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Abstract: The purpose of the present investigation is 
to examine the function of the C2H2-type zinc finger 
transcription factor of Arabidopsis thaliana 6 (ZAT6) in 
salt stress tolerance in cells of rice (Oryza sativa L.), cotton 
(Gossypium hirsutum L.) and slash pine (Pinus elliottii 
Engelm.). Cells of O. sativa, G. hirsutum, and P. elliottii 
overexpressing ZAT6 were generated using Agrobacterium-
mediated genetic transformation. Molecular and 
functional analysis of transgenic cell lines demonstrate 
that overexpression of ZAT6 increased tolerance to salt 
stress by decreasing lipid peroxidation and increasing 
the content of abscisic acid (ABA) and GA8, as well as 
enhancing the activities of antioxidant enzymes such as 
ascorbate peroxidise (APOX), catalase (CAT), glutathione 
reductase (GR), and superoxide dismutase (SOD). In rice 
cells, ZAT6 also increased expression of Ca2+-dependent 
protein kinase genes OsCPK9 and OsCPK25 by 5-7 fold 
under NaCl stress. Altogether, our results suggest that 
overexpression of ZAT6 enhanced salt stress tolerance by 
increasing antioxidant enzyme activity, hormone content 
and expression of Ca2+-dependent protein kinase in 
transgenic cell lines of different plant species.

Keywords: NaCl stress tolerance; Agrobacterium-
mediated genetic transformation; Ca2+-dependent protein 
kinase; Transcription factor; ZAT6 gene

1  Introduction
Salt stress causes decreased growth, development, and 
reduced productivity in many plant species [1-5]. Plants 
respond to salt stress by increasing expression of stress-

inducible genes and activating expression of transcription 
factors [6-11]. Understanding the molecular mechanisms 
of salt stress tolerance in plants is essential for molecular 
biologists to improve plant growth and production of 
crop plant [12-18]. Although different mechanisms can be 
adapted by plant in response to salt stress, transcription 
factors have been reported to play a crucial roles in salt 
tolerance in many plant species [19-26]. 

Among different transcription factors (TFs) 
investigated in plant salt tolerance, basic region/leucine 
zipper (bZIP) TFs [27-29], AP2/ERF TFs [30-32], WRKY TFs 
[33-35], and MYB TFs [36-38] have been reported to enhance 
salt tolerance in a large number of plant species. The bZIP 
TFs are very important in regulating salt stress signaling, 
as well as modulating plant growth and development 
[29, 39-41]. AP2/ERF TFs interact with a cis-acting DRE 
(dehydration-responsive element)/CRT (C-repeat) DNA 
sequence and activate the expression of downstream 
genes that are involved in salt stress tolerance in plants 
[24,31,42,43]. WRKY TFs could bind to the W-box (TTGAC) 
and function on the stress-induced genes to increased 
sensitivity and confer salt and drought tolerance [35, 
44-46]. MYB TFs improve salt and osmotic stress tolerance 
by affecting the expression of genes such as SOD, POD and 
P5CS to increase reactive oxygen species scavenging level
and reduce water loss [15, 16, 36, 37, 47].

The C2H2-type zinc finger proteins (ZFPs) represent 
a large family of eukaryotic TFs [48-52]. A total of 176 
proteins that contain one or more zinc finger domains 
have been reported in Arabidopsis [50]. It has been 
reported that the ZFP transcription factors play important 
roles in stress responses [49, 53, 54]. Expression of Zinc 
finger of Arabidopsis thaliana 6 (ZAT6) is regulated by 
phytohormones and low concentration of phosphate in 
Arabidopsis [49, 55]. Recently, ZAT6 has been reported to 
be involved in regulating responses of plants to abiotic 
stress including drought and freezing stresses [5, 48, 
56]. It has been reported that overexpression of ZAT6 
improves seed germination of Arabidopsis under salt 
and osmotic stress and that phosphorylation of ZAT6 by 
MPK6 is required for the enhanced salt and osmotic stress 
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tolerance [57]. However, the possible mechanisms of 
ZAT6 in salt stress tolerance is not reported in slash pine 
(Pinus elliottii Engelm.), rice (Oryza sativa L.), and cotton 
(Gossypium hirsutum L.)”.

In this study, we have investigated the function of 
ZAT6 in plant responses to salt stress in transgenic cells 
overexpressing the ZAT6 gene. Cells of three different 
plant species slash pine (P. elliottii Engelm.), rice (O. 
sativa L.), and cotton (G. hirsutum L.), were genetically 
engineered via Agrobacterium tumefaciens LBA4404 
harboring pBI-ZAT6. Increased cell growth was observed 
in transgenic cells of all three species that overexpress 
the ZAT6 transcription factor under the condition of 
salt stress. In cells overexpressing the ZAT6 gene, lipid 
peroxidation was decreased and the content of abscisic 
acid (ABA) and GA8, as well as the activities of antioxidant 
enzymes ascorbate peroxidase (APOX), glutathione 
reductase (GR), superoxide dismutase (SOD), and catalase 
(CAT) were increased. In rice cells overexpressing the ZAT6 
gene, expression of Ca2+-dependent protein kinase genes 
OsCPK9 and OsCPK25 was increased under treatment 
of NaCl. These results showed that overexpression of 
the Arabidopsis ZAT6 transcription factor in plant cells 
of angiosperm and gymnosperm improved salt stress 
tolerance through multiple mechanisms.

2  Materials and methods

2.1  Plasmid constructs

The cDNA of ZAT6 and the pBI121 binary vector were 
used to generate the expression vector. After the pBI121 
vector and the ZAT6 DNA were digested by Kpn I and Xba 
I (Promega, Madison, WI, USA) at 37oC, the digested DNA 
was purified using QIAquick Gel Extraction Kit (QIAGEN, 
Valencia, CA, USA). The 717-bp protein encoding fragment 
of the ZAT6 gene was inserted into the vector pBI121 [58] to 
produce the expression vector pBI-ZAT6. Vector pBI-ZAT6 
was introduced into Agrobacterium tumefaciens strain 
LBA4404 by electroporation.

2.2  Agrobacterium-mediated transformation

Transgenic cell lines of O. sativa, G. hirsutum, and P. 
elliottii were generated as described before [59], using 
Agrobacterium tumefaciens strain LBA4404 harboring the 
pBI-ZAT6 expression vector to transform cultured cells. 
To generate large amount of transformed cell cultures for 
molecular and enzyme measurements, cells from different 

species were cultured on a liquid proliferation medium. 
Six weeks after culture, the cell cultures of different 
species were growing 50–70 mg of cells/L each week. 
These cell cultures were used for PCR, Southern, and 
Northern blot analysis. 

2.3  Polymerase chain reaction and Southern 
blot analyses of transgenic cells of rice, 
cotton, and pine

Polymerase chain reaction (PCR) and Southern blot 
analysis of transgenic cells were conducted as previously 
described [58]. Five hundred mg cells of control and putative 
transgenic cell lines of rice, cotton, and pine were used to 
extract DNA using a Genomic DNA Isolation Kit (Sigma), by 
following the manufacturer’s protocol. PCR was performed 
with a PTC-100TM Programmable Thermal Controller (MJ 
Research, San Francisco, CA, USA). The primers used 
are the transcription factor ZAT6 forward primer (zf) 
5’-GTCGACATGGCGGAGGAATTTGGAAGCATAG-3’ the reverse 
primer (zr) 5’-CCATGGTAGACTCCTGCTTCGACATCATGG-3’, 
nrp and nfp for NPTII gene [58]. The DNA template was 300 
ng and the reaction mix 50 ml. The PCR mixture, the PCR 
conditions, and Southern blot analysis was carried out 
as described previously [58]. Five grams of control cells 
and transgenic cells of rice, cotton, and pine were used to 
isolate genomic DNA, using a Genomic DNA Isolation Kit 
(Sigma). Twenty-five micrograms of DNA were digested for 
16 hours with the enzymes Xba I (Boehringer Mannheim) 
at 37oC. The molecular probes (717 bp fragment of ZAT6) 
were labeled by Digoxigenin (DIG) (Roche Diagnostics, 
Indianapolis, IN, USA).

2.4  RNA isolation and Northern blot analysis

Five grams of fresh cultures of transgenic and control cells 
were used to isolate total RNA, using a RNeasy Mini Plant 
Kit (Germantown, MD, USA) by following the manual. 
Six micrograms of total RNA were used for northern 
blotting as described before [58]. The hybridization probe 
is the Digoxigenin (DIG)-labelling ZAT6 DNA (717 bp) 
(Roche Diagnostics). The tobacco 25SrRNA was used as 
the loading control of RNA samples. After Southern and 
Northern blotting analyses, 6 cell lines of rice (Os1, Os2, 
Os3, Os4, Os5, and Os6), 6 cell lines of cotton (Gh1, Gh2, 
Gh3, Gh4, Gh5, andGh6), and 6 cell lines of slash pine 
(Pe1, Pe2, Pe3, Pe4, Pe5, and Pe6), each carrying only one 
copy of the pBI-ZAT6 T-DNA, were used for salt-induced 
oxidative damage experiments.
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2.5  Salt treatment of transgenic cell lines

Salt treatment was applied by adding different 
concentrations of NaCl (50, 100, 150, 200, 250, and 
300 mM) to the media used for transgenic cells, which 
consisted of TE medium [58] supplemented with 0.5 mM 
indole-3-butyric acid, 8.9 mM BA. The influence of NaCl 
on cell growth of rice (Os1, Os2, Os3, Os4, Os5, and Os6), 
cotton (Gh1, Gh2, Gh3, Gh4, Gh5, andGh6), and slash 
pine (Pe1, Pe2, Pe3, Pe4, Pe5, and Pe6) were examined by 
culture of cell on medium supplemented with different 
concentrations of NaCl, as previously described [59]. 
The average growth was expressed as mg/g FW/day. The 
control cells (non-transgenic cultures) were proliferated 
for 3 weeks and then transferred to media containing 
different concentrations of NaCl (0, 50, 100, 150, 200, 250, 
and 300 mM). The growth rate of cells was determined 7 
days after salt stress treatment. The results demonstrated 
that 50–100 mM NaCl did not significantly decrease the 
growth rate. The 150 mM NaCl significantly reduced the 
growth rate. The 200–300 mM NaCl leads to no cell growth 
(Fig. 3). On medium without NaCl, rate of cell growth does 
not change significantly. 

2.6  Thiobarbituric acid reactive substances 
(TBARS) determination

Lipid peroxidation was determined as the amount of 
thiobarbituric acid reactive substances (TBARS) measured 
by the thiobarbituric acid (TBA) reaction as described 
previously (Tang and Page 2013). Cell cultures (1 g) of 
rice (Os1, Os2, Os3, Os4, Os5, and Os6), cotton (Gh1, Gh2, 
Gh3, Gh4, Gh5, andGh6), and slash pine (Pe1, Pe2, Pe3, 
Pe4, Pe5, and Pe6) were homogenized in 3 ml of 20 % 
(w/v) trichloroacetic acid (TCA). The homogenate was 
centrifuged at 5,000 rpm for 20 min and mixed with 20% 
TCA containing 0.5% (w/v) TBA and100 ml 4% butylated 
hydroxytoluene (BHT) in ethanol at 1:1. After the extracts 
of cell cultures were heated at 95oC for 30 min, they were 
cooled on ice for 5 minutes, centrifuged at 10,000 x g for 
15 min. The absorbance of extracts from different cell 
lines was measured at 532 nm. The control of non-specific 
absorption at 600 nm was subtracted from the samples. 
The value of TBARS was calculated using the method 
described previously [59].

2.7  Determination of the antioxidant 
enzymes glutathione reductase (GR), 
ascorbate peroxidase (APOX), superoxide 
dismutase (SOD), and CAT activity 

The activities of APOX, GR, SOD, and CAT were 
determined as described previously [59]. Two grams of 
control and transgenic cells of rice (Os1, Os2, Os3, Os4, 
Os5, and Os6), cotton (Gh1, Gh2, Gh3, Gh4, Gh5, and 
Gh6), and slash pine (Pe1, Pe2, Pe3, Pe4, Pe5, and Pe6) 
were homogenized under ice-cold conditions in 3 ml of 
extraction buffer, consisting of 50 mM phosphate buffer 
(pH 7.4), 1 mM EDTA, 1 g PVP, and 0.5% (v/v) Triton X-100 
at 4oC. The extracts were centrifuged at 10,000 × g for 20 
min. The supernatant was used to determine the enzyme 
activity. APOX activity was measured immediately in fresh 
extracts and was assayed as described [59]. GR activity 
was determined by following the decrease in absorbance 
at 340 nm due to NADPH oxidation [58, 60]. SOD activity 
was measured by the inhibition of the photochemical 
reduction of nitroblue tetrazolium (NBT), as described 
previously [58, 60]. CAT activity was determined in a 3 ml 
50 mM potassium phosphate buffer (pH 7.8) containing 3 
mM H2O2, as described previously [60]. 

2.8  Determination of the endogenous ABA 
and GA8 levels

The ABA content was determined using the 
radioimmunoassay method as described previously [58, 
59, 61]. The GA8 content was determined as previously 
described by Okamoto et al. [62]. The homogenates of 
100 g transgenic cells of rice (Os1, Os2, Os3, Os4, Os5, and 
Os6), cotton (Gh1, Gh2, Gh3, Gh4, Gh5, andGh6), and slash 
pine (Pe1, Pe2, Pe3, Pe4, Pe5, and Pe6) were centrifuged at 
12,000 x g for 10 min at 4oC. The supernatant of different 
cell lines was used to determine ABA concentration. Fifty 
microliters of supernatant derived from different cell lines 
were mixed with 200 µl phosphate-buffered saline (pH 
6.0), 100 µl [3H] ABA solution, and 100 µl diluted antibody 
solution. After the mixture was incubated at 4oC for 45 
min, the bound radioactivity in each sample of different 
plant species was determined with a liquid scintillation 
counter.
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2.9  Measurement of the OsCPK gene 
expression 

Expression of OsCPK9 and OsCPK25 in different cell lines 
was examined using Northern blotting by the method of 
Tang et al. [59, 60]. Twenty micrograms of total RNA of rice 
(Os1, Os2, Os3, Os4, Os5, and Os6) was applied. The PCR-
amplified fragments of OsCPK9 (amplified by forward 
primer 5’-AAGTCGACACCGACAAGGAT-3’ and reverse primer 
5’-TCTCAAAGCCTGAATCGACT-3’) and OsCPK25 (amplified 
by forward primer 5’-ACGTACTCCATCGGCAAAGT-3’ 
and reverse primer 5’-GATGATGCGGTCGAAGAGTT-3’) 
were labeled by Digoxigenin (DIG) (Roche Diagnostics 
Corporation, Roche Applied Science, Indianapolis, IN, 
USA). The labeled fragments were used as a hybridization 
probe for Northern blotting analysis.

2.10  Statistical analyses

Statistical analysis was performed using the General 
Linear Model procedure of SAS (Cary, NC, USA), employing 
ANOVA models. The significant differences between mean 
values of different cell lines of O. sativa, G. hirsutum, and P. 
elliottii were made at 5% level of probability. Each value of 
different cell lines of O. sativa, G. hirsutum, and P. elliottii 
is presented as mean ± standard deviations of the mean.

3  Results

3.1  Generation of transgenic cell lines

A. tumefaciens (Strain LBA4404) mediated genetic 
transformation was used to generate transgenic O. sativa, 
G. hirsutum, and P. elliottii lines (Fig. 1a), as described 
previously by Tang et al. [58]. Thirty-six O. sativa cell 
lines, thirty-eight G. hirsutum cell lines, and thirty-nine 
P. elliottii cell lines were infected with the A. tumefaciens 
strain LBA4404 containing pBI-ZAT6 (Fig. 1a). Transgenic 
cell lines were selected by kanamycin. Integration of the T 
-DNA into the genome was confirmed by PCR analysis (Fig. 
1b). Seven, nine, and eight cell lines each with one copy of 
the ZAT6 gene were generated from G. hirsutum, O. sativa, 
and P. elliottii, respectively. After molecular analysis by 
PCR (Fig. 1b and c), Southern (Fig. 1d), and Northern 
blotting analysis (Fig. 1e), eighteen stable transgenic 
cell lines each containing only one copy of the pBI-ZAT6 
T-DNA were obtained from rice, cotton, and slash pine and 
used for salt stress experiments. 

3.2  Influence of ZAT6 overexpression on 
NaCl tolerance

Among different concentrations of NaCl tested, NaCl at 
50–100 mM did not significantly decrease the rate of cell 
growth of transgenic lines in O. sativa, G. hirsutum, and P. 
elliottii, compared to the control (Fig. 2). NaCl at 150-300 
mM significantly decrease the rate (Fig. 2). On medium 
supplemented with 150 mM NaCl, the rate of O. sativa 
cell growth reduced 49% (Fig. 2a), the rate of G. hirsutum 
cell growth decreased 49% (Fig. 2b), and the rate of P. 
elliottii cell growth decreased 82% (Fig. 2c). On medium 
supplemented with 300 mM NaCl, the rate of cell growth 
has the highest reduction in transgenic cell lines (Fig. 
2a-c) of O. sativa, G. hirsutum, and P. elliottii. 

3.3  Influence of ZAT6 overexpression on 
lipid peroxidation

To examine salt stress-induced oxidative damage in 
transgenic O. sativa, G. hirsutum, and P. elliottii cells, 
TBARS content that acts as marker of lipid peroxidation 
was measured in salt stressed cells and in medium. 
Compared to the control, the total amounts of TBARS (cell 
cultures + incubation medium) were significantly reduced 
in transgenic cells overexpressing ZAT6 in O. sativa, 
G. hirsutum, and P. elliottii on medium supplemented 
with 150–300 mM NaCl (Fig. 2d-f). TBARS were not 
significantly reduced in transgenic O. sativa, G. hirsutum, 
and P. elliottii cells under 50–100 mM NaCl (Fig. 2d-f). 
Significant reduction in the products of lipid peroxidation 
in transgenic O. sativa, G. hirsutum, and P. elliottii cells 
demonstrated that the protection on membranes in 
transgenic O. sativa, G. hirsutum, and P. elliottii cells with 
overexpression of ZAT6 was demonstrated by the decrease 
of TBARS (Fig. 2d-f).

3.4  Effect of ZAT6 overexpression on ABA 
and GA8 content

Among different concentrations of NaCl applied, NaCl at 
50–100 mM did not significantly decrease ABA content 
of transgenic cell lines in cotton, rice, and slash pine, 
compared to the control (Fig. 3). Compared to the control, 
NaCl at concentration of 150-300 mM significantly reduce 
ABA content in O. sativa, G. hirsutum, and P. elliottii (Fig. 3), 
on medium supplemented with 150 mM NaCl, ABA content 
of O. sativa cells decreased 49% (Fig. 3a), ABA content of 
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Fig. 1 Plasmid map and molecular analyses of transgenic cell lines. (A) A linear plasmid map of pBI-ZAT6. (B) PCR analysis of NPTII gene in 
transgenic cell lines. (C) PCR analysis of ZAT6 gene in transgenic cell lines. (D) Southern blot analysis of transgenic cell lines. (E) Northern 
blot analysis of transgenic cell lines.s
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G. hirsutum cell cultures decreased 49% (Fig. 3b), and ABA 
content of P. elliottii cell cultures decreased 82% (Fig. 3c). 
Under stress of 300 mM NaCl, ABA content has the highest 
increase (Fig. 3a-c) in O. sativa, G. hirsutum, and P. elliottii 
cells. A similar change of GA8 was obtained (Fig. 3a-c) in O. 
sativa, G. hirsutum, and P. elliottii cells. 

3.5  Antioxidant enzymes APOX, GR, SOD, 
and CAT activities 

Antioxidant enzymes APOX (Fig. 4a-c), GR (Fig. 4d-f), 
SOD (Fig. 5a-c), and CAT (Fig. 5d-f) were selected to 
evaluate the oxidative damage caused by NaCl stress in 

Fig. 2 Growth of cell lines under different concentrations of NaCl and thiobarbituric acid reactive substance changes (TBARS). (A-C) Effect 
of different concentrations of NaCl (50, 100, 150, 200, 250, and 300 mM) on the growth of transgenic cell lines of rice (Os1, Os2, Os3, Os4, 
Os5, and Os6), cotton (Gh1, Gh2, Gh3, Gh4, Gh5, and Gh6), and slash pine (Pe1, Pe2, Pe3, Pe4, Pe5, and Pe6) were measured 21 days after 
callus transgenic cell cultures were transferred into media containing NaCl. (D-F) TBARS changes in transgenic cell lines of rice (Os1, Os2, 
Os3, Os4, Os5, and Os6), cotton (Gh1, Gh2, Gh3, Gh4, Gh5, and Gh6), and slash pine (Pe1, Pe2, Pe3, Pe4, Pe5, and Pe6). The growth and 
TBARS were measured 21 days after cell cultures were transferred into media containing different concentrations of NaCl (50, 100, 150, 200, 
250, and 300 mM). Each experiment was replicated three times, and each replicate consisted of five to ten 250-ml flasks of transgenic cell 
cultures. Values represent the means ± S.D.
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transgenic cell lines of rice, cotton, and slash pine. APOX, 
GR, SOD, and CAT activities were significantly reduced 
from the concentration point 150mM to 300 mM of NaCl 
in non-transgenic control (Figs. 4 and 5), however, the 
enzyme activity was stable in transgenic cells of O. sativa, 
G. hirsutum, and P. elliottii. Compared to controls, the 
levels of APOX, GR, SOD, and CAT activities were not 
significantly decreased from 50 to 150 mM NaCl in rice, 
cotton, and slash pine transgenic cell lines (Figs. 4 and 5).

3.6  Effect of ZAT6 on expression of Ca2+-
dependent protein kinase genes

The Ca2+-dependent protein kinase genes OsCPK9 and 
OsCPK25 have been reported to be associated with stress 
tolerance in rice (Wan et al. 2007). To examine the effect 
of the ZAT6 on expression of OsCPK9 and OsCPK25, we 
have analyzed the expression of OsCPK9 and OsCPK25 in 
ZAT6 transgenic cells of O. sativa (Os1, Os2, Os3, Os4, and 

Fig. 3 Effect of ZAT6 overexpression on ABA and GA8 content. ABA content (A-C) and GA8 (D-F) content changes in transgenic cell lines of 
rice (Os1, Os2, Os3, Os4, Os5, and Os6), cotton (Gh1, Gh2, Gh3, Gh4, Gh5, and Gh6), and slash pine (Pe1, Pe2, Pe3, Pe4, Pe5, and Pe6) were 
measured 21 days after cell cultures were transferred into media containing different concentrations of NaCl (50, 100, 150, 200, 250, and 
300 mM). Each experiment was replicated three times, and each replicate consisted of five to ten 250-ml flasks of transgenic cell cultures. 
Values represent the means ± S.D.
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Os5) on medium supplemented with 150 mM NaCl (Fig. 6). 
These results showed that the expression level of OsCPK9 
(Fig. 6 a-f) and OsCPK25 (Fig. 6g-l) increased 5 to 7-fold in 
transgenic cells of O. sativa, G. hirsutum, and P. elliottii, 
compared to the control.

4  Discussion
TFs regulate NaCl stress response through different 
molecular mechanisms in a large number of plant species. 

It has been reported that overexpression of bZIP, AP2/
ERF, MYB, WRKY TFs and other stress related genes in 
plant cells could increase NaCl stress tolerance [24, 25, 
27, 34, 36, 38, 45, 63]. TF-regulated signaling transduction 
pathways and metabolic changes are essential for plant 
cells to counteract damages caused by NaCl stress [24, 
27, 36, 38, 64, 65]. Overexpression of transcription factors 
in cells lead to improvement of NaCl stress tolerance in 
many plant species including Arabidopsis, wheat, rice, 
and Brachypodium distachyon [47, 66-68]. In potato, 
soybean, poplar, and pine, transcription factors have 

Fig. 4 Effect of ZAT overexpression on APOX and GR activity. APOX (A-C) and GR (D-F) changes in transgenic cell lines of rice (Os1, Os2, Os3, 
Os4, Os5, and Os6), cotton (Gh1, Gh2, Gh3, Gh4, Gh5, and Gh6), and slash pine (Pe1, Pe2, Pe3, Pe4, Pe5, and Pe6) were measured 21 days 
after cell cultures were transferred into media containing different concentrations of NaCl (50, 100, 150, 200, 250, and 300 mM). Each 
experiment was replicated three times, and each replicate consisted of five to ten 250-ml flasks of transgenic cell cultures. Values represent 
the means ± S.D.
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been reported to protect cells from NaCl stress through 
the decrease of oxidative damage and the increase of 
auxin signaling [43, 69-71]. Overexpression of some TFs 
lead to enhanced expression of antioxidant enzyme 
genes, induced metabolic reprogramming, and changes 
of stomatal closure in different plant species including 
Arabidopsis, tomato, tobacco, and pine, which resulted 
in increased NaCl tolerance [27, 43, 72, 73]. However, 
molecular mechanisms associated with TF ZAT6 increased 
NaCl stress tolerance is elusive. 

Overexpression of stress-related transcription factor 
genes regulates salt stress response through regulation of 
ABA and GA metabolism and signaling [1, 74, 75]. It has been 
reported that, RAS1 (Response to ABA and Salt 1) enhance 
salt stress tolerance and ABA sensitivity as a negative 
regulator during early seedling growth [76], AtSAT32 [salt 
tolerance32 (SAT32)] functions on both salinity tolerance 
and ABA signaling as a positive regulator in Arabidopsis [1, 
74, 77]. Endogenous ABA and GAs influence salt stress and 
endophytic fungal association in cucumber [78, 79]. GAs 

Fig. 5 Effect of ZAT6 overexpression on SOD (A-C) and CAT (D-F) activity. SOD and CAT changes in transgenic cell lines of rice (Os1, Os2, 
Os3, Os4, Os5, and Os6), cotton (Gh1, Gh2, Gh3, Gh4, Gh5, and Gh6), and slash pine (Pe1, Pe2, Pe3, Pe4, Pe5, and Pe6) were measured 21 
days after cell cultures were transferred into media containing different concentrations of NaCl (50, 100, 150, 200, 250, and 300 mM). Each 
experiment was replicated three times, and each replicate consisted of five to ten 250-ml flasks of transgenic cell cultures. Values represent 
the means ± S.D
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Fig. 7 Molecular mechanism of ZAT6 overexpression enhanced salt tolerance. ZAT6 overexpression enhances expression of OsCPK25 and 
OsCPK25, as well as contents of ABA and GA8 in cells of angiosperm and gymnosperm, which may contribute to increased activity of Anti-
oxidant enzymes APOX, CAT, SOD, and GR. Increased activity of APOX, CAT, SOD, and GR enhance salt tolerance in cells of angiosperm and 
gymnosperm. 

Fig. 6 Influence of NaCl on expression of rice Ca2+-dependent protein kinase gene OsCPK9 and OsCPK25 in ZAT6 overexpression cells. (A) 
Northern blotting analysis of expression of OsCPK9 in ZAT6 transgenic cell lines Os1, Os2, Os3, Os4, and Os5 under 200 mM NaCl treatment 
at 6, 12, 24, 49, and 96 h. (B) Quantitative analysis of expression of OsCPK9. (c) Northern blotting analysis of expression of OsCPK25 in 
ZAT6 transgenic cell lines Os1, Os2, Os3, Os4, and Os5 under 200 mM NaCl treatment at 6, 12, 24, 49, and 96 h. (D) Quantitative analysis of 
expression of OsCPK25. Each experiment was replicated three times. Values represent the mean ± SD.
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regulate cellular homeostasis for NaCl stress tolerance. 
In rice, OsCPK9 improves NaCl stress tolerance by 
increasing the osmotic adjustment ability, expression 
of stress-responsive genes, and stomatal closure in 
plants [83]. In Arabidopsis, CPKs can phosphorylate the 
biotinylated peptide at the threonine residue for stress-
response signaling pathway, regulate expression of 
several ABA responsive genes, be involved in oxidative 
stress and lipid metabolism [83]. To examine if the 
increasing salt stress tolerance through overexpression 
of ZAT6 is related to certain Ca2+ dependent protein 
kinases, we have investigated the expression of OsCPK9 
and OsCPK25 in ZAT6 overexpressing transgenic cells of 
Os1, Os2, Os3, Os4, and Os5 under treatment of 250 mM 
NaCl (Fig. 6). Our experimental results showed that the 
expression of OsCPK9 and OsCPK25 was increased 5 to 7 
fold in transgenic cells, compared to the non-transgenic 
control cells (Fig. 6), indicating that ZAT6 overexpression-
enhanced expression of OsCPK9 and OsCPK25 could be 
associated with the increased NaCl stress tolerance in 
transgenic O. sativa, G. hirsutum and P. elliottii cell lines 
and that overexpression of ZAT6 may contribute to CPK-
mediated signaling through cross talk between CPKs and 
ZAT6 under NaCl stress condition.

Although enhanced salt tolerance via overexpression 
of TFs has been documented in many different plant 
species [66, 67, 71, 84], molecular mechanisms of 
transcription factor-enhanced salt stress tolerance are 
not fully understood [70, 72, 73]. Overexpression of ZAT6 
enhanced salt stress tolerance is not reported in cells of P. 
elliottii, O. sativa, and G. hirsutum. Different mechanisms 
could be contributed to salt tolerance in different plant 
species (Fig. 7). Overexpression of stress-responsive 
transcription factors plays important roles in the response 
to salt stress by coordinating the phytohormone signaling 
networks [15, 16, 85]. Overexpression of the TabHLH1 gene 
plays critical roles in plant tolerance to osmotic stresses 
through an ABA-dependent pathway [67]. Although cells 
use multiple strategies to improve salt tolerance, NaCl 
induces adverse effects by producing oxidative damage [5, 
29, 34, 37, 86, 87]. In this study, we showed that increased 
tolerance to NaCl stress in cells of different plant species 
expressing transcription factor ZAT6 was related to the 
increased content of ABA and GA8, the increased activities 
of antioxidant enzymes, the increased expression of Ca2+-
dependent protein kinase genes, and the decreased lipid 
peroxidation.

Compared to use whole plants, it is easy to get 
consistent phenotypes of transformed cells. This is one 
reason that we use transgenic cell lines to examine the 
function of ZAT6 in P. elliottii, O. sativa, and G. hirsutum in 

in fungal culture filtrate are involved in salinity induced 
oxidative stress in soybean plants through reduction of 
lipid peroxidation and regulation of the activities of the 
antioxidant enzymes [75, 80]. To examine if the enhanced 
salt stress via overexpression of ZAT6 is related to ABA 
and GA metabolism, we examined the content of ABA and 
GA8 in ZAT6 transgenic cell lines of O. sativa, G. hirsutum, 
and P. elliottii under treatment of different concentrations 
(50, 100, 150, 200, 250, and 300 mM) of NaCl (Fig. 3). Our 
experimental results showed that the content of ABA and 
GA8 was increased in transgenic O. sativa, G. hirsutum 
and P. elliottii cells, compared to the controls (Fig. 3). Our 
experimental results demonstrated that the increased 
ABA and GA8 could be contributed to the increased NaCl 
stress tolerance in transgenic G. hirsutum, O. sativa, and P. 
elliottii cells.

NaCl stress affects the activity of antioxidative 
enzymes and lipid peroxidation in plants. In maze, NaCl 
stress increase the activitis of superoxide dismutase 
(SOD), ascorbate peroxidase (APOX), and glutathione 
reductase (GR) to protect cells from oxidative damage, 
compared to the controls [81, 82]. In Broussonetia 
papyrifera, NaCl stress increases the activities of 
superoxide dismutase (SOD), peroxidase (POD) and 
catalase (CAT) in the leaves, stems and roots. The changed 
activities of antioxidant defense enzymes were associated 
with distinct SOD and POD isoenzymes [60, 61]. It has 
been reported that overexpression of ZAT6 in Arabidopsis 
enhances seed germination under salt and osmotic stress 
and that phosphorylation of ZAT6 by MPK6 is required 
for the increased salt and osmotic stress tolerance [60, 
61]. To determine if the ZAT6-overexpression increased 
salt stress tolerance is related to the reduced oxidative 
damage, we have examined the activities of antioxidant 
enzymes APOX, GR, SOD, and CAT in ZAT6 transgenic O. 
sativa, G. hirsutum, and P. elliottii cells under treatment 
of NaCl (Figs. 4 and 5). Our results demonstrated that the 
activities of antioxidant enzymes APOX, GR, SOD, and 
CAT was increased in transgenic cells of rice, cotton, and 
pine, compared to the controls (Figs. 4 and 5), indicating 
that the increased activities of antioxidant enzymes could 
be related to the increased tolerance to NaCl stress in 
examined transgenic O. sativa, G. hirsutum and P. elliottii 
cell lines. Overexpression of ZAT6 may decrease oxidative 
damage, at least in part, through the increase of the 
activity of antioxidant enzymes.

Ca2+ dependent protein kinases (CPKs) are involved 
in NaCl stress tolerance through regulating expression 
of transcriptional activators or transducing stress signals 
to other signaling molecular. Cross talk between CPKs-
mediated signal transduction and ABA signaling may 
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the present investigation. Although we demonstrated that 
overexpression of ZAT6 enhanced salt stress tolerance and 
that the salt stress-associated changes of phytohormones, 
antioxidant enzymes, and CPKs in ZAT6 overexpression 
transgenic cell lines of P. elliottii, O. sativa, and G. 
hirsutum extended the discovery of ZAT6-improved seed 
germination under salt and osmotic stress in Arabidopsis, 
further investigation is needed to examine the function of 
ZAT6 in transgenic plants of P. elliottii, O. sativa, and G. 
hirsutum for practical application of transcription factor 
ZAT6 in agriculture and forestry

Although it has been reported that overexpression of 
ZAT6 improves seed germination under salt and osmotic 
stress and that phosphorylation of ZAT6 by MPK6 is 
required for the enhanced salt and osmotic stress tolerance 
in Arabidopsis [54, 57], overexpression of ZAT6 enhanced 
salt stress tolerance is not reported in crop plants and 
conifers. To explore the possible molecular mechanisms 
of ZAT6 overexpression-enhanced salt stress tolerance in 
crop plants and conifers, we overexpressed ZAT6 in cell 
lines of P. elliottii, O. sativa, and G. hirsutum and analyzed 
the changes of phytohormones, antioxidant enzymes, 
and CPKs in transgenic cell lines under salt stress. 
Overexpression of ZAT6 enhanced salt stress and the salt 
stress-associated changes of phytohormones, antioxidant 
enzymes, and CPKs in ZAT6 overexpression transgenic 
cell lines of P. elliottii, O. sativa, and G. hirsutum extended 
the discovery of ZAT6 improved seed germination under 
salt and osmotic stress in Arabidopsis. Overexpression 
of stress-related transcription factor genes regulates salt 
stress response [74, 77, 88]. It has been reported that, 
RAS1 (Response to ABA and Salt 1) enhance salt stress 
tolerance and ABA sensitivity as a negative regulator 
during early seedling growth [74, 77, 88], AtSAT32 [salt 
tolerance32 (SAT32)] functions on both salinity tolerance 
and ABA signaling as a positive regulator in Arabidopsis 
[1, 74]. Endogenous ABA and GAs influence salt stress 
and endophytic fungal association in cucumber (Khan 
et al. 2012). GAs in fungal culture filtrate are involved 
in salinity induced oxidative stress in soybean plants 
through reduction of lipid peroxidation and regulation of 
the activities of the antioxidant enzymes [89]. Cross talk 
among phytohormones signaling, activity of antioxidant 
enzymes, and expression of CPKs genes may be associated 
with ZAT6 overexpression-enhanced salt stress tolerance.

In conclusion, we have investigated the rate changes 
of cell growth, the content of ABA and GA8, the activities of 
antioxidant enzymes APOX, GR, SOD, and CAT, and lipid 
peroxidation in ZAT6 transgenic G. hirsutum, O. sativa, 
and P. elliottii cells, as well as expression of OsCPK9 and 
OsCPK25 in O. sativa. Our experimental results showed 

that overexpression of ZAT6 decreased NaCl-induced 
oxidative damage by elevating the expression level of 
Ca2+-dependent protein kinases and by elevating the 
activities of enzyme APOX, GR, and SOD and reducing 
lipid peroxidation (Fig. 7). The protection of transcription 
factor ZAT6 overexpression against salt stress-induced 
oxidative damage was related to the increasing expression 
of Ca2+-dependent protein kinase genes OsCPK9 and 
OsCPK25 in transgenic O. sativa cells. Overexpression of 
the ZAT6 transcription factor could be valuable approach 
for engineering plant abiotic stress tolerance.
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