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Abstract: In this work, we demonstrate the use of electrical impedance spectroscopy (EIS) for the
disentanglement of several dielectric contributions in encapsulated single graphene layers. The
dielectric data strongly vary qualitatively with the nominal graphene resistance. In the case of
sufficiently low resistance of the graphene layers, the dielectric spectra are dominated by inductive
contributions, which allow for disentanglement of the electrode/graphene interface resistance from
the intrinsic graphene resistance by the application of an adequate equivalent circuit model. Higher
resistance of the graphene layers leads to predominantly capacitive dielectric contributions, and the
deconvolution is not feasible due to the experimental high frequency limit of the EIS technique.

Keywords: single-layer graphene; impedance spectroscopy; electrode resistance

1. Introduction

Since the discovery of single-atom graphene layers in the year 2004, large research
efforts have been dedicated to the investigation of their fundamental properties and more
practical aspects in terms of the handling and incorporation of graphene into functional
devices for potential application in the electronics industry [1–11].

Single-layer graphene (SLG) is not only a promising candidate as an electrode material
in electrochemical applications [12], but also exhibits transparency, superior combined
mechanical stability and flexibility and gives rise to several fascinating charge transport
phenomena. In zero-band gap graphene, metallic or ballistic charge transport has been
reported [13–18], whereas variable-range hopping has been observed in semi-conducting
graphene [19]. In its pure form, SLG is predicted to be a zero-band gap semiconductor,
where the valence and conduction bands touch at the Dirac points in the dispersion relation
of electron energy E vs. propagation wave vector k [20,21]. Conversely, asymmetrical strain
distributions in SLG have been shown to lead to the opening of a small band gap [22,23].
Asymmetrical strain can be caused by a small level of warping or bending of the graphene
layers, as well as by impurities, where the opening band gap then leads to semiconducting
charge transport with small activation energies. The electronic properties of bi-layer
graphene (BLG) slightly vary, where the band gap may also be induced by the application
of transverse electric fields [24–26].

One of the hurdles on the way to commercial integration of graphene layers into
electronic devices is the precise understanding of the role of the electrode resistance,
which usually arises at the interface between electrode and graphene layer. This extrinsic
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resistance is usually referred to as the contact or electrode resistance, where here in this
work, the latter term of electrode resistance will be used consistently.

In potential applications such as graphene-based transistors [27–31], the electrode
resistance may have a limiting effect on the device performance as manifested by low
frequency 1/f noise in graphene devices [32]. Conversely, in other applications, such
as solar cells [33–35], barristors [36] or sensors [37], the formation of a Schottky barrier
between graphene and Si leads to an interface barrier resistance that is beneficial to the
diode performance of such devices. In either case, the detection, quantification and either
elimination or optimisation of the electrode or interface resistance is imperative to optimise
the performance of graphene-based devices. In the case of a metallic electrode/graphene
interfaces, the exact value of the electrode resistance may depend on several factors such as
the choice of the electrode material [38,39], the processing parameters involved with the
lithography processes that is often used to pattern the electrodes [40,41], and the shape
of the electrodes [42]. For the fabrication of electrodes, there are three main possibilities:
(1) deposition of electrodes onto graphene layers (top-electrodes), (2) transfer of graphene
layers onto a template with pre-defined electrodes (bottom-electrodes), or probably most
promising, (3) the deposition of 1D electrodes at the edges of 2D graphene layers (side
electrodes) [43].

For the characterization of the electrode resistance at the electrode/graphene interfaces
in terms of the graphene surface potential and work function, the use of Kelvin probe
force microscopy (KPFM) and theoretical predictions by density functional theory (DFT)
have been demonstrated in the literature [39,44–46]. However, for a precise quantitative
determination and understanding of the electrode resistance, the full disentanglement of the
extrinsic electrode resistance at the electrode/graphene interfaces from the two-dimensional
intrinsic charge transport in graphene layers is required. Such disentanglement has been
attempted previously for graphene layers contacted with Ni or other metallic top electrodes
by the employment of transmission line measurements (TLMs) [40,47,48] and in the case
of insulating graphene/Si Schottky diode interfaces by the use of electrical impedance
spectroscopy (EIS) [49]. However, for the metallic top electrodes, the disentanglement has
not been achieved so far by the use of EIS, to the best of the authors’ knowledge. Such a
disentanglement is demonstrated here in this work, where EIS was applied to encapsulated
graphene layer devices with a sheet resistance in the range of ≈1 kΩ/�, where the devices
were contacted by Ni/Pd 1D side electrodes. A full disentanglement could be achieved here
for the first time but only for devices with sufficiently low nominal graphene layer resistance
(not the sheet resistance), where the former was adjusted by changing the graphene device
width. The disentanglement was achieved by fitting the dielectric data to an adequate
equivalent circuit model accounting for the electrical resistance of extrinsic electrode and
intrinsic layer contributions separately.

For devices with higher nominal graphene resistance, the determination of the elec-
trode/graphene interface resistance by EIS and concomitant equivalent circuit fitting of
the data was not feasible. This was due to the fact that the equivalent circuit needed to be
modified in terms of the constituent components (i.e., resistors, capacitors or inductors)
due to such increased nominal graphene resistance, and the electrode contribution could
not be fitted separately anymore. The equivalent circuits proposed here may be generally
valid for EIS characterizations of graphene layers.

2. Electrical Impedance Spectroscopy (EIS)

The EIS technique is well established to allow for disentanglement of intrinsic and
extrinsic resistances in functional materials that contribute to the overall direct current (DC)
resistance. EIS has, thus, been widely applied in polycrystalline bulk materials [50,51] as
well as in thin and thick films [52–55], including graphene-based devices [49].

EIS experiments consist of an electric stimulus in terms of a time (t)-dependent alter-
nating voltage U(ω, t) of variable angular frequency ω and fixed amplitude U0 applied to
the sample: U(ω, t) = U0 cos(ω·t). Effectively, the amplitude I0 and the phase shift δ of the
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alternating current response signal I are measured over a wide frequency range: I (ω, t) = I0
cos(ω t + δ). One period of the applied voltage stimulus corresponds to a 2π rotation of the
U(ω, t) arrow on the phasor diagram shown in Figure 1. The response currents of common
ideal circuit elements are (1) in phase (δ = 0) with respect to the applied voltage for an
ideal resistor (R), IR, (2) out of phase by δ = −π/2 for an ideal capacitor (C) with preceding
current, IC, and (3) out of phase by δ = +π/2 for an ideal inductor (L) with lagging current,
IL, where all phase angles are time independent.
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Figure 1. Phasor diagram for an applied voltage U (blue arrow) and the current response (red arrows)
of an ideal resistor (IR), ideal capacitor (IC), ideal inductor (IL), ideal RC element (IRC) and ideal RL
element (IRL). The complex definitions Z∗e of the impedance for e = R, C and L components are given.
The current response of different components is given by the amplitude of the current response
(length of the red arrows) and by a characteristic phase shift δ.

To obtain a physically meaningful interpretation, the impedance needs to be defined as
a time independent complex number Z* = Z′ + iZ′ ′, where a capacitive negative phase shift
leads to a negative imaginary part of the impedance Z′ ′, and a positive phase shift leads
to positive Z′ ′. The equivalent circuits applied to experimental impedance spectroscopy
data are commonly made up of conventional parallel RC elements in the case of insulating
and semiconducting samples with dominating capacitive contributions [50], whereas for
more conducting samples with inductive dominated spectra, the equivalent circuits may
be made up of less conventional RL elements [53]. Note that the phase shift measured
must be either negative (capacitive) or positive (inductive). This implies that capacitive
contributions (with negative Z′ ′) are not accessible for spectra dominated by inductive
contributions (positive Z′ ′) and vice versa.

In the case of RC elements, the ideal capacitor is often replaced by a constant phase
element (CPE), sometimes also termed a Q-element, leading to R-CPE or RQ elements. On
a microscopic level, the CPE behaviour can be interpreted in terms of a broadening of the
distribution of relaxation times τ, where τ = R × C [50,54].
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3. Materials and Methods

Encapsulated graphene single layers were fabricated by transferring graphene on
top of an Al2O3 film that was deposited previously onto sapphire substrates by atomic
layer deposition (ALD) using tetramethylammonium hydroxide (TMAH) and water precur-
sors [56]. The graphene was patterned into channels by defining a photoresist mask using
optical lithography and sequential oxygen/argon reactive ion etching to fabricate various
graphene devices with different device length ` between 2–11.2 µm. The graphene or
device width w was fixed to w = 50 µm in the first more conducting sample A, whereas w =
10 µm was chosen in a second sample B to intentionally obtain higher nominal graphene re-
sistances. Next, side electrodes to the graphene were sputter deposited (20 nm Ni followed
by 20 nm Pd) onto a lithographically defined photoresist pattern followed by lift-off.

The device length ` is considered to be the distance between the two side electrodes,
i.e., the length of the graphene layer measured (see Figure 2). The devices were finished
by depositing an additional ≈50 nm Al2O3 layer on top of the full arrangement of pre-
deposited Al2O3, graphene and side electrodes, again with an ALD process (TMAH and
water precursors). Figure 2 shows a schematic drawing of the device architecture and the
electrode configuration. Every sample contained different devices with at least 5 different
device lengths `. The two Ni/Pd measurement electrodes were contacted by wire bonding,
punching across the insulating Al2O3 layers (see Figure 2). For control purposes, only for
sample A, the electrical wires were attached alternatively with Ag paint (not shown). In the
former case, the Al2O3 layer would be bypassed and eliminated from the circuit, whereas
in the latter case, the Al2O3 layer would appear as a blocking barrier in the impedance
spectra as demonstrated in the results section below. EIS was performed using a QuadTech
impedance analyser and a Quantum Design PPMS measurement system. The impedance
analyser was operated at variable frequencies (f ) between 20 Hz–1 MHz with an applied
voltage of 20 mV amplitude, whereas the PPMS system provided variable temperature
T (1.7–320 K). A special sample holder was custom built (Janis Research Ltd., Woburn,
MA, USA) to fit into the PPMS to minimize the internal probe capacitance (≈0.2 pF) and
maximize the internal probe resistance (≈10 GΩ), which is both detrimental for reliable
EIS measurements.
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Figure 2. Schematic drawing of the measurement set-up for electrical impedance spectroscopy on
Al2O3 encapsulated graphene layer devices with variable length ` and a fixed device width of 50
and 10 µm for samples A and B, respectively. Contact between measurement cables and the Ni/Pd
electrodes was made by punching through the Al2O3 layer by wire bonding as indicated. One sample
A was measured with Ag-painted top electrodes without punching through the Al2O3 layer for
control purposes, which leaves an insulating Al2O3 barrier in the measurement circuit.
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The sample tray at the bottom of the probe was equipped with drop-down pins
with a mechanical load to ensure optimal contact to the sample electrodes. Further EIS
measurements were carried out using an Alpha Analyser Novocontrol system operating
at 1 Hz–10 MHz using an applied AC voltage signal of 100 mV amplitude under various
T between 160 and 560 K upon heating. Note that the graphene impedance was always
measured in an in-plane measurement configuration.

All dielectric data were collected in terms of the real and imaginary parts (Z′, Z′ ′) of
the complex impedance Z* = Z′ + iZ′ ′ under steady state conditions, where the selected T
was allowed to settle for ≈10 min before taking impedance readings. Equivalent circuit
fitting of the dielectric data was performed by using commercial Z-View® software.

4. Results
4.1. Equivalent Circuit Fitting

As mentioned in Section 2, inductive contributions to the impedance are reflected by
a positive phase shift leading to positive imaginary parts of the impedance Z′ ′, whereas
capacitive behaviour leads to a negative phase shift and negative Z′ ′. Figure 3a displays
a −Z′ ′ vs Z′ (or Nyquist) plot obtained from the graphene devices with a larger device
width of 50 µm on the first more conducting sample A. In this case, a positive Z′ ′ at all
frequencies is detected, which can be modelled with an equivalent circuit containing a
parallel RL element and a single resistor in series as indicated in the Figure 3a inset. Note
that the expected semicircle is only partially visible due to the high-f limit of the impedance
analyser. Further note that capacitive contributions to the impedance would still be present
and are expected to have a perceptible effect on the data. However, their contribution
was not strong enough to allow for fitting with an equivalent circuit model containing
an additional capacitor. The small discrepancy between the model and data shown in
Figure 3a may be explained though by small capacitive contributions. It will be argued
below in Section 4.2 that R1 represents the intrinsic graphene resistance, because it scales
with the device length `. Conversely, R2 is approximately constant and does not scale with
`. R2 may therefore be interpreted as an extrinsic contribution that arises from electrode
interfaces, electrodes, cables or any other contributions that do not scale with `. Generally,
a good agreement between data and fitted curves is observed.

In Figure 3b, negative Z′ ′ due to dominating capacitive contributions and a large
pike in form of an approximately perpendicular curve are displayed for the data taken
from the same sample A but with painted electrodes with an insulating Al2O3 layer in
the circuit, for control purposes. The perpendicular curve can be interpreted as the onset
of a large semicircle that cannot be resolved leading to the capacitive behaviour reflected
by negative Z′ ′. The diameter of a capacitive semicircle that typically appears in −Z′ ′ vs.
Z′ (or Nyquist) plots with negative Z′ ′ corresponds to the resistance of the respective RC
element. Therefore, the onset of a massive conventional semicircle can be interpreted as an
indication of an electrically insulating contribution, which may well be associated with the
Al2O3 layer. Note that this contribution is absent in Figure 3a, where contact was made to
the Ni/Pd electrodes by punching through the Al2O3 layer. At intermediate f, Figure 3b
shows the indications of an overlapping semicircle of drastically smaller dimensions. This
is demonstrated more clearly in Figure 3c, which shows a magnification of the −Z′ ′ vs. Z′

plots at intermediate f -range. Close inspection of the −Z′ ′ vs. Z′ plots at the high f -range
(Figure 3d) reveals that the −Z′ ′ vs. Z′ curves may not pass through the origin of the plot.
This apparent non-zero intercept with the real Z′ axis is indicative of a single resistor in
the circuit [54]. Therefore, the data shown in Figure 3b–d can be modelled with a single
resistor R1 and two conventional RC elements in series, where the ideal capacitors had
been replaced by CPEs or Q elements. The full equivalent circuit model is displayed in the
inset of Figure 3b. It will be argued below that R1 again represents the intrinsic graphene
resistance, because R1 scales with the device length `, despite the presence of the insulating
Al2O3 layer. This was the expected control result, consistent with the previous sample.
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Figure 3. −Z′ ′ vs. Z′ complex impedance plane plots taken at 300 K for different samples. Open
squares represent the data; red squares and solid lines represent equivalent circuit fits. The circuit
models used are shown in the figure insets. (a) Inductive contributions are dominating for the case of
the more conducting sample A, indicated by positive Z′ ′. The positive Z′ ′ is plotted as a negative
value on the −Z′ ′ vs. Z′ (i.e., the semicircle points downwards), which is the more common way
to plot impedance data. (b–d) Different magnifications of −Z′ ′ vs. Z′ plots for the same sample
A, but with Ag painted electrodes leaving an insulating Al2O3 dielectric contribution in the circuit.
(e) Capacitive contributions are dominating for the case of the less conducting sample B measured
without the Al2O3 in the circuit, indicated by negative Z′ ′. Three different devices on the same sample
were measured with 5, 8.8 and 12 µm device length ` as indicated.

Conversely, R2 and R3 do not scale with `. R2-CPE2 may be associated with an
interface contribution possibly between Al2O3 and the Ag electrodes, whereas R3-CPE3
can be associated with the charge blocking Al2O3 layer. Note that the resistance R3 had
to be set to infinity for a valid equivalent circuit fit, which confirms the charge blocking
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behaviour of the insulating Al2O3 layer. Note further that the painted top Ag electrodes
had irregular shape and the geometrical factors and specific capacitance values were not
accessible. Therefore, the nominal capacitance values from CPE3 and CPE2 in the range
of 10–100 pF are not meaningful. The CPE exponents were both in the range of 0.99–1,
indicating almost ideal dielectric behaviour as expected for dielectric contributions from
thin interfaces.

Figure 3e shows EIS data from the second sample B, which was fabricated with a
smaller device width (10 µm) to intentionally increase the graphene resistance. Note that
contact was made by punching across the insulating Al2O3 layer using wire bonding to
eliminate it from the circuit. The onset of a conventional semicircle with negative Z′ ′ as a
manifestation of dominating capacitive contributions is indicated, although contact was
made to the graphene layers by punching through the insulating Al2O3. This implies that
the decrease in the device width from 50 to 10 µm had a distinct qualitative effect on the
resulting impedance spectra, i.e., changing the spectra from being dominated by inductive
to capacitive behaviour. A possible explanation for this may be a significant reduction of
the inductance of the graphene layer here. Figure 3e shows that the disentanglement of
different contributions is not possible because the data can be fitted with only one R-CPE or
RQ element The model is shown in the Figure 3e inset. The single R-CPE or RQ contribution
does not exclude the possibility that two semicircles or a non-zero x-axis intercept may
well exist and are expected, since multiple dielectric contributions are likely to be present.
It is simply the high-f resolution limit of 1 MHz that impedes access to higher f -ranges,
and the possible existence of high-f contributions cannot be tested. In the next section, it is
argued that R1 represents the entire device resistance as a sum of all different contributions,
because R1 changes with the device length `, but an additional residual resistance seems to
be present. These findings imply that neither the intrinsic graphene resistance nor the sheet
resistance could be determined in sample B.

Generally, all equivalent circuit models shown in Figure 3 had been chosen under
the strict selection criteria that the correct model must be physically meaningful, not be
overdetermined, and must fit the data satisfactorily with low fitting errors (<5%) for each
circuit element.

4.2. Resistance Scaling

To associate different equivalent circuit components with certain areas in the sample,
it is helpful to analyse their trends of the resistance with the device length `. Figure 4a
shows the resistance R1 obtained from graphene devices with different ` from sample A
(w = 50 µm). R1 had been extracted from the models shown in Figure 3a,b and was plotted
vs. T. A continuous increase in resistance with T is observed, indicating metallic type charge
transport that may be associated with the intrinsic graphene resistance. The association of
R1 with an intrinsic graphene contribution is justified in Figure 4b, where the resistance R1
is plotted vs. the device length `. R1 approximately scales with `, where the linear trend
line may pass through or close to zero. The sheet resistances for the devices with ` = 2.5,
5 and 11.2 µm are, therefore, similar and were calculated with a rough approximation to
be 1, 1.15, and 0.93 kΩ/�, respectively. Note that these values for encapsulated graphene
are slightly lower than the 1.84 kΩ/� reported for free standing graphene [57], and
the 1.48 kΩ/� obtained from a rough estimate from early theoretical calculations on
graphite [58]. For approximating the sheet resistance, the T-dependence of R1 had been
averaged out. Conversely, the second resistor R2 from the model shown in Figure 3a shows
approximately constant resistance and no tendency with ` and, thus, may be associated
with extrinsic contributions from the electrode resistance and the measurement cables
(Figure 4b). Thus, it may be concluded that the equivalent circuit in Figure 3a may well
be suitable to disentangle the intrinsic graphene resistance R1 from extrinsic contributions
represented by R2. The inductance L2 was found to be T-independent in the range of 2–2.5
mH, with only small changes with the device length ` (data not shown).
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Figure 4. (a) T-dependence of the graphene resistance R1 in sample A, extracted from the models in
Figure 3a,b for devices with different length `. (b) Resistance R1 at 300 K and the resistance R2 from
the model in Figure 3a. R1 scales with the device length `, R2 is independent of the device length. R1
may thus represent the intrinsic graphene resistance and R2 extrinsic contributions.

The situation is different for sample B that had been fabricated with the smaller
device width of w = 10 µm and, therefore, displays a higher nominal graphene resistance.
The larger nominal graphene resistance leads to mainly capacitive contributions in the
impedance spectra as depicted in Figure 3e, which can be fitted with a single R1-CPE1
element (see inset of Figure 5a).

Figure 5. (a) T-dependence of resistance R1 from the models in Figure 3e and in the figure inset for
devices with different length ` from sample B. (b) The resistance R1 scales with `, but the scaling
curve does not pass through the origin of the graph, and a residual resistance of extrinsic origin of
≈1 kΩ is indicated.

The T-dependences of the resistance extracted from resistor R1 are depicted in Figure 5a.
Figure 5b shows that R1 scales with the device length ` to some extent, but the scaling curve
does not pass through the origin of the graph. Instead, a residual resistance of ≈1 kΩ is
indicated. The graphene sheet resistances for the different device lengths of ` = 5, 8.8 and 12
µm were calculated to be approximately 2.4, 1.4 and 1.25 kΩ/�, respectively. In contrast to
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the more conducting devices in the first sample A, the resistor R1 here yields sheet resistances
that change with the device length `. The term “sheet resistance” may be problematic here,
because R1 contains the graphene resistance and additional extrinsic contributions. The “sheet
resistance” for the larger devices (8.8 and 12 µm) approaches the value obtained from the
first sample A (≈1 kΩ/�). These findings suggest that R1 in sample B may not consist of the
contributions from the graphene layer only but contains multiple contributions: (i) extrinsic
contributions from the electrode resistance and possibly the measurement cables, which do
not scale with `, and (ii) the intrinsic graphene layer resistance that scales with `. This is
plausible since the dielectric data from the second more resistive sample B could be fitted only
with one single R-CPE element, although several contributions are expected to be present.

Therefore, it is not possible in this case to disentangle the different dielectric contri-
butions, which is debited to the fact that only the onset of one semicircle was detected
in −Z′ ′ vs. Z′ plots. Thus, in sample B, the resistance R1 in the equivalent circuit model
depicted in the insets of Figures 3e and 5a may contain all resistive contributions to the
sample and thus, simply represent the DC resistance. In this case, the technique of EIS is of
limited use, because the DC resistance may be extracted more easily by simple DC charge
transport measurements. The rather unusual T-dependencies of R1 shown in Figure 5a
may be explained by the fact that R1 contains several contributions that all may exhibit
different R-T dependencies.

5. Discussion & Conclusions

It was demonstrated here that the extrinsic electrode resistance and the intrinsic
graphene resistance of encapsulated graphene layers can be disentangled under certain
conditions using EIS. The dielectric data vary qualitatively with the nominal graphene
resistance (not the sheet resistance). In the case of sufficiently low graphene resistance, the
dielectric spectra are dominated by inductive contributions, which allows for disentangle-
ment of electrode and graphene resistance by the application of an adequate equivalent
circuit model. Conversely, higher nominal graphene resistance leads to predominantly
capacitive contributions, in which case the deconvolution is not feasible due to the experi-
mental high frequency limit of the EIS apparatus of 1 MHz.

It can be concluded that EIS can be applied to graphene-based devices to achieve
disentanglement of the electrode resistance from the intrinsic graphene layer resistance, in
the case that the graphene resistance is sufficiently low. It is anticipated that the equivalent
circuits proposed here in this work may be generally valid for EIS characterizations of
graphene layer devices in future studies.
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