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Abstract: Co-doped carbon nanofiber mats can be prepared by the addition of cobalt acetate to the
polyacrylonitrile/DMF electrospun solution. Wastewater obtained from food industries was utilized
as the anolyte as well as microorganisms as the source in single-chamber batch mode microbial fuel
cells. The results indicated that the single Co-free carbon nanofiber mat was not a good anode in the
used microbial fuel cells. However, the generated power can be distinctly enhanced by using double
active layers of pristine carbon nanofiber mats or a single layer Co-doped carbon nanofiber mat as
anodes. Typically, after 24 h batching time, the estimated generated power densities were 10, 92, and
121 mW/m2 for single, double active layers, and Co-doped carbon nanofiber anodes, respectively.
For comparison, the performance of the cell was investigated using carbon cloth and carbon paper as
anodes, the observed power densities were smaller than the introduced modified anodes at 58 and
62 mW/m2, respectively. Moreover, the COD removal and Columbic efficiency were calculated for
the proposed anodes as well as the used commercial ones. The results further confirm the priority
of using double active layer or metal-doped carbon nanofiber anodes over the commercial ones.
Numerically, the calculated COD removals were 29.16 and 38.95% for carbon paper and carbon cloth
while 40.53 and 45.79% COD removals were obtained with double active layer and Co-doped carbon
nanofiber anodes, respectively. With a similar trend, the calculated Columbic efficiencies were 26, 42,
52, and 71% for the same sequence.

Keywords: electrospinning; microbial fuel cells; carbon nanofibers; double layer; Co-doped

1. Introduction

Researchers are motivated to investigate alternate sources of water and energy due to a
shortage of both. In this regard, renewable energy generation from industrial and municipal
wastewaters with a simultaneous treatment is an attractable new approach. Microbial fuel
cells (MFCs) are a fantastic device that can be exploited to achieve this task, producing
electrical energy from wastewaters with a simultaneous treatment. MFCs are an innovative
environmental and energy system that converts organic pollutants in wastewater into
electrical energy [1]. Modification in fuel cells could enhance the performance of the
MFC through different ways such as anode or cathode modification [2,3], optimization
of operating conditions [4], membrane improvement [5], and electrolyte modification [6].
Researchers have also worked to discover the optimum conditions to operate MFCs by
applying various types of microorganisms, [7,8] media (fuel), [7,9] electrode materials/sub
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materials, [10,11] cell configurations, [12,13], and membranes [5]. However, among the
aforementioned factors affecting the MFC performance, anodes have attracted the most
attention so numerous reports have been published on anode modification compared to
the other factors.

Electrospinning is a flexible and practical method for producing ultrathin fibers. The
advancement of electrospinning processes and the creation of electrospun nanofibers to suit
or enable several applications have made remarkable progress. Therefore, many researchers
have modified the performance of MFCs by utilizing the electrospinning technology [14,15].
As an anode material, carbon owns almost all the basic requirements such as high electrical
conductivity, excellent chemical stability, biocompatibility, and low cost. Consequently,
electrospun carbon nanofibers are the most utilized material to enhance MFC performance
using the electrospinning technology.

Recently, pristine electrospun carbon nanofiber electrodes are colonized by exoelectro-
genic strains—either the model bacterium Shewanella oneidensis or a wastewater-occurring
bacterial consortium—and are then integrated into a lab-scaled setup [16]. Honestly, the
nano pores existing in the carbon nanofiber mats are inconvenient for micro-scale biocata-
lyst species, microorganisms. In other words, penetration of the microorganisms through
the carbon nanofiber anode is not an easy task, which trifles the nanostructure advantage
and cancels the large surface area characteristic. Therefore, other strategies have been
invoked to provide additional features to the electrospun carbon nanofiber-based anodes.
For example, carboxylated multiwalled carbon nanotubes/carbon nanofibers composite
electrode was fabricated by electrospinning and used as a hybrid anode to improve the
MFC performance based on improving the cell attachment and decreasing the anode po-
tential [17]. For the same purpose, the TiO2 (rutile)/carbon nanofiber composite anode
was investigated in a MFC [18]. However, the generated powers from these trials were
not satisfactory. Layered carbon fiber mats, prepared by layer-by-layer electrospinning
of polyacrylonitrile onto thin natural cellulose paper and subsequent carbonization, have
been introduced as a different strategy to enhance MFC performance [19]. Although, the
layers thickness were designed to be very thin (in microns), cell penetration did not carry
out through the inner layers due to the small pore size.

The use of metal deposition to modify electrode materials is a recent clever method for
improving the anode surface and, as a result, the MFC performance [20,21]. The selected
metal must have high biocompatibility with bacteria, aid in increasing the electron transfer
rate, and boost electrical conductivity, all of which promote the microorganism’s adhesion
to the anode surface. Various metals have been used to modify the surface of carbonaceous
materials, particularly the “essential” heavy metals (e.g., Co, Fe, Zn, Cu, and Ni), which
have the capacity to improve the anode surface’s electrochemical activity as well as its
bioactivity [22,23]. Cobalt is the most promising metal among the studied metals because
of its potential to encourage micro growth and expedite micro cell adherence on the anode
surface as well as its demonstrated high efficiency for power production. However, the
metal content should be very small because a high amount might have a toxicity effect.
Moreover, indirect contact with the microorganisms is recommended [24,25]. Aside from
the bio-catalytic activity, cobalt can enhance many catalytic reactions such as the production
of CNTs from acetylene [26].

The low performance of the single carbon nanofiber anode was further experimen-
tally proven in this study. Therefore, in this report, we planned to introduce two novel
approaches to enhance the performance of the carbon nanofiber mat as an anode in the
MFC. First, two active layers of pristine carbon nanofibers were used. At the beginning,
activation of the first layer was done by utilizing a single carbon nanofiber mat as the anode
in the MFC for 24 h to create an active biofilm. Later on, another layer was installed over
the first one to make a double active layer anode. The second approach was based on
utilizing Co-incorporated carbon nanofibers that could be prepared according to our previ-
ous studies [27,28] as an anode in the MFCs. The used anolyte was industrial wastewater
obtained from a food processing factory in Jeonju, South Korea. The results are interesting
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as the two approaches revealed better performances compared to the conventional carbon
paper and carbon cloth electrodes.

2. Materials and Methods
2.1. Materials

Carbon cloth (CC) and carbon paper (CP) were purchased from Electro Chem. Inc.,
Woburn, MA, USA. Cation exchange membrane (CEM, CMI-7000) was obtained from
Membrane International Inc., Ringwood, NJ, USA. Polyacrylonitrile (PAN, Mwt 500,000,
Sigma Aldrich, St. Louis, MO, USA), cobalt acetate tertrahydrate (CoAc, Sigma Aldrich),
and N,N-dimethylformammide (DMF, SamChun Chem. Co., Ltd., Pyeongtaek, Korea) were
utilized to prepare the pristine and Co-incorporated carbon nanofiber anodes. Wastewater
from a food company located in Jeonju City, South Korea was utilized as the anolyte after a
simple filtration process using filter paper to remove the solid particles.

2.2. Anode Preparation

To prepare a 10 wt.% solution for the electrospinning process, a certain amount of
polyacrylonitrile (PAN) was dissolved in N,N-dimethylformamide (DMF) by stirring at
60 ◦C for 8 h. A 0.1 mm diameter needle with a needle-collector distance of 17 cm was used
to electrospin the homogeneous solution at ambient temperature under a 15 KV electrical
field. Co-incorporated carbon nanofibers were prepared by dissolving a pre-calculated
cobalt acetate precursor in the DMF to prepare a final CoAc/PAN/DMF solution containing
1% CoAc with respect to PAN. Stabilization of the initial electrospun nanofibers was
performed by heating under an air atmosphere at 250 ◦C for 1 h, and then the graphitization
process was performed at 900 ◦C under a nitrogen atmosphere for 1 h. Heating rate in both
cases was fixed at 2.5 deg/min.

2.3. MFC Construction and Operation

The use of an air cathode qualified the MFC to be a cost effective and portable device.
An air cathode was prepared from carbon felt (2.5 cm × 2.5 cm, 3.18 mm, Alfa Aesar)
and Pt/C (20%, Alfa Aesar, Haverhill, MA, USA), according to previous reports [29]. The
hydrophobic carbon layer was faced to the air side to control the oxygen diffusion, while
the other side of the carbon felt, which was loaded by Pt/C particles (0.5 mg/cm2), faced
the water side. A cation exchange membrane (CEM) was employed as a proton exchange
membrane. First, the CEM was treated by immersing it in a 1 M NaCl solution for 12 h
at room temperature, then storing it in distilled water until it was needed. As illustrated
in Figure 1, the cathode was attached to the membrane and positioned on one side of the
wastewater-containing chamber followed by the anode. The membrane electrode assembly
was sandwiched between two high corrosion resistance stainless steel current collectors.
The solution volume in the anode chamber was 84 mL. For the double active layer anode,
first the MFC was assembled using a single layer carbon nanofiber mat and left until the
anode potential became almost stable, which was performed after around 24 h. Later, the
cell was disassembled to insert a second carbon nanofiber layer over the present one before
it was reassembled. Before feeding, the anolyte was purged by nitrogen gas for 5 min.

2.4. Characterization

Using a scanning electron microscope (SEM JSM-IT200, JEOL, Japan), the surface
morphology of the anode material was examined before and after the MFC work was
completed. The electrodes were dried at 50 ◦C for roughly 1 h after the tests and then
utilized for SEM examination. The crystal structure was examined by XRD characterization
using a Rigaku X-ray diffractometer (XRD, Rigaku, Tokyo, Japan) with Cu Kα (λ = 1.540 Å).
The internal structure was examined by transmission electron microscope (TEM, JEOL,
Tokyo, Japan) at 200 kV.
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Linear sweep voltammetry (LSV) was carried out using VersaStat4 Potentiostat
(AMETEK Scientific Instruments, Oak Ridge, TN, USA) to obtain the polarization curves at
a scan rate of 1 mV/s using a two-electrode setup with the cathode as a working electrode
and the anode as both the counter and reference electrodes. The greatest potential charge
may be acquired if all substrates can be digested by the microorganisms to create current,
and the Columbic efficiency (CE) is defined as the proportion of the total charge that is
actually transferred to the anode from the substrate. The total charge obtained was calcu-
lated by integrating the current over time and the elimination of chemical oxygen demand
(COD) in the MFC using the equation below [30]:

CE =
M

∫ t
0 Idt

FbVan∆COD
(1)

where M is the molecular weight of oxygen (32); F is Faraday’s constant; b = 4 indicates the
number of electrons exchanged per mole of oxygen; Van is the volume of the liquid in the
anode compartment; and COD is the change in the chemical oxygen demand (COD) over
time t. In a steady state, CE = MI/Fb Van COD.

3. Results and Discussion
3.1. Anode Characterization

Precursor is the raw ingredient that is utilized to create carbon nanofibers (CNFs).
PAN, polyphenol, viscose rayon, cellulose phosphate, phenolic, and pitch-based fibers are
only a few of the synthetic and natural precursors used to make CNFs [31]. CNFs have also
been synthesized using a variety of biomass resources. Flax fiber, oil palm fiber, cotton fiber,
and lignin are examples of natural resources [32]. The major properties of the precursors
utilized to manufacture the CNFs are their ease of conversion to CF, high carbon yield, and
cost-effective processing. Acrylic precursors are chosen by CNFs makers in the industrial
sector. As it is already proved in research and industrial levels, PAN is the most extensively
employed acrylic precursor in the production of CNFs [33,34].

It was proved that heating of specifically cobalt and nickel acetates in an inert en-
vironment causes anomalous breakdown of the acetate anion to create reducing gases
(carbon monoxide and hydrogen), resulting in the production of pure metal rather than
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the expected metal oxide form. Formation of pure cobalt was ascribed according to the
following equations [27,35]:

Co(CH3COO)2·4H2O→ Co(OH)(CH3COO) + 3H2O + CH3COOH (2)

Co(OH)(CH3COO)→ 0.5CoO + 0.5CoCO3 + 0.5H2O + 0.5CH3COCH3 (3)

CoCO3 → CoO + CO2 (4)

CoO + CO→ Co + CO2 (5)

Figure 2 displays the XRD pattern for the prepared Co-containing carbon nanofibers.
Cobalt metal is present in the investigated powder, according to the pattern obtained. The
development of cubic crystalline cobalt is indicated by the strong diffraction peaks at 2theta
values of 44.35◦, 51.65◦, 75.95◦, 92.35◦, and 97.75◦, which correspond to the (111), (200),
(220), (311), and (222) crystal planes, respectively. The major grain size was determined
to be around 19 nm using Scherrer’s equation. At room temperature, the two cobalt
phases, face-center-cubic (FCC) and hexagonal close-packed (HCP), generally coexist and
are difficult to distinguish from one another. The structure of the synthesized cobalt was
identified as FCC cobalt using the JCPDS database (JCDPS, card no 15-0806). Furthermore,
the wide peak at 26.3◦ corresponded to a 3.37 Å experimental d spacing, confirming the
existence of graphite-like carbon (crystal plan (002), JCPDS; 41-1487). The inset displays the
TEM image of the produced CNFs. As shown, the black spots point to highly crystalline
parts in the nanofiber matrix, so these spots depict the cobalt nanoparticles incorporated
inside the CNFs. Therefore, the final structure of the produced material can be explained
as Co-incorporated CNFs. It is worth mentioning that both pristine and Co-incorporated
CNFs display smooth and long CNFs, as clearly displayed in the SEM images (Figure 3).
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3.2. Single and Double Active Layer Anode Performance

The generated power not only from MFCs but also other kinds of fuel cells is the main
criterion evaluating the performance of these energy producing devices. In contrast to the
traditional fuel cells, the catalysts (electrogens) in the MFC layer is formed in-vivo on the
surface of the anode during the preparation of the cell. Therefore, the anode total surface
area is a highly controlling factor for the electrode performance. To enlarge the surface area,
additional internal areas (e.g., pores) are created to maximize the number of the attached
microorganisms. Indeed, CNFs possess the other required characteristics for the optimum
anode such as excellent electrical conductivity, biocompatibility, and distinguished chemical
stability. However, the nanopores in the CNF mats are insufficient to pass through or
host the microorganisms. Therefore, the main advantage (the high surface area) of the
nanostructure is not workable. Consequently, the apparent surface area will only be utilized
to attach the microorganisms. The aforementioned hypothesis was proven experimentally
in Figure 4. The expectation of the difficulty of the microorganisms’ penetration through the
CNF mat was confirmed by the SEM analysis of the used single layer CNF anode (Figure 4).
As shown in the figure, the microorganisms were too big to be hosted inside the CNF pores;
instead, they attached to the outer surface. Therefore, the relatively good performance of
the utilized single layer CNFs (Figure 5A) can mainly be attributed to the excellent electron
transfer ability. The generated electrons in the microbial fuel cells were obtained from the
metabolism of the organic pollutants in the microorganisms. Consequently, the generated
current density directly proportions with the number of the attached microorganisms on
the anode surface. Compared to CNFs, the carbon papers and carbon cloth possess higher
porosity. However, as shown in Figure 5B,C, which displays the SEM image of the used
carbon paper and carbon cloth anode, respectively, the electrodes’ bio-characteristics were
not good enough to attract numerous microorganisms. In other words, although carbon
paper and carbon cloth had larger porosity compared to the proposed CNF mat, the latter
attracted more microorganisms to be attached on the surface due to its good biological
properties. Nevertheless, in the case of CNFs, the microorganisms cannot penetrate to
the inner layers. Consequently, the double CNF layer-based anode can have a better
performance due to embedding numerous microorganisms.
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Figure 4. SEM image for the used carbon nanofiber: (A), carbon paper; (B) carbon cloth; (C) anodes
in the microbial fuel cell.

Figure 5 displays the polarization and generated power density versus the current
density for single CNF layer-assembled MFCs at different times. The generated power
density was estimated by multiplication of the current with the corresponding cell potential
divided by the anode surface area. In fact, the generated power densities and observed cell
potentials were satisfactory compared to other reports due to the distinct electron transfer
process of the nanofibrous morphology [36,37]; however, more improvement could be
made if the active surface area could be enhanced or the surface properties were improved.

The performance of the double active layer CNF anode is represented in Figure 6,
which displays the relationship between the generated power density and the cell potential
with the current density. To properly introduce the advantage of the double active layer,
the main cell parameters of the single and double active layer CNF-based MFCs are
summarized in Figure 7.

The experiments were repeated three times; the bars in Figure 7 are data points that
represent the obtained errors. As shown in Figure 7A, which illustrates the influence of
batching time on the generated powers in the two cells, at 24 h, the generated power
density jumped from 9.7± 1.1 to 92.3± 2.5 mW/m2 due to the use of the second CNF layer.
Moreover, for the double active layer, the power density reached 133 ± 3 mW/m2 after
120 h working time. The gradual decrease in the power density after the maximum value
can be inputted to the mass transfer limitations. In other words, passing the substrates to
the inner active layer faces mass transfer resistance. On the other hand, for the single layer
CNF-based MFC, the generated power almost increased linearly with the batching time
due to the availability of the substrates around the microorganisms. It is proposed that
this problem facing the double active layer CNF-based cell can be fixed if agitation of the
anolyte is performed.
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Figure 6. Polarization and power density curves of batch-mode and single-chamber MFCs using a
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Current reflects the collected electrons from the electrogen microorganisms attach-
ing to the anode. As shown in Figure 7B, the current densities’ behavior resembles the
power density attitude. Using the double active layer resulted in increasing the attached
microorganisms, which caused an increase in the produced current. Numerically, after 24 h
batching time, the detected current density was duplicated 10 times due to using two active
layers as it increased from 25.7 ± 1.2 to 247.7 ± 4.2 mA/m2. However, at the maximum
value (at 120 h), an almost 3-fold increase was observed as the detected current densities
were 133.9 ± 3 and 474.4 ± 6.5 mA/m2 for the single and double active layer CNF-based
MFC, respectively.

Open circuit voltage (OCV) represents the maximum cell voltage that occurs at zero
current density (open circuit). At the OCV state, the electrons are accumulated on the
membrane of the microorganisms waiting the release moment. Therefore, the maximum
number of electrons at the cell membranes and consequently the minimum anode potential
are implemented at the OCV. When the cell is closed, the electrons start to pass through the
outer circuit (the load) so the cell potential decreases.

Figure 7C depicts the impact of utilizing a double active layer anode on OCV at
different batching times. As shown in the figure, for the double active layer CNF-based
MFC, the OCV is directly proportionate with the time; it started as 670 ± 6.5 mV (at 24 h)
and reached 821 ± 7.8 mV (at 172 h). For the single layer anode, at 24 h, the observed
OCV was 532 ± 4.5 mV then decreased slightly and stabilized at 490 ± 4 mV at a batching
time range of 72~96 h. Later, the OCV increased and became stable at 643 ± 6.5 mV
after a 144 h working time until the end of the experiment (168 h). During the open circuit



Polymers 2022, 14, 1542 10 of 18

period, the adhesion forces between the microorganisms and the anode surface are weak, so
microorganism release can take place. Therefore, the number of the microorganisms on the
anode surface is in a dynamic equilibrium between the microorganisms’ attach and release
rates. Accordingly, the small decrease in the OCV in the case of the single layer CNF-based
MFC can be explained as increasing the washing out rate, so some microorganisms are
released from the anode surface, and the released number of microorganisms is considerable
with respect to the total number of the attached microorganisms, which was translated
as a decrease in the OCV. The attaching rate increase may be due to the attachment of
different kinds of microorganisms. On the other hand, in the case of the double active
layer CNF anode, plenty of microorganisms were prisoned on the surface of the inner layer,
so the number of released microorganisms was negligible compared to the total number;
consequently, an almost linear increase in the OCV was observed.
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3.3. Co-Incorporated CNF Anode Performance

Heavy metals such as cadmium, lead, and mercury have received the most attention
in terms of environmental protection, but other micronutrients also require considera-
tion as well due to the likelihood of large soil loading. Among the elements present in
amounts exceeding trace values in the soil, water, and air environments, cobalt (not yet
fully known as a trace element) has attracted special attention [37,38]. Trace elements,
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which include cobalt, are among the numerous chemicals that have an impact on the course
of microbiological activities. Maintaining appropriate levels in microorganism cells can
help metabolic activities or boost vitamin B12 levels, which can help with growth [39]. The
presence of cobalt in xylose isomerase enables the appropriate course of sugar metabolism
in microorganisms, as demonstrated by the findings of Hlima et al. [40]. Because vitamin
B12 production is required for the course of redox processes and nucleoprotein synthesis,
cobalt is found in the coenzymes of Rhizobium bacteria or free-living Azotobacter bacteria,
which are responsible for binding nitrogen from the air [41]. However, aside from the
content limitation, a high amount of this metal can have a negative impact on the microor-
ganisms, so the direct contact of the zero valent cobalt with the aqueous solution in an
electrochemical device is highly not recommended due to the dissolution possibility of the
metal, especially if it is a part of the anode. In other words, because cobalt is an active metal
and is located at the anode, its ionization (i.e., cobalt can be oxidized and liberates electrons)
in the MFC is highly expected. Therefore, to obtain the advantage of the cobalt and protect
it from ionization, sheathing it in a strong shell is required. Accordingly, incorporation of
cobalt nanoparticles inside carbon nanofibers was our target (see the inset in Figure 2).

Figure 8 demonstrates the power generation and the polarization curve of the ex-
amined MFC using Co-incorporated CNFs as the anode after a 24 h batching time. As
shown in the figure, a 121 mW/m2 power density was obtained, which was 32% more than
that obtained from the double active layer CNF anode. Moreover, the observed current
density from this MFC (397 mA/m2) was 60% more than that obtained from the double
active layer CNF-based MFC at 249 mA/m2. Interestingly, the OCV of the Co-incorporated
CNF–based cell was less than that observed from the double layer CNF one at 631 and
680 mV, respectively. The last finding about the OCV further draws attention to the ad-
vantage of cobalt incorporation. Lower OCV with higher power and current densities
compared to the double active CNF-based MFC indicates that although the number of
attached cells was lower, the good properties of the anode resulted in improving the power
and current densities.
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3.4. Comparison with Carbon Cloth and Carbon Paper

Carbon cloth and carbon papers are standard materials widely used to evaluate the
performance of proposed electrode materials. In this study, these materials were used as
anodes in the same configuration of the utilized MFC. Comparison with the introduced
anodes was first established in terms of the cell basic parameters, power and current
densities, and OCV. Figure 9 depicts the obtained cell parameters obtained after a 24 h
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batching time. As shown in the figures, the proposed modification strategies showed
better performances compared to the commercial anodes. As shown, the generated power
densities were 121, 92, 52, and 68 mW/m2 for the Co-incorporated CNFs, double active
layer CNFs, carbon paper, and carbon cloth anodes, respectively. This means that compared
to carbon paper, the increase in power density was 132 and 77% when Co-incorporated
CNFs and double active layer CNF anodes were used, respectively. Compared to carbon
cloth, the increase in power density was 78 and 35% with the same sequence. In the same
trend, as shown in Figure 9, the increase in the current density was 149 and 55%, and
77 and 10% for Co-incorporated and double active layer CNFs compared to the carbon
paper and carbon paper, respectively. Although there was a distinct increase in terms of
power and current densities, the results indicated that the surfaces of carbon paper and
carbon cloths had more microorganisms compared to the proposed modified electrodes,
which can be imputed to the higher active surface area of these electrodes than that of
the modified ones. Accordingly, this increase in the number of the microorganisms was
translated into enhancement in the OCV values. Numerically, the observed OCVs were 530,
680, 631, 789, and 802 mV for the single CNFs, double active layer CNFs, Co-incorporated
CNFs, carbon paper, and carbon cloth-based MFCs, respectively.
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The MFC main function is based on exploiting the microorganisms to degrade the
organic pollutants in the wastewater, which results in generating electrons. Accordingly,
the dual advantages of the MFC are generating electric energy with simultaneous treatment
of the wastewaters. Therefore, from the standpoint of a wastewater treatment engineer, it is
feasible to assess an MFC’s substrate conversion rate in terms of chemical oxygen demand
(COD) by determining its COD removal efficiency or, better yet, its removal rate (thus
taking into account the retention time of the substrate in the cell).

Coulombic efficiency refers to the ratio of actual transferred electric charge to maxi-
mum value attainable if all of the substrate is removed to create a current, and is a crucial
measure for evaluating MFC performance [42]. The MFC’s Coulombic efficiency, the ratio
between electron moles extracted as current and total electron moles made accessible via
substrate oxidation, is used to determine the global efficiency of the bioelectrochemical
process [43].
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Figure 10 displays the COD of the output wastewaters after utilizing the MFCs using
different anodes. Initially, the COD of the used water was 950. As shown, the treatment effi-
ciency depended on the used anode. Typically, the COD of the treated solutions (after 24 h)
was 870, 565, 515, 673, and 580 when single CNFs, double active CNFs, Co-incorporated
CNFs, carbon paper, and carbon cloth were used as the anodes, respectively. These data
indicate a COD removal efficiency of 8.4, 40.5, 45.8, 29.2, and 38.9% for the aforemen-
tioned anodes with the same sequence. As seen, the maximum COD removal efficiency
(45.8%) corresponded to the Co-incorporated CNFs, which sheds light on the advantage of
cobalt incorporation.
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Along the same lines of COD removal behavior, Coulombic efficiency estimation
results run in the same attitude. As shown in the figure, the maximum Coulombic efficiency
(71%) was obtained with Co-incorporated CNFs while the lowest value belonged to a
pristine single layer CNF layer anode of 6%. Moreover, as shown in the results, the double
active layer CNF anode revealed better Coulombic efficiency compared to carbon paper
and carbon cloth at 52, 26, and 42%, respectively.

To properly evaluate the proposed anodes, a comparison with some reported MFC
anodes in the literature is introduced in Table 1. As shown in the table, although the
estimated power of the Co-incorporated CNF-based cell was after a 24 h batching time only,
the used anode had an excellent performance compared to almost all the cited materials
in Table 1. Similarly, the power generated (135 mW/m2) from the double active layer
CNF-based MFC after 120 h was higher than the numerous reported values obtained from
different materials. Finally, as aforementioned, although a single layer CNF anode did
not possess a high active area, its performance was very satisfactory; the generated power
density (after 168 h batching time) exceeded many introduced anodes in the literature.

The obtained good results for the Co-incorporated CNF anode can mainly be attributed
to its capacity to boost micro growth and accelerate micro cell adhesion on the anode surface
as well as shown high efficiency for power generation [44]. From the electrical conductivity
point of view, carbon nanofibers have very good electrical conductivity (4.2 S/cm) [45].
Compared to pristine CNFs, cobalt possesses very high electrical conductivity. However,
since it is incorporated in the form of discrete nanoparticles along with the carbon nanofiber
matrix, the produced composite has a relatively higher conductivity [46]. Therefore, it can
be concluded that the performance improvement due to cobalt incorporation is mainly and
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partially imputed to the enhancement in the biological and physical properties of the used
anode, respectively.

Table 1. Performance of the reported MFC anodes in the literature in terms of power density
generation compared with the proposed anodes in this study.

Cell Type Microorganism
Media Anode Material Power Density

(mWm−2)

Improving (%)

Single CNFs Co-CNFs Double
CNFs

Single chamber [47] Local domestic
wastewater Graphite rods 26

181
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diator-less MFC [50] 
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the carbon nanofiber matrix, the produced composite has a relatively higher conductivity 
[46]. Therefore, it can be concluded that the performance improvement due to cobalt in-
corporation is mainly and partially imputed to the enhancement in the biological and 
physical properties of the used anode, respectively. 

Table 1. Performance of the reported MFC anodes in the literature in terms of power density gen-
eration compared with the proposed anodes in this study. 

Cell Type Microorganism Media Anode Material Power Density 
(mWm−2) 

Improving (%) 
Single 
CNFs Co-CNFs Double  

CNFs 

Single chamber [47] 
Local domestic 

wastewater 
Graphite rods 26 181  365  419  

Mediator less MFC [48] P. aeruginosain 
Graphene-modified 

carbon cloth 
50 46  142  170  

A dual chamber fuel cell 
[49]  

Geobacteria. sulfurre-
ducens 

Solid graphite 13.1  457  824  931  

Two-chamber flat plate me-
diator-less MFC [50] 

Shewanella putrefaciens in 
Luria broth 

Graphite plate 39.2  86  209  244  

Mediator-less [51]  
Saccharomyces cerevisiae 

yeast 
Carbon paper 3  2333  3933  4400  

2589
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The obtained good results for the Co-incorporated CNF anode can mainly be at-
tributed to its capacity to boost micro growth and accelerate micro cell adhesion on the 
anode surface as well as shown high efficiency for power generation [44]. From the elec-
trical conductivity point of view, carbon nanofibers have very good electrical conductivity 
(4.2 S/cm) [45]. Compared to pristine CNFs, cobalt possesses very high electrical conduc-
tivity. However, since it is incorporated in the form of discrete nanoparticles along with 
the carbon nanofiber matrix, the produced composite has a relatively higher conductivity 
[46]. Therefore, it can be concluded that the performance improvement due to cobalt in-
corporation is mainly and partially imputed to the enhancement in the biological and 
physical properties of the used anode, respectively. 

Table 1. Performance of the reported MFC anodes in the literature in terms of power density gen-
eration compared with the proposed anodes in this study. 

Cell Type Microorganism Media Anode Material Power Density 
(mWm−2) 

Improving (%) 
Single 
CNFs Co-CNFs Double  

CNFs 

Single chamber [47] 
Local domestic 

wastewater 
Graphite rods 26 181  365  419  

Mediator less MFC [48] P. aeruginosain 
Graphene-modified 

carbon cloth 
50 46  142  170  

A dual chamber fuel cell 
[49]  

Geobacteria. sulfurre-
ducens 

Solid graphite 13.1  457  824  931  

Two-chamber flat plate me-
diator-less MFC [50] 

Shewanella putrefaciens in 
Luria broth 

Graphite plate 39.2  86  209  244  

Mediator-less [51]  
Saccharomyces cerevisiae 

yeast 
Carbon paper 3  2333  3933  4400  

2900

Polymers 2022, 14, x FOR PEER REVIEW 14 of 18 
 

 

in Table 1. Similarly, the power generated (135 mW/m2) from the double active layer CNF-
based MFC after 120 h was higher than the numerous reported values obtained from dif-
ferent materials. Finally, as aforementioned, although a single layer CNF anode did not 
possess a high active area, its performance was very satisfactory; the generated power 
density (after 168 h batching time) exceeded many introduced anodes in the literature.  

 
Figure 10. Columbic efficiency (CE) and COD of the final solution after 24 h batching of MFCs using 
different anodes. 

The obtained good results for the Co-incorporated CNF anode can mainly be at-
tributed to its capacity to boost micro growth and accelerate micro cell adhesion on the 
anode surface as well as shown high efficiency for power generation [44]. From the elec-
trical conductivity point of view, carbon nanofibers have very good electrical conductivity 
(4.2 S/cm) [45]. Compared to pristine CNFs, cobalt possesses very high electrical conduc-
tivity. However, since it is incorporated in the form of discrete nanoparticles along with 
the carbon nanofiber matrix, the produced composite has a relatively higher conductivity 
[46]. Therefore, it can be concluded that the performance improvement due to cobalt in-
corporation is mainly and partially imputed to the enhancement in the biological and 
physical properties of the used anode, respectively. 

Table 1. Performance of the reported MFC anodes in the literature in terms of power density gen-
eration compared with the proposed anodes in this study. 

Cell Type Microorganism Media Anode Material Power Density 
(mWm−2) 

Improving (%) 
Single 
CNFs Co-CNFs Double  

CNFs 

Single chamber [47] 
Local domestic 

wastewater 
Graphite rods 26 181  365  419  

Mediator less MFC [48] P. aeruginosain 
Graphene-modified 

carbon cloth 
50 46  142  170  

A dual chamber fuel cell 
[49]  

Geobacteria. sulfurre-
ducens 

Solid graphite 13.1  457  824  931  

Two-chamber flat plate me-
diator-less MFC [50] 

Shewanella putrefaciens in 
Luria broth 

Graphite plate 39.2  86  209  244  

Mediator-less [51]  
Saccharomyces cerevisiae 

yeast 
Carbon paper 3  2333  3933  4400  

Two chamber [53]
Mixed consortium,
Continuous grow

on Sucrose
Granular graphite 47

55
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The obtained good results for the Co-incorporated CNF anode can mainly be at-
tributed to its capacity to boost micro growth and accelerate micro cell adhesion on the 
anode surface as well as shown high efficiency for power generation [44]. From the elec-
trical conductivity point of view, carbon nanofibers have very good electrical conductivity 
(4.2 S/cm) [45]. Compared to pristine CNFs, cobalt possesses very high electrical conduc-
tivity. However, since it is incorporated in the form of discrete nanoparticles along with 
the carbon nanofiber matrix, the produced composite has a relatively higher conductivity 
[46]. Therefore, it can be concluded that the performance improvement due to cobalt in-
corporation is mainly and partially imputed to the enhancement in the biological and 
physical properties of the used anode, respectively. 

Table 1. Performance of the reported MFC anodes in the literature in terms of power density gen-
eration compared with the proposed anodes in this study. 

Cell Type Microorganism Media Anode Material Power Density 
(mWm−2) 

Improving (%) 
Single 
CNFs Co-CNFs Double  

CNFs 

Single chamber [47] 
Local domestic 

wastewater 
Graphite rods 26 181  365  419  

Mediator less MFC [48] P. aeruginosain 
Graphene-modified 

carbon cloth 
50 46  142  170  

A dual chamber fuel cell 
[49]  

Geobacteria. sulfurre-
ducens 

Solid graphite 13.1  457  824  931  

Two-chamber flat plate me-
diator-less MFC [50] 

Shewanella putrefaciens in 
Luria broth 

Graphite plate 39.2  86  209  244  

Mediator-less [51]  
Saccharomyces cerevisiae 

yeast 
Carbon paper 3  2333  3933  4400  
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The obtained good results for the Co-incorporated CNF anode can mainly be at-
tributed to its capacity to boost micro growth and accelerate micro cell adhesion on the 
anode surface as well as shown high efficiency for power generation [44]. From the elec-
trical conductivity point of view, carbon nanofibers have very good electrical conductivity 
(4.2 S/cm) [45]. Compared to pristine CNFs, cobalt possesses very high electrical conduc-
tivity. However, since it is incorporated in the form of discrete nanoparticles along with 
the carbon nanofiber matrix, the produced composite has a relatively higher conductivity 
[46]. Therefore, it can be concluded that the performance improvement due to cobalt in-
corporation is mainly and partially imputed to the enhancement in the biological and 
physical properties of the used anode, respectively. 

Table 1. Performance of the reported MFC anodes in the literature in terms of power density gen-
eration compared with the proposed anodes in this study. 

Cell Type Microorganism Media Anode Material Power Density 
(mWm−2) 

Improving (%) 
Single 
CNFs Co-CNFs Double  

CNFs 

Single chamber [47] 
Local domestic 

wastewater 
Graphite rods 26 181  365  419  

Mediator less MFC [48] P. aeruginosain 
Graphene-modified 

carbon cloth 
50 46  142  170  

A dual chamber fuel cell 
[49]  

Geobacteria. sulfurre-
ducens 

Solid graphite 13.1  457  824  931  

Two-chamber flat plate me-
diator-less MFC [50] 

Shewanella putrefaciens in 
Luria broth 

Graphite plate 39.2  86  209  244  

Mediator-less [51]  
Saccharomyces cerevisiae 

yeast 
Carbon paper 3  2333  3933  4400  
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The obtained good results for the Co-incorporated CNF anode can mainly be at-
tributed to its capacity to boost micro growth and accelerate micro cell adhesion on the 
anode surface as well as shown high efficiency for power generation [44]. From the elec-
trical conductivity point of view, carbon nanofibers have very good electrical conductivity 
(4.2 S/cm) [45]. Compared to pristine CNFs, cobalt possesses very high electrical conduc-
tivity. However, since it is incorporated in the form of discrete nanoparticles along with 
the carbon nanofiber matrix, the produced composite has a relatively higher conductivity 
[46]. Therefore, it can be concluded that the performance improvement due to cobalt in-
corporation is mainly and partially imputed to the enhancement in the biological and 
physical properties of the used anode, respectively. 

Table 1. Performance of the reported MFC anodes in the literature in terms of power density gen-
eration compared with the proposed anodes in this study. 

Cell Type Microorganism Media Anode Material Power Density 
(mWm−2) 

Improving (%) 
Single 
CNFs Co-CNFs Double  

CNFs 

Single chamber [47] 
Local domestic 

wastewater 
Graphite rods 26 181  365  419  

Mediator less MFC [48] P. aeruginosain 
Graphene-modified 

carbon cloth 
50 46  142  170  

A dual chamber fuel cell 
[49]  

Geobacteria. sulfurre-
ducens 

Solid graphite 13.1  457  824  931  

Two-chamber flat plate me-
diator-less MFC [50] 

Shewanella putrefaciens in 
Luria broth 

Graphite plate 39.2  86  209  244  

Mediator-less [51]  
Saccharomyces cerevisiae 

yeast 
Carbon paper 3  2333  3933  4400  

Mediator-less [54]
Rhodoferax

ferrireducens grow
on Glucose

Graphite foam 33
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in Table 1. Similarly, the power generated (135 mW/m2) from the double active layer CNF-
based MFC after 120 h was higher than the numerous reported values obtained from dif-
ferent materials. Finally, as aforementioned, although a single layer CNF anode did not 
possess a high active area, its performance was very satisfactory; the generated power 
density (after 168 h batching time) exceeded many introduced anodes in the literature.  
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The obtained good results for the Co-incorporated CNF anode can mainly be at-
tributed to its capacity to boost micro growth and accelerate micro cell adhesion on the 
anode surface as well as shown high efficiency for power generation [44]. From the elec-
trical conductivity point of view, carbon nanofibers have very good electrical conductivity 
(4.2 S/cm) [45]. Compared to pristine CNFs, cobalt possesses very high electrical conduc-
tivity. However, since it is incorporated in the form of discrete nanoparticles along with 
the carbon nanofiber matrix, the produced composite has a relatively higher conductivity 
[46]. Therefore, it can be concluded that the performance improvement due to cobalt in-
corporation is mainly and partially imputed to the enhancement in the biological and 
physical properties of the used anode, respectively. 

Table 1. Performance of the reported MFC anodes in the literature in terms of power density gen-
eration compared with the proposed anodes in this study. 

Cell Type Microorganism Media Anode Material Power Density 
(mWm−2) 

Improving (%) 
Single 
CNFs Co-CNFs Double  

CNFs 

Single chamber [47] 
Local domestic 

wastewater 
Graphite rods 26 181  365  419  

Mediator less MFC [48] P. aeruginosain 
Graphene-modified 

carbon cloth 
50 46  142  170  

A dual chamber fuel cell 
[49]  

Geobacteria. sulfurre-
ducens 

Solid graphite 13.1  457  824  931  

Two-chamber flat plate me-
diator-less MFC [50] 

Shewanella putrefaciens in 
Luria broth 

Graphite plate 39.2  86  209  244  

Mediator-less [51]  
Saccharomyces cerevisiae 

yeast 
Carbon paper 3  2333  3933  4400  

267
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in Table 1. Similarly, the power generated (135 mW/m2) from the double active layer CNF-
based MFC after 120 h was higher than the numerous reported values obtained from dif-
ferent materials. Finally, as aforementioned, although a single layer CNF anode did not 
possess a high active area, its performance was very satisfactory; the generated power 
density (after 168 h batching time) exceeded many introduced anodes in the literature.  
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different anodes. 

The obtained good results for the Co-incorporated CNF anode can mainly be at-
tributed to its capacity to boost micro growth and accelerate micro cell adhesion on the 
anode surface as well as shown high efficiency for power generation [44]. From the elec-
trical conductivity point of view, carbon nanofibers have very good electrical conductivity 
(4.2 S/cm) [45]. Compared to pristine CNFs, cobalt possesses very high electrical conduc-
tivity. However, since it is incorporated in the form of discrete nanoparticles along with 
the carbon nanofiber matrix, the produced composite has a relatively higher conductivity 
[46]. Therefore, it can be concluded that the performance improvement due to cobalt in-
corporation is mainly and partially imputed to the enhancement in the biological and 
physical properties of the used anode, respectively. 

Table 1. Performance of the reported MFC anodes in the literature in terms of power density gen-
eration compared with the proposed anodes in this study. 

Cell Type Microorganism Media Anode Material Power Density 
(mWm−2) 

Improving (%) 
Single 
CNFs Co-CNFs Double  

CNFs 

Single chamber [47] 
Local domestic 

wastewater 
Graphite rods 26 181  365  419  

Mediator less MFC [48] P. aeruginosain 
Graphene-modified 

carbon cloth 
50 46  142  170  

A dual chamber fuel cell 
[49]  

Geobacteria. sulfurre-
ducens 

Solid graphite 13.1  457  824  931  

Two-chamber flat plate me-
diator-less MFC [50] 

Shewanella putrefaciens in 
Luria broth 

Graphite plate 39.2  86  209  244  

Mediator-less [51]  
Saccharomyces cerevisiae 

yeast 
Carbon paper 3  2333  3933  4400  

309
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in Table 1. Similarly, the power generated (135 mW/m2) from the double active layer CNF-
based MFC after 120 h was higher than the numerous reported values obtained from dif-
ferent materials. Finally, as aforementioned, although a single layer CNF anode did not 
possess a high active area, its performance was very satisfactory; the generated power 
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different anodes. 

The obtained good results for the Co-incorporated CNF anode can mainly be at-
tributed to its capacity to boost micro growth and accelerate micro cell adhesion on the 
anode surface as well as shown high efficiency for power generation [44]. From the elec-
trical conductivity point of view, carbon nanofibers have very good electrical conductivity 
(4.2 S/cm) [45]. Compared to pristine CNFs, cobalt possesses very high electrical conduc-
tivity. However, since it is incorporated in the form of discrete nanoparticles along with 
the carbon nanofiber matrix, the produced composite has a relatively higher conductivity 
[46]. Therefore, it can be concluded that the performance improvement due to cobalt in-
corporation is mainly and partially imputed to the enhancement in the biological and 
physical properties of the used anode, respectively. 

Table 1. Performance of the reported MFC anodes in the literature in terms of power density gen-
eration compared with the proposed anodes in this study. 

Cell Type Microorganism Media Anode Material Power Density 
(mWm−2) 

Improving (%) 
Single 
CNFs Co-CNFs Double  

CNFs 

Single chamber [47] 
Local domestic 

wastewater 
Graphite rods 26 181  365  419  

Mediator less MFC [48] P. aeruginosain 
Graphene-modified 

carbon cloth 
50 46  142  170  

A dual chamber fuel cell 
[49]  

Geobacteria. sulfurre-
ducens 

Solid graphite 13.1  457  824  931  

Two-chamber flat plate me-
diator-less MFC [50] 

Shewanella putrefaciens in 
Luria broth 

Graphite plate 39.2  86  209  244  

Mediator-less [51]  
Saccharomyces cerevisiae 

yeast 
Carbon paper 3  2333  3933  4400  

Single chamber [55]
Mixed culture of
microorganism
utilize Acetate

Carbon paper 13
462
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in Table 1. Similarly, the power generated (135 mW/m2) from the double active layer CNF-
based MFC after 120 h was higher than the numerous reported values obtained from dif-
ferent materials. Finally, as aforementioned, although a single layer CNF anode did not 
possess a high active area, its performance was very satisfactory; the generated power 
density (after 168 h batching time) exceeded many introduced anodes in the literature.  
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The obtained good results for the Co-incorporated CNF anode can mainly be at-
tributed to its capacity to boost micro growth and accelerate micro cell adhesion on the 
anode surface as well as shown high efficiency for power generation [44]. From the elec-
trical conductivity point of view, carbon nanofibers have very good electrical conductivity 
(4.2 S/cm) [45]. Compared to pristine CNFs, cobalt possesses very high electrical conduc-
tivity. However, since it is incorporated in the form of discrete nanoparticles along with 
the carbon nanofiber matrix, the produced composite has a relatively higher conductivity 
[46]. Therefore, it can be concluded that the performance improvement due to cobalt in-
corporation is mainly and partially imputed to the enhancement in the biological and 
physical properties of the used anode, respectively. 

Table 1. Performance of the reported MFC anodes in the literature in terms of power density gen-
eration compared with the proposed anodes in this study. 

Cell Type Microorganism Media Anode Material Power Density 
(mWm−2) 

Improving (%) 
Single 
CNFs Co-CNFs Double  

CNFs 

Single chamber [47] 
Local domestic 

wastewater 
Graphite rods 26 181  365  419  

Mediator less MFC [48] P. aeruginosain 
Graphene-modified 

carbon cloth 
50 46  142  170  

A dual chamber fuel cell 
[49]  

Geobacteria. sulfurre-
ducens 

Solid graphite 13.1  457  824  931  

Two-chamber flat plate me-
diator-less MFC [50] 

Shewanella putrefaciens in 
Luria broth 

Graphite plate 39.2  86  209  244  

Mediator-less [51]  
Saccharomyces cerevisiae 

yeast 
Carbon paper 3  2333  3933  4400  

831
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in Table 1. Similarly, the power generated (135 mW/m2) from the double active layer CNF-
based MFC after 120 h was higher than the numerous reported values obtained from dif-
ferent materials. Finally, as aforementioned, although a single layer CNF anode did not 
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density (after 168 h batching time) exceeded many introduced anodes in the literature.  
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The obtained good results for the Co-incorporated CNF anode can mainly be at-
tributed to its capacity to boost micro growth and accelerate micro cell adhesion on the 
anode surface as well as shown high efficiency for power generation [44]. From the elec-
trical conductivity point of view, carbon nanofibers have very good electrical conductivity 
(4.2 S/cm) [45]. Compared to pristine CNFs, cobalt possesses very high electrical conduc-
tivity. However, since it is incorporated in the form of discrete nanoparticles along with 
the carbon nanofiber matrix, the produced composite has a relatively higher conductivity 
[46]. Therefore, it can be concluded that the performance improvement due to cobalt in-
corporation is mainly and partially imputed to the enhancement in the biological and 
physical properties of the used anode, respectively. 

Table 1. Performance of the reported MFC anodes in the literature in terms of power density gen-
eration compared with the proposed anodes in this study. 

Cell Type Microorganism Media Anode Material Power Density 
(mWm−2) 

Improving (%) 
Single 
CNFs Co-CNFs Double  

CNFs 

Single chamber [47] 
Local domestic 

wastewater 
Graphite rods 26 181  365  419  

Mediator less MFC [48] P. aeruginosain 
Graphene-modified 

carbon cloth 
50 46  142  170  

A dual chamber fuel cell 
[49]  

Geobacteria. sulfurre-
ducens 

Solid graphite 13.1  457  824  931  

Two-chamber flat plate me-
diator-less MFC [50] 

Shewanella putrefaciens in 
Luria broth 

Graphite plate 39.2  86  209  244  

Mediator-less [51]  
Saccharomyces cerevisiae 

yeast 
Carbon paper 3  2333  3933  4400  
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in Table 1. Similarly, the power generated (135 mW/m2) from the double active layer CNF-
based MFC after 120 h was higher than the numerous reported values obtained from dif-
ferent materials. Finally, as aforementioned, although a single layer CNF anode did not 
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The obtained good results for the Co-incorporated CNF anode can mainly be at-
tributed to its capacity to boost micro growth and accelerate micro cell adhesion on the 
anode surface as well as shown high efficiency for power generation [44]. From the elec-
trical conductivity point of view, carbon nanofibers have very good electrical conductivity 
(4.2 S/cm) [45]. Compared to pristine CNFs, cobalt possesses very high electrical conduc-
tivity. However, since it is incorporated in the form of discrete nanoparticles along with 
the carbon nanofiber matrix, the produced composite has a relatively higher conductivity 
[46]. Therefore, it can be concluded that the performance improvement due to cobalt in-
corporation is mainly and partially imputed to the enhancement in the biological and 
physical properties of the used anode, respectively. 

Table 1. Performance of the reported MFC anodes in the literature in terms of power density gen-
eration compared with the proposed anodes in this study. 

Cell Type Microorganism Media Anode Material Power Density 
(mWm−2) 

Improving (%) 
Single 
CNFs Co-CNFs Double  

CNFs 

Single chamber [47] 
Local domestic 

wastewater 
Graphite rods 26 181  365  419  

Mediator less MFC [48] P. aeruginosain 
Graphene-modified 

carbon cloth 
50 46  142  170  

A dual chamber fuel cell 
[49]  

Geobacteria. sulfurre-
ducens 

Solid graphite 13.1  457  824  931  

Two-chamber flat plate me-
diator-less MFC [50] 

Shewanella putrefaciens in 
Luria broth 

Graphite plate 39.2  86  209  244  

Mediator-less [51]  
Saccharomyces cerevisiae 

yeast 
Carbon paper 3  2333  3933  4400  

Single chamber [55]
Mixed culture of
microorganism
utilize Butyrate

Carbon paper 7.6
861
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in Table 1. Similarly, the power generated (135 mW/m2) from the double active layer CNF-
based MFC after 120 h was higher than the numerous reported values obtained from dif-
ferent materials. Finally, as aforementioned, although a single layer CNF anode did not 
possess a high active area, its performance was very satisfactory; the generated power 
density (after 168 h batching time) exceeded many introduced anodes in the literature.  
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The obtained good results for the Co-incorporated CNF anode can mainly be at-
tributed to its capacity to boost micro growth and accelerate micro cell adhesion on the 
anode surface as well as shown high efficiency for power generation [44]. From the elec-
trical conductivity point of view, carbon nanofibers have very good electrical conductivity 
(4.2 S/cm) [45]. Compared to pristine CNFs, cobalt possesses very high electrical conduc-
tivity. However, since it is incorporated in the form of discrete nanoparticles along with 
the carbon nanofiber matrix, the produced composite has a relatively higher conductivity 
[46]. Therefore, it can be concluded that the performance improvement due to cobalt in-
corporation is mainly and partially imputed to the enhancement in the biological and 
physical properties of the used anode, respectively. 

Table 1. Performance of the reported MFC anodes in the literature in terms of power density gen-
eration compared with the proposed anodes in this study. 

Cell Type Microorganism Media Anode Material Power Density 
(mWm−2) 

Improving (%) 
Single 
CNFs Co-CNFs Double  

CNFs 

Single chamber [47] 
Local domestic 

wastewater 
Graphite rods 26 181  365  419  

Mediator less MFC [48] P. aeruginosain 
Graphene-modified 

carbon cloth 
50 46  142  170  

A dual chamber fuel cell 
[49]  

Geobacteria. sulfurre-
ducens 

Solid graphite 13.1  457  824  931  

Two-chamber flat plate me-
diator-less MFC [50] 

Shewanella putrefaciens in 
Luria broth 

Graphite plate 39.2  86  209  244  

Mediator-less [51]  
Saccharomyces cerevisiae 

yeast 
Carbon paper 3  2333  3933  4400  

1492
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The obtained good results for the Co-incorporated CNF anode can mainly be at-
tributed to its capacity to boost micro growth and accelerate micro cell adhesion on the 
anode surface as well as shown high efficiency for power generation [44]. From the elec-
trical conductivity point of view, carbon nanofibers have very good electrical conductivity 
(4.2 S/cm) [45]. Compared to pristine CNFs, cobalt possesses very high electrical conduc-
tivity. However, since it is incorporated in the form of discrete nanoparticles along with 
the carbon nanofiber matrix, the produced composite has a relatively higher conductivity 
[46]. Therefore, it can be concluded that the performance improvement due to cobalt in-
corporation is mainly and partially imputed to the enhancement in the biological and 
physical properties of the used anode, respectively. 

Table 1. Performance of the reported MFC anodes in the literature in terms of power density gen-
eration compared with the proposed anodes in this study. 

Cell Type Microorganism Media Anode Material Power Density 
(mWm−2) 

Improving (%) 
Single 
CNFs Co-CNFs Double  

CNFs 

Single chamber [47] 
Local domestic 

wastewater 
Graphite rods 26 181  365  419  

Mediator less MFC [48] P. aeruginosain 
Graphene-modified 

carbon cloth 
50 46  142  170  

A dual chamber fuel cell 
[49]  

Geobacteria. sulfurre-
ducens 

Solid graphite 13.1  457  824  931  

Two-chamber flat plate me-
diator-less MFC [50] 

Shewanella putrefaciens in 
Luria broth 

Graphite plate 39.2  86  209  244  

Mediator-less [51]  
Saccharomyces cerevisiae 

yeast 
Carbon paper 3  2333  3933  4400  

1676
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The obtained good results for the Co-incorporated CNF anode can mainly be at-
tributed to its capacity to boost micro growth and accelerate micro cell adhesion on the 
anode surface as well as shown high efficiency for power generation [44]. From the elec-
trical conductivity point of view, carbon nanofibers have very good electrical conductivity 
(4.2 S/cm) [45]. Compared to pristine CNFs, cobalt possesses very high electrical conduc-
tivity. However, since it is incorporated in the form of discrete nanoparticles along with 
the carbon nanofiber matrix, the produced composite has a relatively higher conductivity 
[46]. Therefore, it can be concluded that the performance improvement due to cobalt in-
corporation is mainly and partially imputed to the enhancement in the biological and 
physical properties of the used anode, respectively. 

Table 1. Performance of the reported MFC anodes in the literature in terms of power density gen-
eration compared with the proposed anodes in this study. 

Cell Type Microorganism Media Anode Material Power Density 
(mWm−2) 

Improving (%) 
Single 
CNFs Co-CNFs Double  

CNFs 

Single chamber [47] 
Local domestic 

wastewater 
Graphite rods 26 181  365  419  

Mediator less MFC [48] P. aeruginosain 
Graphene-modified 

carbon cloth 
50 46  142  170  

A dual chamber fuel cell 
[49]  

Geobacteria. sulfurre-
ducens 

Solid graphite 13.1  457  824  931  

Two-chamber flat plate me-
diator-less MFC [50] 

Shewanella putrefaciens in 
Luria broth 

Graphite plate 39.2  86  209  244  

Mediator-less [51]  
Saccharomyces cerevisiae 

yeast 
Carbon paper 3  2333  3933  4400  

Mediator [56] Proteus vulgaris
grow on Glucose Glassy carbon 9
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The obtained good results for the Co-incorporated CNF anode can mainly be at-
tributed to its capacity to boost micro growth and accelerate micro cell adhesion on the 
anode surface as well as shown high efficiency for power generation [44]. From the elec-
trical conductivity point of view, carbon nanofibers have very good electrical conductivity 
(4.2 S/cm) [45]. Compared to pristine CNFs, cobalt possesses very high electrical conduc-
tivity. However, since it is incorporated in the form of discrete nanoparticles along with 
the carbon nanofiber matrix, the produced composite has a relatively higher conductivity 
[46]. Therefore, it can be concluded that the performance improvement due to cobalt in-
corporation is mainly and partially imputed to the enhancement in the biological and 
physical properties of the used anode, respectively. 

Table 1. Performance of the reported MFC anodes in the literature in terms of power density gen-
eration compared with the proposed anodes in this study. 

Cell Type Microorganism Media Anode Material Power Density 
(mWm−2) 

Improving (%) 
Single 
CNFs Co-CNFs Double  

CNFs 

Single chamber [47] 
Local domestic 

wastewater 
Graphite rods 26 181  365  419  

Mediator less MFC [48] P. aeruginosain 
Graphene-modified 

carbon cloth 
50 46  142  170  

A dual chamber fuel cell 
[49]  

Geobacteria. sulfurre-
ducens 

Solid graphite 13.1  457  824  931  

Two-chamber flat plate me-
diator-less MFC [50] 

Shewanella putrefaciens in 
Luria broth 

Graphite plate 39.2  86  209  244  

Mediator-less [51]  
Saccharomyces cerevisiae 

yeast 
Carbon paper 3  2333  3933  4400  

1244
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The obtained good results for the Co-incorporated CNF anode can mainly be at-
tributed to its capacity to boost micro growth and accelerate micro cell adhesion on the 
anode surface as well as shown high efficiency for power generation [44]. From the elec-
trical conductivity point of view, carbon nanofibers have very good electrical conductivity 
(4.2 S/cm) [45]. Compared to pristine CNFs, cobalt possesses very high electrical conduc-
tivity. However, since it is incorporated in the form of discrete nanoparticles along with 
the carbon nanofiber matrix, the produced composite has a relatively higher conductivity 
[46]. Therefore, it can be concluded that the performance improvement due to cobalt in-
corporation is mainly and partially imputed to the enhancement in the biological and 
physical properties of the used anode, respectively. 

Table 1. Performance of the reported MFC anodes in the literature in terms of power density gen-
eration compared with the proposed anodes in this study. 

Cell Type Microorganism Media Anode Material Power Density 
(mWm−2) 

Improving (%) 
Single 
CNFs Co-CNFs Double  

CNFs 

Single chamber [47] 
Local domestic 

wastewater 
Graphite rods 26 181  365  419  

Mediator less MFC [48] P. aeruginosain 
Graphene-modified 

carbon cloth 
50 46  142  170  

A dual chamber fuel cell 
[49]  

Geobacteria. sulfurre-
ducens 

Solid graphite 13.1  457  824  931  

Two-chamber flat plate me-
diator-less MFC [50] 

Shewanella putrefaciens in 
Luria broth 

Graphite plate 39.2  86  209  244  

Mediator-less [51]  
Saccharomyces cerevisiae 

yeast 
Carbon paper 3  2333  3933  4400  

1400
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The obtained good results for the Co-incorporated CNF anode can mainly be at-
tributed to its capacity to boost micro growth and accelerate micro cell adhesion on the 
anode surface as well as shown high efficiency for power generation [44]. From the elec-
trical conductivity point of view, carbon nanofibers have very good electrical conductivity 
(4.2 S/cm) [45]. Compared to pristine CNFs, cobalt possesses very high electrical conduc-
tivity. However, since it is incorporated in the form of discrete nanoparticles along with 
the carbon nanofiber matrix, the produced composite has a relatively higher conductivity 
[46]. Therefore, it can be concluded that the performance improvement due to cobalt in-
corporation is mainly and partially imputed to the enhancement in the biological and 
physical properties of the used anode, respectively. 

Table 1. Performance of the reported MFC anodes in the literature in terms of power density gen-
eration compared with the proposed anodes in this study. 

Cell Type Microorganism Media Anode Material Power Density 
(mWm−2) 

Improving (%) 
Single 
CNFs Co-CNFs Double  

CNFs 

Single chamber [47] 
Local domestic 

wastewater 
Graphite rods 26 181  365  419  

Mediator less MFC [48] P. aeruginosain 
Graphene-modified 

carbon cloth 
50 46  142  170  

A dual chamber fuel cell 
[49]  

Geobacteria. sulfurre-
ducens 

Solid graphite 13.1  457  824  931  

Two-chamber flat plate me-
diator-less MFC [50] 

Shewanella putrefaciens in 
Luria broth 

Graphite plate 39.2  86  209  244  

Mediator-less [51]  
Saccharomyces cerevisiae 

yeast 
Carbon paper 3  2333  3933  4400  

Mediator [57] Escherichia coli grow
on Lactate Plain graphite 3.6

1928
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The obtained good results for the Co-incorporated CNF anode can mainly be at-
tributed to its capacity to boost micro growth and accelerate micro cell adhesion on the 
anode surface as well as shown high efficiency for power generation [44]. From the elec-
trical conductivity point of view, carbon nanofibers have very good electrical conductivity 
(4.2 S/cm) [45]. Compared to pristine CNFs, cobalt possesses very high electrical conduc-
tivity. However, since it is incorporated in the form of discrete nanoparticles along with 
the carbon nanofiber matrix, the produced composite has a relatively higher conductivity 
[46]. Therefore, it can be concluded that the performance improvement due to cobalt in-
corporation is mainly and partially imputed to the enhancement in the biological and 
physical properties of the used anode, respectively. 

Table 1. Performance of the reported MFC anodes in the literature in terms of power density gen-
eration compared with the proposed anodes in this study. 

Cell Type Microorganism Media Anode Material Power Density 
(mWm−2) 

Improving (%) 
Single 
CNFs Co-CNFs Double  

CNFs 

Single chamber [47] 
Local domestic 

wastewater 
Graphite rods 26 181  365  419  

Mediator less MFC [48] P. aeruginosain 
Graphene-modified 

carbon cloth 
50 46  142  170  

A dual chamber fuel cell 
[49]  

Geobacteria. sulfurre-
ducens 

Solid graphite 13.1  457  824  931  

Two-chamber flat plate me-
diator-less MFC [50] 

Shewanella putrefaciens in 
Luria broth 

Graphite plate 39.2  86  209  244  

Mediator-less [51]  
Saccharomyces cerevisiae 

yeast 
Carbon paper 3  2333  3933  4400  

3261
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The obtained good results for the Co-incorporated CNF anode can mainly be at-
tributed to its capacity to boost micro growth and accelerate micro cell adhesion on the 
anode surface as well as shown high efficiency for power generation [44]. From the elec-
trical conductivity point of view, carbon nanofibers have very good electrical conductivity 
(4.2 S/cm) [45]. Compared to pristine CNFs, cobalt possesses very high electrical conduc-
tivity. However, since it is incorporated in the form of discrete nanoparticles along with 
the carbon nanofiber matrix, the produced composite has a relatively higher conductivity 
[46]. Therefore, it can be concluded that the performance improvement due to cobalt in-
corporation is mainly and partially imputed to the enhancement in the biological and 
physical properties of the used anode, respectively. 

Table 1. Performance of the reported MFC anodes in the literature in terms of power density gen-
eration compared with the proposed anodes in this study. 

Cell Type Microorganism Media Anode Material Power Density 
(mWm−2) 

Improving (%) 
Single 
CNFs Co-CNFs Double  

CNFs 

Single chamber [47] 
Local domestic 

wastewater 
Graphite rods 26 181  365  419  

Mediator less MFC [48] P. aeruginosain 
Graphene-modified 

carbon cloth 
50 46  142  170  

A dual chamber fuel cell 
[49]  

Geobacteria. sulfurre-
ducens 

Solid graphite 13.1  457  824  931  

Two-chamber flat plate me-
diator-less MFC [50] 

Shewanella putrefaciens in 
Luria broth 

Graphite plate 39.2  86  209  244  

Mediator-less [51]  
Saccharomyces cerevisiae 

yeast 
Carbon paper 3  2333  3933  4400  

3650
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The obtained good results for the Co-incorporated CNF anode can mainly be at-
tributed to its capacity to boost micro growth and accelerate micro cell adhesion on the 
anode surface as well as shown high efficiency for power generation [44]. From the elec-
trical conductivity point of view, carbon nanofibers have very good electrical conductivity 
(4.2 S/cm) [45]. Compared to pristine CNFs, cobalt possesses very high electrical conduc-
tivity. However, since it is incorporated in the form of discrete nanoparticles along with 
the carbon nanofiber matrix, the produced composite has a relatively higher conductivity 
[46]. Therefore, it can be concluded that the performance improvement due to cobalt in-
corporation is mainly and partially imputed to the enhancement in the biological and 
physical properties of the used anode, respectively. 

Table 1. Performance of the reported MFC anodes in the literature in terms of power density gen-
eration compared with the proposed anodes in this study. 

Cell Type Microorganism Media Anode Material Power Density 
(mWm−2) 

Improving (%) 
Single 
CNFs Co-CNFs Double  

CNFs 

Single chamber [47] 
Local domestic 

wastewater 
Graphite rods 26 181  365  419  

Mediator less MFC [48] P. aeruginosain 
Graphene-modified 

carbon cloth 
50 46  142  170  

A dual chamber fuel cell 
[49]  

Geobacteria. sulfurre-
ducens 

Solid graphite 13.1  457  824  931  

Two-chamber flat plate me-
diator-less MFC [50] 

Shewanella putrefaciens in 
Luria broth 

Graphite plate 39.2  86  209  244  

Mediator-less [51]  
Saccharomyces cerevisiae 

yeast 
Carbon paper 3  2333  3933  4400  

Mediator [57]
Activated sludge

waste water mixed
with Lactate

Woven graphite 34
115
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in Table 1. Similarly, the power generated (135 mW/m2) from the double active layer CNF-
based MFC after 120 h was higher than the numerous reported values obtained from dif-
ferent materials. Finally, as aforementioned, although a single layer CNF anode did not 
possess a high active area, its performance was very satisfactory; the generated power 
density (after 168 h batching time) exceeded many introduced anodes in the literature.  
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The obtained good results for the Co-incorporated CNF anode can mainly be at-
tributed to its capacity to boost micro growth and accelerate micro cell adhesion on the 
anode surface as well as shown high efficiency for power generation [44]. From the elec-
trical conductivity point of view, carbon nanofibers have very good electrical conductivity 
(4.2 S/cm) [45]. Compared to pristine CNFs, cobalt possesses very high electrical conduc-
tivity. However, since it is incorporated in the form of discrete nanoparticles along with 
the carbon nanofiber matrix, the produced composite has a relatively higher conductivity 
[46]. Therefore, it can be concluded that the performance improvement due to cobalt in-
corporation is mainly and partially imputed to the enhancement in the biological and 
physical properties of the used anode, respectively. 

Table 1. Performance of the reported MFC anodes in the literature in terms of power density gen-
eration compared with the proposed anodes in this study. 

Cell Type Microorganism Media Anode Material Power Density 
(mWm−2) 

Improving (%) 
Single 
CNFs Co-CNFs Double  

CNFs 

Single chamber [47] 
Local domestic 

wastewater 
Graphite rods 26 181  365  419  

Mediator less MFC [48] P. aeruginosain 
Graphene-modified 

carbon cloth 
50 46  142  170  

A dual chamber fuel cell 
[49]  

Geobacteria. sulfurre-
ducens 

Solid graphite 13.1  457  824  931  

Two-chamber flat plate me-
diator-less MFC [50] 

Shewanella putrefaciens in 
Luria broth 

Graphite plate 39.2  86  209  244  

Mediator-less [51]  
Saccharomyces cerevisiae 

yeast 
Carbon paper 3  2333  3933  4400  

256
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in Table 1. Similarly, the power generated (135 mW/m2) from the double active layer CNF-
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ferent materials. Finally, as aforementioned, although a single layer CNF anode did not 
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different anodes. 

The obtained good results for the Co-incorporated CNF anode can mainly be at-
tributed to its capacity to boost micro growth and accelerate micro cell adhesion on the 
anode surface as well as shown high efficiency for power generation [44]. From the elec-
trical conductivity point of view, carbon nanofibers have very good electrical conductivity 
(4.2 S/cm) [45]. Compared to pristine CNFs, cobalt possesses very high electrical conduc-
tivity. However, since it is incorporated in the form of discrete nanoparticles along with 
the carbon nanofiber matrix, the produced composite has a relatively higher conductivity 
[46]. Therefore, it can be concluded that the performance improvement due to cobalt in-
corporation is mainly and partially imputed to the enhancement in the biological and 
physical properties of the used anode, respectively. 

Table 1. Performance of the reported MFC anodes in the literature in terms of power density gen-
eration compared with the proposed anodes in this study. 

Cell Type Microorganism Media Anode Material Power Density 
(mWm−2) 

Improving (%) 
Single 
CNFs Co-CNFs Double  

CNFs 

Single chamber [47] 
Local domestic 

wastewater 
Graphite rods 26 181  365  419  

Mediator less MFC [48] P. aeruginosain 
Graphene-modified 

carbon cloth 
50 46  142  170  

A dual chamber fuel cell 
[49]  

Geobacteria. sulfurre-
ducens 

Solid graphite 13.1  457  824  931  

Two-chamber flat plate me-
diator-less MFC [50] 

Shewanella putrefaciens in 
Luria broth 

Graphite plate 39.2  86  209  244  

Mediator-less [51]  
Saccharomyces cerevisiae 

yeast 
Carbon paper 3  2333  3933  4400  

297
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The obtained good results for the Co-incorporated CNF anode can mainly be at-
tributed to its capacity to boost micro growth and accelerate micro cell adhesion on the 
anode surface as well as shown high efficiency for power generation [44]. From the elec-
trical conductivity point of view, carbon nanofibers have very good electrical conductivity 
(4.2 S/cm) [45]. Compared to pristine CNFs, cobalt possesses very high electrical conduc-
tivity. However, since it is incorporated in the form of discrete nanoparticles along with 
the carbon nanofiber matrix, the produced composite has a relatively higher conductivity 
[46]. Therefore, it can be concluded that the performance improvement due to cobalt in-
corporation is mainly and partially imputed to the enhancement in the biological and 
physical properties of the used anode, respectively. 

Table 1. Performance of the reported MFC anodes in the literature in terms of power density gen-
eration compared with the proposed anodes in this study. 

Cell Type Microorganism Media Anode Material Power Density 
(mWm−2) 

Improving (%) 
Single 
CNFs Co-CNFs Double  

CNFs 

Single chamber [47] 
Local domestic 

wastewater 
Graphite rods 26 181  365  419  

Mediator less MFC [48] P. aeruginosain 
Graphene-modified 

carbon cloth 
50 46  142  170  

A dual chamber fuel cell 
[49]  

Geobacteria. sulfurre-
ducens 

Solid graphite 13.1  457  824  931  

Two-chamber flat plate me-
diator-less MFC [50] 

Shewanella putrefaciens in 
Luria broth 

Graphite plate 39.2  86  209  244  

Mediator-less [51]  
Saccharomyces cerevisiae 

yeast 
Carbon paper 3  2333  3933  4400  

Two chamber [58] Pseudomonas
aeruginosa Glucose Plain graphite 88

−17
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Mediator [52]  
Proteus vulgaris grow on 

Glucose 
Glassy carbon 4.5  1522  2589  2900  

Two chamber [53]  
Mixed consortium, 

Continuous grow on  
Sucrose  

Granular graphite 47 55  157  187  

Mediator-less [54]  
Rhodoferax ferrireducens 

grow on  Glucose 
Graphite foam 33 121  267  309  

Single chamber [55]  
Mixed culture of microor-

ganism utilize Acetate  
Carbon paper 13 462  831  938  

Single chamber [55]  
Mixed culture of microor-

ganism utilize Butyrate  
Carbon paper 7.6  861  1492  1676  

Mediator [56]  
Proteus vulgaris grow on 

Glucose  
Glassy carbon 9  711  1244  1400  

Mediator [57] 
Escherichia coli grow on 

Lactate 
Plain graphite 3.6  1928  3261  3650  

Mediator [57]  
Activated sludge waste 

water mixed with Lactate 
Woven graphite 34 115  256  297  

Two chamber [58]  
Pseudomonas aeruginosa 

Glucose  
Plain graphite 88 −17  38  53  

Single air type [51]  Saccharomyces cerevisiae Carbon paper 3.2 2181  3681  4119  

Two chamber [59]  Saccharomyces cerevisiae Graphite plate 4.9 1390  2369  2655  

Marine sediments [60] Artificial marine 
Stainless 

steel plate 
23  217  426  487  

Two chamber 
Cylindrical [61]  

Anaerobic sludge 
brewery wastewater 

Reticulate vitreous 
carbon packed  

170  −57  −29  −21  

Dual chamber 
H-cell [62] 

Shewanella oneidensis Solid graphite 9.3 685  1201  1352  

Dual chamber [63] 
Pseudomonas aeruginosa 
isolated from palm oil an-

aerobic sludge 

Poly acrylonitrile car-
bon felt 

107.35  −32  13  26  

The dual-chambered [64] Waste water Carbon rods 78.25  −7  55  73  

Open-air cathode [65]  
Saccharomyces cerevisiae 

yeast 
carbon paper modified 

with Co 30% 
20  265  505  575  

Single air cathode [66] Food waste water Carbon paper 52  40  133  160  

Single air cathode [66] Food waste water Carbon cloth 68  7  78  99  

Single air cathode [66]  Food waste water Graphite paper 175  −58  −31  −23  

Single chamber air-cathode Food waste water Single CNF layer  73 0 66  85  

Single chamber air-cathode Food waste water Double CNFs  135 −46  −10  0 

Single chamber air-cathode Food waste water Co-incorporated CNFs 121 −40  0 12  

: enhancement; : decrement. 

4. Conclusions 
Polyacryonitrile polymer is a very good precursor to prepare good morphology car-

bon nanofibers; moreover, the addition of cobalt acetate to the initial electrospun solution 
does not affect the final morphology and results in producing Co-incorporated carbon 
nanofibers. The nanoscale pores existing in the pristine carbon nanofiber mat do not share 
in the performance when the mat is invoked as an anode in the microbial fuel cells. How-
ever, the excellent electron transfer process through the carbon nanofibers relatively 
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The obtained good results for the Co-incorporated CNF anode can mainly be at-
tributed to its capacity to boost micro growth and accelerate micro cell adhesion on the 
anode surface as well as shown high efficiency for power generation [44]. From the elec-
trical conductivity point of view, carbon nanofibers have very good electrical conductivity 
(4.2 S/cm) [45]. Compared to pristine CNFs, cobalt possesses very high electrical conduc-
tivity. However, since it is incorporated in the form of discrete nanoparticles along with 
the carbon nanofiber matrix, the produced composite has a relatively higher conductivity 
[46]. Therefore, it can be concluded that the performance improvement due to cobalt in-
corporation is mainly and partially imputed to the enhancement in the biological and 
physical properties of the used anode, respectively. 

Table 1. Performance of the reported MFC anodes in the literature in terms of power density gen-
eration compared with the proposed anodes in this study. 

Cell Type Microorganism Media Anode Material Power Density 
(mWm−2) 

Improving (%) 
Single 
CNFs Co-CNFs Double  

CNFs 

Single chamber [47] 
Local domestic 

wastewater 
Graphite rods 26 181  365  419  

Mediator less MFC [48] P. aeruginosain 
Graphene-modified 

carbon cloth 
50 46  142  170  

A dual chamber fuel cell 
[49]  

Geobacteria. sulfurre-
ducens 

Solid graphite 13.1  457  824  931  

Two-chamber flat plate me-
diator-less MFC [50] 

Shewanella putrefaciens in 
Luria broth 

Graphite plate 39.2  86  209  244  

Mediator-less [51]  
Saccharomyces cerevisiae 

yeast 
Carbon paper 3  2333  3933  4400  

53
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The obtained good results for the Co-incorporated CNF anode can mainly be at-
tributed to its capacity to boost micro growth and accelerate micro cell adhesion on the 
anode surface as well as shown high efficiency for power generation [44]. From the elec-
trical conductivity point of view, carbon nanofibers have very good electrical conductivity 
(4.2 S/cm) [45]. Compared to pristine CNFs, cobalt possesses very high electrical conduc-
tivity. However, since it is incorporated in the form of discrete nanoparticles along with 
the carbon nanofiber matrix, the produced composite has a relatively higher conductivity 
[46]. Therefore, it can be concluded that the performance improvement due to cobalt in-
corporation is mainly and partially imputed to the enhancement in the biological and 
physical properties of the used anode, respectively. 

Table 1. Performance of the reported MFC anodes in the literature in terms of power density gen-
eration compared with the proposed anodes in this study. 

Cell Type Microorganism Media Anode Material Power Density 
(mWm−2) 

Improving (%) 
Single 
CNFs Co-CNFs Double  

CNFs 

Single chamber [47] 
Local domestic 

wastewater 
Graphite rods 26 181  365  419  

Mediator less MFC [48] P. aeruginosain 
Graphene-modified 

carbon cloth 
50 46  142  170  

A dual chamber fuel cell 
[49]  

Geobacteria. sulfurre-
ducens 

Solid graphite 13.1  457  824  931  

Two-chamber flat plate me-
diator-less MFC [50] 

Shewanella putrefaciens in 
Luria broth 

Graphite plate 39.2  86  209  244  

Mediator-less [51]  
Saccharomyces cerevisiae 

yeast 
Carbon paper 3  2333  3933  4400  

Single air type [51] Saccharomyces
cerevisiae Carbon paper 3.2

2181
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The obtained good results for the Co-incorporated CNF anode can mainly be at-
tributed to its capacity to boost micro growth and accelerate micro cell adhesion on the 
anode surface as well as shown high efficiency for power generation [44]. From the elec-
trical conductivity point of view, carbon nanofibers have very good electrical conductivity 
(4.2 S/cm) [45]. Compared to pristine CNFs, cobalt possesses very high electrical conduc-
tivity. However, since it is incorporated in the form of discrete nanoparticles along with 
the carbon nanofiber matrix, the produced composite has a relatively higher conductivity 
[46]. Therefore, it can be concluded that the performance improvement due to cobalt in-
corporation is mainly and partially imputed to the enhancement in the biological and 
physical properties of the used anode, respectively. 

Table 1. Performance of the reported MFC anodes in the literature in terms of power density gen-
eration compared with the proposed anodes in this study. 

Cell Type Microorganism Media Anode Material Power Density 
(mWm−2) 

Improving (%) 
Single 
CNFs Co-CNFs Double  

CNFs 

Single chamber [47] 
Local domestic 

wastewater 
Graphite rods 26 181  365  419  

Mediator less MFC [48] P. aeruginosain 
Graphene-modified 

carbon cloth 
50 46  142  170  

A dual chamber fuel cell 
[49]  

Geobacteria. sulfurre-
ducens 

Solid graphite 13.1  457  824  931  

Two-chamber flat plate me-
diator-less MFC [50] 

Shewanella putrefaciens in 
Luria broth 

Graphite plate 39.2  86  209  244  

Mediator-less [51]  
Saccharomyces cerevisiae 

yeast 
Carbon paper 3  2333  3933  4400  

3681
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The obtained good results for the Co-incorporated CNF anode can mainly be at-
tributed to its capacity to boost micro growth and accelerate micro cell adhesion on the 
anode surface as well as shown high efficiency for power generation [44]. From the elec-
trical conductivity point of view, carbon nanofibers have very good electrical conductivity 
(4.2 S/cm) [45]. Compared to pristine CNFs, cobalt possesses very high electrical conduc-
tivity. However, since it is incorporated in the form of discrete nanoparticles along with 
the carbon nanofiber matrix, the produced composite has a relatively higher conductivity 
[46]. Therefore, it can be concluded that the performance improvement due to cobalt in-
corporation is mainly and partially imputed to the enhancement in the biological and 
physical properties of the used anode, respectively. 

Table 1. Performance of the reported MFC anodes in the literature in terms of power density gen-
eration compared with the proposed anodes in this study. 

Cell Type Microorganism Media Anode Material Power Density 
(mWm−2) 

Improving (%) 
Single 
CNFs Co-CNFs Double  

CNFs 

Single chamber [47] 
Local domestic 

wastewater 
Graphite rods 26 181  365  419  

Mediator less MFC [48] P. aeruginosain 
Graphene-modified 

carbon cloth 
50 46  142  170  

A dual chamber fuel cell 
[49]  

Geobacteria. sulfurre-
ducens 

Solid graphite 13.1  457  824  931  

Two-chamber flat plate me-
diator-less MFC [50] 

Shewanella putrefaciens in 
Luria broth 

Graphite plate 39.2  86  209  244  

Mediator-less [51]  
Saccharomyces cerevisiae 

yeast 
Carbon paper 3  2333  3933  4400  

4119
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The obtained good results for the Co-incorporated CNF anode can mainly be at-
tributed to its capacity to boost micro growth and accelerate micro cell adhesion on the 
anode surface as well as shown high efficiency for power generation [44]. From the elec-
trical conductivity point of view, carbon nanofibers have very good electrical conductivity 
(4.2 S/cm) [45]. Compared to pristine CNFs, cobalt possesses very high electrical conduc-
tivity. However, since it is incorporated in the form of discrete nanoparticles along with 
the carbon nanofiber matrix, the produced composite has a relatively higher conductivity 
[46]. Therefore, it can be concluded that the performance improvement due to cobalt in-
corporation is mainly and partially imputed to the enhancement in the biological and 
physical properties of the used anode, respectively. 

Table 1. Performance of the reported MFC anodes in the literature in terms of power density gen-
eration compared with the proposed anodes in this study. 

Cell Type Microorganism Media Anode Material Power Density 
(mWm−2) 

Improving (%) 
Single 
CNFs Co-CNFs Double  

CNFs 

Single chamber [47] 
Local domestic 

wastewater 
Graphite rods 26 181  365  419  

Mediator less MFC [48] P. aeruginosain 
Graphene-modified 

carbon cloth 
50 46  142  170  

A dual chamber fuel cell 
[49]  

Geobacteria. sulfurre-
ducens 

Solid graphite 13.1  457  824  931  

Two-chamber flat plate me-
diator-less MFC [50] 

Shewanella putrefaciens in 
Luria broth 

Graphite plate 39.2  86  209  244  

Mediator-less [51]  
Saccharomyces cerevisiae 

yeast 
Carbon paper 3  2333  3933  4400  

Two chamber [59] Saccharomyces
cerevisiae Graphite plate 4.9

1390
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The obtained good results for the Co-incorporated CNF anode can mainly be at-
tributed to its capacity to boost micro growth and accelerate micro cell adhesion on the 
anode surface as well as shown high efficiency for power generation [44]. From the elec-
trical conductivity point of view, carbon nanofibers have very good electrical conductivity 
(4.2 S/cm) [45]. Compared to pristine CNFs, cobalt possesses very high electrical conduc-
tivity. However, since it is incorporated in the form of discrete nanoparticles along with 
the carbon nanofiber matrix, the produced composite has a relatively higher conductivity 
[46]. Therefore, it can be concluded that the performance improvement due to cobalt in-
corporation is mainly and partially imputed to the enhancement in the biological and 
physical properties of the used anode, respectively. 

Table 1. Performance of the reported MFC anodes in the literature in terms of power density gen-
eration compared with the proposed anodes in this study. 

Cell Type Microorganism Media Anode Material Power Density 
(mWm−2) 

Improving (%) 
Single 
CNFs Co-CNFs Double  

CNFs 

Single chamber [47] 
Local domestic 

wastewater 
Graphite rods 26 181  365  419  

Mediator less MFC [48] P. aeruginosain 
Graphene-modified 

carbon cloth 
50 46  142  170  

A dual chamber fuel cell 
[49]  

Geobacteria. sulfurre-
ducens 

Solid graphite 13.1  457  824  931  

Two-chamber flat plate me-
diator-less MFC [50] 

Shewanella putrefaciens in 
Luria broth 

Graphite plate 39.2  86  209  244  

Mediator-less [51]  
Saccharomyces cerevisiae 

yeast 
Carbon paper 3  2333  3933  4400  

2369
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The obtained good results for the Co-incorporated CNF anode can mainly be at-
tributed to its capacity to boost micro growth and accelerate micro cell adhesion on the 
anode surface as well as shown high efficiency for power generation [44]. From the elec-
trical conductivity point of view, carbon nanofibers have very good electrical conductivity 
(4.2 S/cm) [45]. Compared to pristine CNFs, cobalt possesses very high electrical conduc-
tivity. However, since it is incorporated in the form of discrete nanoparticles along with 
the carbon nanofiber matrix, the produced composite has a relatively higher conductivity 
[46]. Therefore, it can be concluded that the performance improvement due to cobalt in-
corporation is mainly and partially imputed to the enhancement in the biological and 
physical properties of the used anode, respectively. 

Table 1. Performance of the reported MFC anodes in the literature in terms of power density gen-
eration compared with the proposed anodes in this study. 

Cell Type Microorganism Media Anode Material Power Density 
(mWm−2) 

Improving (%) 
Single 
CNFs Co-CNFs Double  

CNFs 

Single chamber [47] 
Local domestic 

wastewater 
Graphite rods 26 181  365  419  

Mediator less MFC [48] P. aeruginosain 
Graphene-modified 

carbon cloth 
50 46  142  170  

A dual chamber fuel cell 
[49]  

Geobacteria. sulfurre-
ducens 

Solid graphite 13.1  457  824  931  

Two-chamber flat plate me-
diator-less MFC [50] 

Shewanella putrefaciens in 
Luria broth 

Graphite plate 39.2  86  209  244  

Mediator-less [51]  
Saccharomyces cerevisiae 

yeast 
Carbon paper 3  2333  3933  4400  

2655
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The obtained good results for the Co-incorporated CNF anode can mainly be at-
tributed to its capacity to boost micro growth and accelerate micro cell adhesion on the 
anode surface as well as shown high efficiency for power generation [44]. From the elec-
trical conductivity point of view, carbon nanofibers have very good electrical conductivity 
(4.2 S/cm) [45]. Compared to pristine CNFs, cobalt possesses very high electrical conduc-
tivity. However, since it is incorporated in the form of discrete nanoparticles along with 
the carbon nanofiber matrix, the produced composite has a relatively higher conductivity 
[46]. Therefore, it can be concluded that the performance improvement due to cobalt in-
corporation is mainly and partially imputed to the enhancement in the biological and 
physical properties of the used anode, respectively. 

Table 1. Performance of the reported MFC anodes in the literature in terms of power density gen-
eration compared with the proposed anodes in this study. 

Cell Type Microorganism Media Anode Material Power Density 
(mWm−2) 

Improving (%) 
Single 
CNFs Co-CNFs Double  

CNFs 

Single chamber [47] 
Local domestic 

wastewater 
Graphite rods 26 181  365  419  

Mediator less MFC [48] P. aeruginosain 
Graphene-modified 

carbon cloth 
50 46  142  170  

A dual chamber fuel cell 
[49]  

Geobacteria. sulfurre-
ducens 

Solid graphite 13.1  457  824  931  

Two-chamber flat plate me-
diator-less MFC [50] 

Shewanella putrefaciens in 
Luria broth 

Graphite plate 39.2  86  209  244  

Mediator-less [51]  
Saccharomyces cerevisiae 

yeast 
Carbon paper 3  2333  3933  4400  

Marine sediments
[60] Artificial marine Stainless

steel plate 23
217
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The obtained good results for the Co-incorporated CNF anode can mainly be at-
tributed to its capacity to boost micro growth and accelerate micro cell adhesion on the 
anode surface as well as shown high efficiency for power generation [44]. From the elec-
trical conductivity point of view, carbon nanofibers have very good electrical conductivity 
(4.2 S/cm) [45]. Compared to pristine CNFs, cobalt possesses very high electrical conduc-
tivity. However, since it is incorporated in the form of discrete nanoparticles along with 
the carbon nanofiber matrix, the produced composite has a relatively higher conductivity 
[46]. Therefore, it can be concluded that the performance improvement due to cobalt in-
corporation is mainly and partially imputed to the enhancement in the biological and 
physical properties of the used anode, respectively. 

Table 1. Performance of the reported MFC anodes in the literature in terms of power density gen-
eration compared with the proposed anodes in this study. 

Cell Type Microorganism Media Anode Material Power Density 
(mWm−2) 

Improving (%) 
Single 
CNFs Co-CNFs Double  

CNFs 

Single chamber [47] 
Local domestic 

wastewater 
Graphite rods 26 181  365  419  

Mediator less MFC [48] P. aeruginosain 
Graphene-modified 

carbon cloth 
50 46  142  170  

A dual chamber fuel cell 
[49]  

Geobacteria. sulfurre-
ducens 

Solid graphite 13.1  457  824  931  

Two-chamber flat plate me-
diator-less MFC [50] 

Shewanella putrefaciens in 
Luria broth 

Graphite plate 39.2  86  209  244  

Mediator-less [51]  
Saccharomyces cerevisiae 

yeast 
Carbon paper 3  2333  3933  4400  

426
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The obtained good results for the Co-incorporated CNF anode can mainly be at-
tributed to its capacity to boost micro growth and accelerate micro cell adhesion on the 
anode surface as well as shown high efficiency for power generation [44]. From the elec-
trical conductivity point of view, carbon nanofibers have very good electrical conductivity 
(4.2 S/cm) [45]. Compared to pristine CNFs, cobalt possesses very high electrical conduc-
tivity. However, since it is incorporated in the form of discrete nanoparticles along with 
the carbon nanofiber matrix, the produced composite has a relatively higher conductivity 
[46]. Therefore, it can be concluded that the performance improvement due to cobalt in-
corporation is mainly and partially imputed to the enhancement in the biological and 
physical properties of the used anode, respectively. 

Table 1. Performance of the reported MFC anodes in the literature in terms of power density gen-
eration compared with the proposed anodes in this study. 

Cell Type Microorganism Media Anode Material Power Density 
(mWm−2) 

Improving (%) 
Single 
CNFs Co-CNFs Double  

CNFs 

Single chamber [47] 
Local domestic 

wastewater 
Graphite rods 26 181  365  419  

Mediator less MFC [48] P. aeruginosain 
Graphene-modified 

carbon cloth 
50 46  142  170  

A dual chamber fuel cell 
[49]  

Geobacteria. sulfurre-
ducens 

Solid graphite 13.1  457  824  931  

Two-chamber flat plate me-
diator-less MFC [50] 

Shewanella putrefaciens in 
Luria broth 

Graphite plate 39.2  86  209  244  

Mediator-less [51]  
Saccharomyces cerevisiae 

yeast 
Carbon paper 3  2333  3933  4400  

487
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The obtained good results for the Co-incorporated CNF anode can mainly be at-
tributed to its capacity to boost micro growth and accelerate micro cell adhesion on the 
anode surface as well as shown high efficiency for power generation [44]. From the elec-
trical conductivity point of view, carbon nanofibers have very good electrical conductivity 
(4.2 S/cm) [45]. Compared to pristine CNFs, cobalt possesses very high electrical conduc-
tivity. However, since it is incorporated in the form of discrete nanoparticles along with 
the carbon nanofiber matrix, the produced composite has a relatively higher conductivity 
[46]. Therefore, it can be concluded that the performance improvement due to cobalt in-
corporation is mainly and partially imputed to the enhancement in the biological and 
physical properties of the used anode, respectively. 

Table 1. Performance of the reported MFC anodes in the literature in terms of power density gen-
eration compared with the proposed anodes in this study. 

Cell Type Microorganism Media Anode Material Power Density 
(mWm−2) 

Improving (%) 
Single 
CNFs Co-CNFs Double  

CNFs 

Single chamber [47] 
Local domestic 

wastewater 
Graphite rods 26 181  365  419  

Mediator less MFC [48] P. aeruginosain 
Graphene-modified 

carbon cloth 
50 46  142  170  

A dual chamber fuel cell 
[49]  

Geobacteria. sulfurre-
ducens 

Solid graphite 13.1  457  824  931  

Two-chamber flat plate me-
diator-less MFC [50] 

Shewanella putrefaciens in 
Luria broth 

Graphite plate 39.2  86  209  244  

Mediator-less [51]  
Saccharomyces cerevisiae 

yeast 
Carbon paper 3  2333  3933  4400  

Two chamber
Cylindrical [61]

Anaerobic sludge
brewery wastewater

Reticulate vitreous
carbon packed 170

−57
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Proteus vulgaris grow on 
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Glassy carbon 4.5  1522  2589  2900  

Two chamber [53]  
Mixed consortium, 

Continuous grow on  
Sucrose  

Granular graphite 47 55  157  187  

Mediator-less [54]  
Rhodoferax ferrireducens 

grow on  Glucose 
Graphite foam 33 121  267  309  

Single chamber [55]  
Mixed culture of microor-

ganism utilize Acetate  
Carbon paper 13 462  831  938  

Single chamber [55]  
Mixed culture of microor-

ganism utilize Butyrate  
Carbon paper 7.6  861  1492  1676  

Mediator [56]  
Proteus vulgaris grow on 

Glucose  
Glassy carbon 9  711  1244  1400  

Mediator [57] 
Escherichia coli grow on 

Lactate 
Plain graphite 3.6  1928  3261  3650  

Mediator [57]  
Activated sludge waste 

water mixed with Lactate 
Woven graphite 34 115  256  297  

Two chamber [58]  
Pseudomonas aeruginosa 

Glucose  
Plain graphite 88 −17  38  53  

Single air type [51]  Saccharomyces cerevisiae Carbon paper 3.2 2181  3681  4119  

Two chamber [59]  Saccharomyces cerevisiae Graphite plate 4.9 1390  2369  2655  

Marine sediments [60] Artificial marine 
Stainless 

steel plate 
23  217  426  487  

Two chamber 
Cylindrical [61]  

Anaerobic sludge 
brewery wastewater 

Reticulate vitreous 
carbon packed  

170  −57  −29  −21  

Dual chamber 
H-cell [62] 

Shewanella oneidensis Solid graphite 9.3 685  1201  1352  

Dual chamber [63] 
Pseudomonas aeruginosa 
isolated from palm oil an-

aerobic sludge 

Poly acrylonitrile car-
bon felt 

107.35  −32  13  26  

The dual-chambered [64] Waste water Carbon rods 78.25  −7  55  73  

Open-air cathode [65]  
Saccharomyces cerevisiae 

yeast 
carbon paper modified 

with Co 30% 
20  265  505  575  

Single air cathode [66] Food waste water Carbon paper 52  40  133  160  

Single air cathode [66] Food waste water Carbon cloth 68  7  78  99  

Single air cathode [66]  Food waste water Graphite paper 175  −58  −31  −23  

Single chamber air-cathode Food waste water Single CNF layer  73 0 66  85  

Single chamber air-cathode Food waste water Double CNFs  135 −46  −10  0 

Single chamber air-cathode Food waste water Co-incorporated CNFs 121 −40  0 12  

: enhancement; : decrement. 

4. Conclusions 
Polyacryonitrile polymer is a very good precursor to prepare good morphology car-

bon nanofibers; moreover, the addition of cobalt acetate to the initial electrospun solution 
does not affect the final morphology and results in producing Co-incorporated carbon 
nanofibers. The nanoscale pores existing in the pristine carbon nanofiber mat do not share 
in the performance when the mat is invoked as an anode in the microbial fuel cells. How-
ever, the excellent electron transfer process through the carbon nanofibers relatively 

−29
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Table 1. Cont.

Cell Type Microorganism
Media Anode Material Power Density

(mWm−2)

Improving (%)
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CNFs
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corporation is mainly and partially imputed to the enhancement in the biological and 
physical properties of the used anode, respectively. 

Table 1. Performance of the reported MFC anodes in the literature in terms of power density gen-
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wastewater 
Graphite rods 26 181  365  419  

Mediator less MFC [48] P. aeruginosain 
Graphene-modified 

carbon cloth 
50 46  142  170  

A dual chamber fuel cell 
[49]  

Geobacteria. sulfurre-
ducens 

Solid graphite 13.1  457  824  931  

Two-chamber flat plate me-
diator-less MFC [50] 
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Graphite plate 39.2  86  209  244  

Mediator-less [51]  
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Carbon paper 3  2333  3933  4400  
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[46]. Therefore, it can be concluded that the performance improvement due to cobalt in-
corporation is mainly and partially imputed to the enhancement in the biological and 
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anode surface as well as shown high efficiency for power generation [44]. From the elec-
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The obtained good results for the Co-incorporated CNF anode can mainly be at-
tributed to its capacity to boost micro growth and accelerate micro cell adhesion on the 
anode surface as well as shown high efficiency for power generation [44]. From the elec-
trical conductivity point of view, carbon nanofibers have very good electrical conductivity 
(4.2 S/cm) [45]. Compared to pristine CNFs, cobalt possesses very high electrical conduc-
tivity. However, since it is incorporated in the form of discrete nanoparticles along with 
the carbon nanofiber matrix, the produced composite has a relatively higher conductivity 
[46]. Therefore, it can be concluded that the performance improvement due to cobalt in-
corporation is mainly and partially imputed to the enhancement in the biological and 
physical properties of the used anode, respectively. 

Table 1. Performance of the reported MFC anodes in the literature in terms of power density gen-
eration compared with the proposed anodes in this study. 
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Improving (%) 
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Proteus vulgaris grow on 
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Glassy carbon 4.5  1522  2589  2900  

Two chamber [53]  
Mixed consortium, 

Continuous grow on  
Sucrose  

Granular graphite 47 55  157  187  

Mediator-less [54]  
Rhodoferax ferrireducens 

grow on  Glucose 
Graphite foam 33 121  267  309  

Single chamber [55]  
Mixed culture of microor-

ganism utilize Acetate  
Carbon paper 13 462  831  938  

Single chamber [55]  
Mixed culture of microor-

ganism utilize Butyrate  
Carbon paper 7.6  861  1492  1676  

Mediator [56]  
Proteus vulgaris grow on 

Glucose  
Glassy carbon 9  711  1244  1400  

Mediator [57] 
Escherichia coli grow on 

Lactate 
Plain graphite 3.6  1928  3261  3650  

Mediator [57]  
Activated sludge waste 

water mixed with Lactate 
Woven graphite 34 115  256  297  

Two chamber [58]  
Pseudomonas aeruginosa 

Glucose  
Plain graphite 88 −17  38  53  

Single air type [51]  Saccharomyces cerevisiae Carbon paper 3.2 2181  3681  4119  

Two chamber [59]  Saccharomyces cerevisiae Graphite plate 4.9 1390  2369  2655  

Marine sediments [60] Artificial marine 
Stainless 

steel plate 
23  217  426  487  

Two chamber 
Cylindrical [61]  

Anaerobic sludge 
brewery wastewater 

Reticulate vitreous 
carbon packed  

170  −57  −29  −21  

Dual chamber 
H-cell [62] 

Shewanella oneidensis Solid graphite 9.3 685  1201  1352  

Dual chamber [63] 
Pseudomonas aeruginosa 
isolated from palm oil an-

aerobic sludge 

Poly acrylonitrile car-
bon felt 

107.35  −32  13  26  

The dual-chambered [64] Waste water Carbon rods 78.25  −7  55  73  

Open-air cathode [65]  
Saccharomyces cerevisiae 

yeast 
carbon paper modified 

with Co 30% 
20  265  505  575  

Single air cathode [66] Food waste water Carbon paper 52  40  133  160  

Single air cathode [66] Food waste water Carbon cloth 68  7  78  99  

Single air cathode [66]  Food waste water Graphite paper 175  −58  −31  −23  

Single chamber air-cathode Food waste water Single CNF layer  73 0 66  85  

Single chamber air-cathode Food waste water Double CNFs  135 −46  −10  0 

Single chamber air-cathode Food waste water Co-incorporated CNFs 121 −40  0 12  

: enhancement; : decrement. 

4. Conclusions 
Polyacryonitrile polymer is a very good precursor to prepare good morphology car-

bon nanofibers; moreover, the addition of cobalt acetate to the initial electrospun solution 
does not affect the final morphology and results in producing Co-incorporated carbon 
nanofibers. The nanoscale pores existing in the pristine carbon nanofiber mat do not share 
in the performance when the mat is invoked as an anode in the microbial fuel cells. How-
ever, the excellent electron transfer process through the carbon nanofibers relatively 
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4. Conclusions

Polyacryonitrile polymer is a very good precursor to prepare good morphology carbon
nanofibers; moreover, the addition of cobalt acetate to the initial electrospun solution
does not affect the final morphology and results in producing Co-incorporated carbon
nanofibers. The nanoscale pores existing in the pristine carbon nanofiber mat do not
share in the performance when the mat is invoked as an anode in the microbial fuel cells.
However, the excellent electron transfer process through the carbon nanofibers relatively
compensate the negligible role of the nanopores, so compared to many reported anodes,
a considerable performance was obtained when a single layer from carbon nanofibers is
utilized as an anode in the microbial fuel cell. However, the performance can be enhanced
when two adjacent microorganism-attached carbon nanofiber layers were used as the anode.
Moreover, incorporation of cobalt nanoparticles in the carbon nanofibers can distinctly
enhance the performance carbon nanofibers as anodes in the microbial fuel cells. Overall,
this study introduces two novel strategies to overcome the low active surface area of the
electrospun carbon nanofiber mats to be used as valuable anodes in the microbial fuel cells.
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