AAD) into 
necrotic cells were quantified by flow cytometry analysis. 
After stimulation of cells under the indicated conditions, 
staining was performed on single-cell suspensions using 
FITC Annexin V (BioLegend, 640906) and 7-AAD Viabil-
ity Staining Solution (BioLegend, 420404) according to 
the manufacturer’s instructions. Fluorescence was analyzed 
using an FC-500 flow cytometer (Beckman Coulter GmbH, 
Krefeld, Germany).

Analysis of cellular lipid peroxide generation

Cells were treated for 4 h with 5 µM RSL3 (± 1 µM ferrosta-
tin-1 or 10 µM vitamin K1, respectively) and harvested by 
trypsinization. Thereafter, the cells were suspended in 500 µl 
PBS containing 2 µM BODIPY® (581/591) C11 (Gibco, 
Thermo Fisher Scientific). Afterwards, cells were incubated 
for 10 min at 37 °C in a tissue culture incubator, centri-
fuged (400 × g, 10 min, 4 °C), resuspended in 700 µl of fresh 
PBS, passed through a 40 µM cell strainer (BD Biosciences, 
Heidelberg, Germany), and analyzed using a FC-500 flow 
cytometer equipped with a 488 nm laser for excitation. Data 
were collected from the FL1 channel, and a minimum of 
10,000 cells were analyzed per condition.

Analysis of cell death by western blotting

For immunoblotting, 1 ×  105 adherent cells were seeded in 
6-well plates and 24 h later treated as indicated. Thereafter, 
the cells were harvested, washed, and lysed in ice-cold modi-
fied Frackelton buffer (10 mM Tris–HCl (pH 7.5), 50 mM 
NaCl, 1% Triton X-100, 30 mM  Na4P2O7, 50 mM NaF, 
100 μM  Na3VO4, 2 μM  ZnCl2), containing 1 mM  C7H7FO2S 
(PMSF). Similarly, the kidney lysates used to prepare immu-
noblots shown in Fig. 5d were obtained by homogenization 
in this buffer. Insoluble material was removed by centrifuga-
tion (14,000×g, 10 min, 4 °C), and protein concentrations 
were quantified using a commercial Bradford assay kit (Bio-
Rad GmbH, Munich, Germany) according to the manufac-
turer’s instructions. Equal amounts of protein (20 μg per 
lane) were resolved by reducing SDS-PAGE and transferred 
to a polyvinylidene fluoride (PVDF) membrane (GE Health-
care Life Sciences, Freiburg, Germany). Membranes were 
probed with specific primary antibodies against acyl-CoA 

synthetase long-chain family member 4 (ACSL4; ab155282, 
Abcam, Berlin, Germany) or GPX4 (ab125066; Abcam), 
respectively, and corresponding secondary horseradish per-
oxidase (HRP)-conjugated polyclonal goat anti-rabbit immu-
noglobulin (Jackson ImmunoResearch Laboratories, Inc., 
West Baltimore Pike, PA, USA; #111-035-003 via Dianova, 
Hamburg, Germany).

Autoradiographs were generated using Amersham Hyper-
film MP high-performance autoradiography films (GE 
Healthcare 28906842) and developed with a Curix 60 X-ray 
film processor (AGFA, Mortsel, Belgium). To re-probe the 
same membrane, the membrane was stripped using a com-
mercial stripping buffer (Gibco, Thermo Fisher Scientific) 
before incubation with anti-β-actin antibody (#4967; Cell 
Signaling Technology, Frankfurt, Germany).

Mice

All mice used in our in vivo studies were 8-week-old males 
of the C57BL/6 J background. Animals were purchased 
from Janvier Labs (Saint Berthevin, France), and housed 
in the Central Animal Facility of the University Hospital 
Schleswig–Holstein (Kiel, Germany). They received stand-
ard chow and water ad libitum and were maintained under 
a 12 h day–night cycle. All in vivo experiments were con-
ducted in accordance with the animal protection regulations 
of the local authorities and were approved by the Ministry 
of Energy, Agriculture, the Environment, Nature and Digi-
talization of Schleswig–Holstein, Germany.

To isolate PTCs, rodents were first anesthetized with iso-
flurane followed by euthanasia through cervical dislocation. 
All experiments were performed according to the Protection 
of Animals Act with the approval of German authorities.

Renal ischemia–reperfusion injury (IRI)

Induction of murine renal IRI was performed as described 
previously [30]. Kidneys were exposed via a midline abdom-
inal incision and bilateral renal pedicle clamping for 35 min 
using microaneurysm clamps (Aesculap Inc., Center Val-
ley, PA, USA). Throughout the surgical procedure, the mice 
were kept under isoflurane narcosis, and their body tempera-
ture was maintained at 36–37 °C by continuous monitor-
ing using a temperature-controlled, self-regulated heating 
system (Fine Science Tools, Heidelberg, Germany). After 
clamps were removed, kidney reperfusion was confirmed 
visually before the abdomen was closed in two layers using 
standard 6-0 sutures. To maintain fluid balance, all mice 
were supplemented with 1 ml of prewarmed PBS adminis-
tered intraperitoneally directly after surgery. After 48 h of 
reperfusion, the mice were sacrificed, blood samples were 
obtained by retrobulbar puncture, and kidneys were collected 
for analysis.
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Plasma parameters

Using a heparinized capillary tube, whole blood was col-
lected from the retrobulbar capillary bed and plasma was 
obtained by centrifugation. Creatinine and urea concentra-
tions were measured photometrically at the Central Labora-
tory of the University Hospital Schleswig–Holstein Kiel, 
Germany.

Histology

Kidneys were fixed in 4% neutral-buffered formaldehyde 
and embedded in paraffin. The 3 μm sections produced 
were dewaxed, rehydrated, and subjected to periodic acid-
Schiff staining according to routine protocols, and evaluated 
blinded by an experienced nephropathologist.

Antigen retrieval for ACSL4 was performed in 0.01 M 
sodium citrate buffer (pH 6.0), for 30 min at 98 °C followed 
by 10 min in 3%  H2O2 to block endogenous peroxidase activ-
ity. Sections were incubated for 60 min with a 1:200 dilution 
of anti-ACSL4 antibody ab155282 (Abcam). For ACSL4 
detection, HRP-conjugated polyclonal donkey anti-rabbit 
immunoglobulins (Jackson ImmunoResearch Laboratories; 
711-035-152 via Dianova) were used at a 1:100 dilution as 
secondary antibody for 30 min followed by 3,3’-diamin-
obenzidine detection. Subsequently, sections were mildly 
counterstained with hemalum. Sections were evaluated 
using an Olympus U-DO3 microscope, and representative 
photomicrographs were taken using a Jenoptic ProgRes® 
SpeedXT core 5 (Jena, Germany).

Statistical methods and analyses

For all experiments, differences between datasets were con-
sidered statistically significant when p values were < 0.05, 
if not otherwise specified. Statistical comparisons were per-
formed using the two-tailed Student’s t test for comparisons 
between two groups. Comparisons between multiple groups 
were performed by a one-way analysis of variance with 
Bonferronis’s post hoc test. Asterisks are used in the fig-
ures to specify statistical significance (*p < 0.05; **p < 0.01; 
***p < 0.001). Results are presented as means ± standard 
deviation (SD) unless otherwise specified.

Results

Vitamin K1 inhibits ferroptosis in vitro

Although the antioxidant characteristics of vitamin K are 
often neglected when its functional role is discussed [33], 
it can inhibit lipid peroxidation and glutathione depletion-
mediated oxidative cell death [26, 29]. Therefore, we 

explored the potential inhibitory effect of vitamin K1 on 
ferroptosis in vitro. To this end, we induced ferroptosis in 
murine (NIH3T3 fibroblasts) and human (HT-1080 fibro-
sarcoma) transformed cell lines by incubating with the 
canonical ferroptosis inducers RSL3 (GPX4 inhibitor) [6, 
10] or erastin (system  xc

− inhibitor) [7, 34]. Incubation with 
RSL3 or erastin for 24 h resulted in pronounced cell death 
in all cell lines studied, and this could be inhibited in a dose-
dependent manner by vitamin K1 (Fig. 1a and b). Incuba-
tion with vitamin K1 alone at doses of up to 100 µM had no 
effect on the survival of the cell lines studied after 24 h (Sup-
plemental Fig. 1). As we showed previously [5], ACSL4, a 
crucial contributor to ferroptosis that provides the plasma 
membrane with oxidation-sensitive polyunsaturated ω6 fatty 
acids [35–37], is degraded in vitro throughout the course 
of ferroptosis. This time-dependent process (Supplemental 
Fig. 2) which is accompanied by the simultaneous deple-
tion of GPX4 protein (Fig. 1c), correlates with the degree 
of ferroptotic cell death, and can be prevented efficiently by 
vitamin K1 (Fig. 1 and Supplemental Fig. 2).

The inhibitory properties of vitamin K1 
during ferroptosis are cross‑cellular

The protective effect of vitamin K1 against ferroptosis was 
reproducible in further immortalized cell lines as well as 
freshly isolated MEFs and PTCs (Fig. 2a). Thus, vitamin 
K1 is a reliable inhibitor of ferroptosis in both transformed 
cell lines and primary cells. Ferroptosis is characterized 
by the accumulation of toxic lipid peroxides in the plasma 
membrane, and this can be prevented by lipophilic antioxi-
dant substances such as ferrostatin-1 [7, 38]. Using the lipid 
peroxidation sensor BODIPY™ 581/591 C11 [39, 40], we 
found that lipid peroxidation induced by RSL3 in immortal-
ized as well as primary cells could be prevented by vitamin 
K1 to the same extent as by the canonical ferroptosis inhibi-
tor ferrostatin-1 (Fig. 2b).

Vitamin K1 can compensate for multiple intrinsic 
ferroptosis‑inhibiting systems

Based on our findings described above (Fig. 1c), we assumed 
that the suppressive effect of vitamin K1 in ongoing fer-
roptosis was mechanistically associated with the presence 
and activity of GPX4. However, beside the GPX4 system, 
at least two other major cellular defense mechanisms are 
known to suppress ferroptosis: (1) ferroptosis suppressor 
protein 1 (FSP1) on the plasma membrane [11, 12], and (2) 
the mitochondrially located enzyme dihydroorotate dehy-
drogenase (DHODH) [13]. Using the FSP1 inhibitor iFSP1 
and the DHODH inhibitor brequinar (BQR), respectively, 
we demonstrated that vitamin K1 can compensate for the 
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Fig. 1  Vitamin K1 inhibits ferroptosis in  vitro. a Murine NIH3T3 
cells were pretreated at 37  °C for 30  min in the absence or pres-
ence of increasing (indicated) concentrations of vitamin K1 (vit.
K1). Ferroptosis was induced thereafter for 24  h by the addition of 
5 µM RSL3 or 2.5 µM erastin, respectively. b Human HT-1080 cells 
were pretreated at 37  °C for 30  min in the absence or presence of 
increasing (indicated) concentrations of vitamin K1. Ferroptosis was 
induced thereafter for 24 h by the addition of 5 µM RSL3 or 25 µM 
erastin, respectively. Cell death was quantified by FACS analy-
sis using 7-amino-actinomycin D (7-AAD) and phosphatidylserine 

accessibility (Annexin V staining) as markers. Each graph shows the 
mean ± SD of three independent experiments. c NIH3T3 cells were 
pretreated at 37  °C for 30  min in the presence or absence of 1  µM 
ferrostatin-1 (Fer-1) or 10 µM vitamin K1, as indicated. Ferroptosis 
was induced thereafter for 24 h by addition of 5 µM RSL3 or 2.5 µM 
erastin. Equal amounts of protein (20 µg/lane) were resolved by SDS-
PAGE, and expression of ACSL4 was detected by western blotting. 
The blot was stripped and re-probed with an antibody against GPX4 
and thereafter β-actin as a loading control
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impairment of each anti-ferroptotic defense mechanism with 
efficacy comparable to ferrostatin-1 (Fig. 3a and b).

Phenprocoumon promotes ferroptosis in vitro

Since the known physiological functions of vitamin K 
typically depend on vitamin K epoxide reductase (VKOR) 
[41, 42], we investigated whether the inhibitory effect of 
vitamin K1 on ferroptosis was also dependent on VKOR. 
For this purpose, we examined the effect of the vitamin K 
antagonist (VKA) phenprocoumon, a coumarin derivative 
and strong inhibitor of VKOR [43], on ferroptosis in vitro. 
When cells were incubated with phenprocoumon alone, we 
did not detect any kind of cell death, even after 24 h and 
with concentrations up to 100 μM (Supplemental Fig. 3). 

Surprisingly, however, increasing concentrations of phen-
procoumon resulted in a significant enhancement of cell 
death under different ferroptosis conditions when induced 
with relatively weak stimuli. This effect was detectable 
in both RSL3- and erastin-induced ferroptosis and was 
consistent with observations in murine and human cells 
(Fig. 4a–c). Notably, the cell death additionally triggered 
by supplementation of phenprocoumon was completely 
reversed by both vitamin K1 and ferrostatin-1 (Fig. 4a–c). 
These results indicate that phenprocoumon aggravates fer-
roptosis induced by other stimuli, which is counteracted by 
vitamin K1 as well as the canonical ferroptosis inhibitor 
ferrostatin-1, whereas inhibition of VKOR alone does not 
induce ferroptosis.
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Fig. 2  Vitamin K1 inhibits RSL3-induced ferroptosis in  vitro. a 
Murine NIH3T3 cells, MCTs, MEFs, and PTCs were left untreated 
or stimulated at 37 °C for different durations with 5 µM RSL3 in the 
presence or absence of 1 µM ferrostatin-1 (Fer-1) or 10 µM vitamin 
K1 (vit.K1), as indicated. Cell death was quantified by FACS analy-
sis using 7-amino-actinomycin D (7-AAD) and phosphatidylserine 
accessibility (Annexin V staining) as markers. b Examination of lipid 
ROS production preceding ferroptosis using BODIPY™ (581/591) 

C11. Indicated cells were treated at 37 °C for 4 h with 5 µM RSL3 
(± 1 µM Fer-1 or 10 µM vit.K1). Overlay images show detection of 
accumulated ROS over time. A minimum of 10,000 cells were ana-
lyzed per condition. Notably, a shorter stimulation with RSL3 than 
in a was required for this assay, since ROS production in ferroptosis 
typically precedes triggering of cell death by several hours. Repre-
sentative results of one of three independent experiments are shown
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Vitamin K1 is protective in an in vivo model of renal 
IRI

We and others have previously demonstrated that ferroptosis 
plays a critical role in the pathogenesis of various forms of 
AKI, particularly in renal IRI [3–5, 44]. We, therefore, pro-
ceeded to investigate, whether vitamin K1 had a protective 
effect on AKI by inhibiting ferroptosis in vivo. For this pur-
pose, we subjected mice on a C57BL/6 J background to renal 
IRI. Animals underwent 35 min of bilateral renal pedicle 
clamping followed by 48 h of reperfusion. After this time, 
ischemia–reperfusion (IR) animals treated only with vehi-
cle displayed AKI as measured by elevated plasma levels 
of creatinine and urea. In contrast, animals pretreated with 
vitamin K1 showed significantly lower impairment of renal 
function (Fig. 5a and b). Consistent with the improved renal 
function parameters, animals in the IR+ vitamin K1 group 
showed significantly lower levels of tubular necrosis in 

comparison to the IR+ vehicle group (Supplemental Fig. 4a 
and b), which is thought to be mainly mediated by ferropto-
sis under renal IRI conditions [4, 5, 44]. In accordance with 
our previous work [5, 44], we observed a marked increase 
in expression of ACSL4 in kidneys following IRI, which 
was correlated with the severity of AKI. Treatment with 
vitamin K1 reduced tubular ACSL4 expression compared to 
the IR+ vehicle group, as revealed by immunohistochemistry 
(Fig. 5c) and western blots of whole kidney lysates (Fig. 5d).

Phenprocoumon is detrimental in experimental AKI

Based on our in vitro data (Fig. 4), we hypothesized that 
phenprocoumon would aggravate ferroptotic cell death if it 
occurred in the context of other stimuli, such as renal IRI. 
Indeed, animals pretreated with phenprocoumon showed 
marked AKI and tubular necrosis in IRI, whereas phenpro-
coumon without IRI did not cause notable kidney function 
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Annexin V

Fig. 3  Vitamin K1 inhibits ferroptosis induced by inhibition of FSP1 
or DHODH. NIH3T3 and HT-1080 cells were treated as indicated at 
37 °C for 24 h with a sublethal dose of 0.1 µM (NIH3T3) or 1 µM 
RSL3 (HT-1080). The cell death-aggravating impact of a 10  µM 
iFSP1 or b 50  µM brequinar (BQR) is clearly evident under these 
conditions. Addition of 1 µM ferrostatin-1 (Fer-1) or 10 µM vitamin 

K1 (vit.K1) demonstrates that cell death perpetuated by iFSP1 or 
BQR is based on preventable ferroptosis. Cell death was quantified 
by FACS analysis using 7-amino-actinomycin D (7-AAD) and phos-
phatidylserine accessibility (Annexin V staining) as markers. FACS 
dot plots of one representative experiment are shown (n = 3 independ-
ent repeats)
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impairment in mice (Fig. 5a and b and Supplemental Fig. 4). 
Renal expression of ACSL4 as a marker of ferroptosis was 
further increased in the IR + phenprocoumon group com-
pared to the other groups (Fig. 5c and d). Simultaneous 
additional treatment with vitamin K1 significantly preserved 
renal function parameters compared with the IR + phenpro-
coumon group (Fig. 5a and b). Renal ACSL4 expression 
was again reduced by concomitant vitamin K1 application in 
phenprocoumon-treated IR animals (Fig. 5c and d). None of 
the animals showed signs of excessive bleeding and hemo-
globin levels between IR + vehicle and IR + phenprocoumon 
groups were indistinguishable (data not shown), ruling out 
exacerbated blood loss as a contributing factor to AKI.

In summary, our in vivo experiments revealed that (1) 
vitamin K1 inhibits ferroptosis in the course of AKI and 
thereby preserves kidney function, and (2) phenprocoumon 
aggravates ferroptosis during AKI, which can, for the most 
part, be alleviated by simultaneous administration of vita-
min K1.

Discussion

In the present study, we assessed the effectiveness of exog-
enously supplied vitamin K1 for inhibiting ferroptosis 
in vitro, and explored its therapeutic effect in a preclini-
cal murine model of AKI. Furthermore, we investigated the 
role of the VKA phenprocoumon in aggravating ferroptosis 
in vitro and in AKI as well as its interplay with vitamin K1 
in ferroptosis.

Our first major finding was that exogenous vitamin K1 
efficiently inhibited ferroptosis induced by RSL3 or erastin 
in transformed murine and human cell lines, as well as in 
primary MEFs and PTCs. Interestingly, on one hand, we 
demonstrated that the suppressive effect of vitamin K1 

during ferroptosis is associated with restoring the presence 
and activity of GPX4 (Fig. 1c). On the other hand, we also 
revealed that vitamin K1 sufficiently prevents ferroptotic cell 
death induced by inhibition of FSP1 or DHODH (Fig. 3). 
FSP1 is recruited in a GPX4-independent manner to the 
plasma membrane during ferroptosis, where it functions 
as an oxidoreductase that reduces coenzyme Q10 [11, 12], 
whereas DHODH prevents mitochondrial lipid peroxidation 
and ferroptosis [13]. Thus, vitamin K1 appears to efficiently 
act as a ferroptosis inhibitor independent of subcellular 
localization; it functions in the plasma membrane, cytosol, 
and mitochondria. It is worth mentioning that our studies did 
not reveal any difference in the mechanism of action between 
vitamin K1 and the lipophilic antioxidant ferrostatin-1, a 
canonical inhibitor of ferroptosis.

To date, only two modes of action of pharmacological 
cell death inhibitors have been suggested for all types of 
ferroptosis. To efficiently inhibit ferroptosis regardless of 
the initial trigger, compounds must either be strong iron 
chelators, such as deferoxamine, or potent lipophilic radical 
scavengers, so-called radical-trapping antioxidants (RTAs), 
such as ferrostatin-1 [7, 16, 17, 45]. Most likely, the inhibi-
tory effect of vitamin K1 on ferroptosis is due to its property 
as an RTA, because vitamin K1 is not known to function 
as a chelator, but it is an effective reducing agent for lipid 
hydroperoxides in membrane vesicles [25, 26]. In addition, 
vitamin K may play an important role as a cofactor in redox 
systems at the plasma membrane [46] or mitochondria [47], 
and it may protect neurons and oligodendrocytes against oxi-
dative cell death [28, 29]. In this context, we demonstrated 
complete prevention of ferroptotic lipid peroxidation using 
vitamin K1. Our study, therefore, provides further important 
evidence that vitamin K may be of physiological significance 
as an antioxidant agent, especially for ferroptosis.

Consistent with our in vitro findings, we demonstrated 
that vitamin K1 is protective in a murine model of renal IRI. 
In addition to significantly improved renal function, kidneys 
of mice pretreated with vitamin K1 showed a substantial 
reduction in tubular necrosis. Genetic studies and preclinical 
disease models have clearly established that ferroptosis plays 
a critical role in acute tubular necrosis, particularly when it 
is induced by IRI [3–5]. The enzyme ACSL4 is involved in 
this process as a critical regulator that allows ferroptosis to 
proceed by supplying long unsaturated and easily oxidiz-
able ω6 fatty acids to the plasma membrane [35, 48, 49]. 
This enzyme has also been established as a biomarker of 
ferroptosis, including in AKI [5, 36, 44]. Consistent with 
enhanced tubular necrosis—and thus enhanced intrarenal 
ferroptosis—we found that renal expression of ACSL4 was 
markedly enhanced by IRI and reduced by vitamin K1. In 
summary, we revealed for the first time that vitamin K1 is 
an effective inhibitor of ferroptosis in vitro and in vivo. Our 
results pave the way for investigating the effectiveness of 

Fig. 4  Phenprocoumon promotes ferroptosis in  vitro. a Murine 
NIH3T3 cells were treated as indicated at 37 °C for 24 h with a sub-
lethal dose of 0.1 µM RSL3. In the top row (vehicle), the aggravated 
cell death in the presence of increasing concentrations of phenpro-
coumon is clearly evident under these conditions. Addition of 1 µM 
ferrostatin-1 (Fer-1) or 10  µM vitamin K1 (vit.K1) illustrates that 
cell death mediated by phenprocoumon is based on preventable fer-
roptosis. FACS dot plots of one representative experiment are shown, 
the adjacent graph b presents the mean and SD of three independ-
ent experiments, and the identical effect of phenprocoumon using a 
sublethal dose of 0.2  µM erastin. c Phenprocoumon-induced facili-
tation of ferroptosis in  vitro is species-independent, as confirmed 
using human HT-1080 cells. However, the human cells were treated 
as indicated at 37 °C for 24 h with a sublethal dose of 1 µM RSL3 
and 2.5  µM erastin, respectively. Again, addition of 1  µM Fer-1 or 
10 µM vit.K1 proved that the phenprocoumon-dependent effect was 
based on ferroptotic cell death. Cell death was quantified by FACS 
analysis using 7-amino-actinomycin D (7-AAD) and phosphatidyl-
serine accessibility (Annexin V staining) as markers. Graphs show 
mean ± SD (n = 3 independent repeats)

◂
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vitamin K1 in the therapy of AKI in humans. Translation 
to clinical applications may be relatively straightforward 
because vitamin K1 is already approved for use in humans, 
and it offers several advantages over other commonly stud-
ied ferroptosis inhibitors that are either not FDA-approved 
(e.g., ferrostatins or liproxstatin-1), have poor plasma stabil-
ity [50], or have a worse safety profile than vitamin K1 (e.g., 
iron chelators or vitamin E) [51, 52].

In mammals, vitamin K is a crucial coenzyme in the 
process of γ-carboxylation of amino acid residues, a rather 
rare posttranslational modification, which is required for the 
functioning of specific proteins necessary for blood coagula-
tion as well as calcium and bone metabolism [41]. Further-
more, vitamin K metabolism is thought to play a critical role 
in cardiovascular calcification and associated complications, 
particularly in patients with chronic kidney disease [22, 53]. 
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Fig. 5  Vitamin K1 provides protection against renal ischemia–rep-
erfusion injury, whereas phenprocoumon enhances the damaging 
effect. The significant therapeutic in  vivo effect of vitamin K1 (vit.
K1) and the detrimental effect of phenprocoumon (phen.) were evi-
dent under severe test conditions. All mice underwent 35 min of bilat-
eral renal pedicle clamping followed by 48  h of reperfusion. Under 
these conditions, 15  min before ischemia, each mouse received a 
single intraperitoneal injection (total volume per mouse = 200 μl) of 
either PBS (vehicle), 4  mg phen./kg body weight, 25  mg vit.K1/kg 
body weight, or a combination as indicated (n = 4–8 mice per group 
as indicated). In this setting, we observed that the vehicle-treated 
mice in the IR group had significantly higher plasma levels of creati-
nine (a) and urea (b) than the vitamin K1-treated animals. In contrast, 
animals pretreated with phenprocoumon showed pronounced AKI, 
whereas phenprocoumon without IRI did not cause notable kidney 
function impairment. Remarkably, vitamin K1 when co-administered 
with phenprocoumon attenuated the extent of this phenprocoumon-
mediated renal damage significantly. (c) Corresponding histological 

ACSL4 expression in the kidney samples of groups presented in (a) 
and (b). Increased expression of ACSL4 in this IR setting indicates an 
important role of ferroptosis in the complex pathology of acute tubu-
lar injury. ACSL4-positive tubuli and augmented ACSL4 expression 
can be seen in acute tubular injury (IR + vehicle group) and especially 
in the IR + phenprocoumon group, correlating with severe acute tubu-
lar damage. Normal renal parenchyma samples  taken from the vehi-
cle and the phenprocoumon groups served as controls. The protec-
tive effect of vitamin K1 in this scenario, associated with decreased 
ACSL4 expression, is evident in the appropriately labeled groups 
(scale bars = 50  µm). d Analogous expression levels of ACSL4 in 
whole-kidney lysates taken from the different groups presented in (a) 
and (b). The indicated samples were obtained after reperfusion. Equal 
amounts of protein (20  µg/lane) were resolved by SDS-PAGE, and 
expression of ACSL4 was detected by western blotting. The blot was 
stripped and re-probed with an antibody against β-actin as a loading 
control



Vitamin K1 inhibits ferroptosis and counteracts a detrimental effect of phenprocoumon in…

1 3

Page 11 of 14 387

A protein centrally involved in these vitamin K-dependent 
processes is VKOR, which is targeted by VKAs, certain 
derivatives of coumarins that are frequently used for anti-
coagulation in the clinic [42, 43]. Following our findings on 
the protective effect of exogenous vitamin K1 in ferroptosis, 
we further demonstrated that ferroptotic cell death is signifi-
cantly exacerbated in the presence of the clinically estab-
lished VKA phenprocoumon in vitro. To our knowledge, 
this is the first evidence showing that endogenous vitamin 
K1 and VKOR may play a previously unknown protective 
role in ferroptosis.

In retrospect, the ferroptosis-promoting effect of VKAs 
could also explain some interesting past observations, espe-
cially in oncology. Since the 1960s, coumarin derivatives 
have been known to prevent the occurrence of cancer metas-
tases independently of anticoagulation, but this is depend-
ent on vitamin K [54–56]. Nowadays, we know that both 
carcinogenesis and metastasis are intimately associated with 
ferroptosis [57, 58]. These mechanistic considerations are 
supported by clinical data showing that long-term therapy 
with VKAs reduces cancer incidence and anticoagulation 
with warfarin improves survival in certain cancers [59, 
60]. Induction of ferroptosis has now been clearly linked to 
cancer therapy. In particular, adjunction of classical chemo-
therapeutic agents, but also new immunotherapies with fer-
roptosis inducers, are very promising [61, 62]. Based on 
our current study, it seems desirable to further investigate 
the importance of the vitamin K cycle and a possible thera-
peutic use of VKAs in the context of oncological ferroptosis 
induction.

Although we could not shed further light on the detailed 
mechanism by which the vitamin K cycle and VKOR con-
tribute to the cellular response to ferroptotic stimuli, we 
herein present in vivo findings of potential clinical rel-
evance in nephrology. The VKA phenprocoumon aggra-
vates impairment of kidney function in a preclinical model 
of AKI by driving ferroptosis. This prompts the pertinent 
question whether patients treated with VKAs during AKI 
have a worse outcome. Unfortunately, prospective con-
trolled clinical studies specifically investigating this issue 
have not been reported to date. Nevertheless, several retro-
spective observational studies including tens of thousands 
of patients support the assumption that VKAs may influ-
ence the occurrence of AKI and worsen renal outcomes 
[63–65]. A link between VKAs and kidney failure has 
also been postulated under the name warfarin- or anti-
coagulant-related nephropathy [66, 67]. Mechanistically, 
this has been associated primarily with overanticoagula-
tion, glomerular hemorrhage, and obstructive red blood 
cell casts, although this probably affects only a minority 
of patients and is not conclusively reproducible in animal 
models [68–71]. Evidence has been provided previously in 

animal models that oxidative stress may be involved in the 
development of warfarin-related nephropathy [72]. Based 
on our current results, we provide a possible mechanism 
by which VKAs may contribute to renal injury apart from 
increased bleeding tendency through enhanced induction 
of ferroptosis. Our findings are of particular clinical rel-
evance in this setting because we demonstrated that con-
comitant administration of vitamin K1 can reverse kidney 
injury aggravated by phenprocoumon via the anti-ferrop-
totic properties of vitamin K1. In particular, since vitamin 
K1 is nontoxic, this could provide a rationale for admin-
istering vitamin K1 to patients anticoagulated with VKAs 
in an AKI setting. Further clinical studies are needed to 
explore this hypothesis.

In summary, we identified vitamin K1 as a potent inhib-
itor of ferroptosis, and hence, it represents a potential drug 
for the treatment of pathological cell death processes dur-
ing AKI in humans. Conversely, vitamin K antagonists 
promote ferroptosis during AKI, which could explain pre-
vious reports of new or increased AKI and renal impair-
ment during VKA-based therapy. In this regard, vitamin 
K1 is a potent antidote against ferroptosis promoted by 
VKAs. The role of the vitamin K cycle in ferroptosis needs 
further investigation and may hold enormous therapeutic 
potential for a multitude of diseases associated with this 
mode of cell death.
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