COMMENTARY

JMolMed

An update to "novel therapeutic approaches for treatment of COVID-19"

Nikoo Hossein-khannazer^{1,2} · Bahare Shokoohian^{3,4} · Anastasia Shpichka^{5,6,7} · Hamid Asadzadeh Aghdaei⁸ · Peter Timashev^{5,6,7,9} · Massoud Vosough³

Received: 13 November 2020 / Revised: 10 December 2020 / Accepted: 14 December 2020 / Published online: 3 January 2021 © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021

Although the exact mechanism of pathogenesis in COVID-19 is not fully understood, cytokine storm following viral infection plays an important role in the initiation and progression of disease. SARS-CoV-2 infection induces over-activation of the immune system and massive production of inflammatory cytokines. Therefore, it is necessary to develop new strategies to modulate inflammatory responses [1]. Despite many efforts to improve therapeutic protocols for COVID-19, there is no specific approved treatment or preventable vaccine for this disease [2, 3]. However, intensive research has been conducted to both prevent and treat COVID-19. This commentary is an update for our recent paper in "Journal of Molecular Medicine, June 2020" and highlights the recent achievements in terms of preventive and therapeutic approaches in COVID-19 [4].

Development of SARS-CoV-2 preventive vaccines

• mRNA-1273 (Moderna TX, Inc.) is an mRNA vaccine that is composed of synthetic mRNA expressing the

Peter Timashev timashev.peter@gmail.com

- Massoud Vosough masvos@Royaninstitute.org
- ¹ Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- ² Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- ³ Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran Iran
- ⁴ Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran

prefusion-stabilized SARS-CoV-2 spike trimer (mRNA-1273) [5, 6]. The efficacy and immunogenicity of Moderna vaccine investigated in a phase III clinical trial (NCT04470427). Moderna has announced its primary efficacy analysis (95%) and recently applied to the FDA (USA) for emergency use authorization.

- ChAdOx1 nCOV-19 is another vaccine under evaluation in phase II/III clinical trials. This vaccine has been developed by Oxford University and produced due to the technology in which an adeno-viral vector encodes SARS-CoV-2 S protein (NCT04400838) [7]. The pre-clinical investigations showed that ChAdOx1 nCOV-19 was immunogenic in vaccinated mice and rhesus macaques and triggered robust humoral and cell-mediated responses [8]. Its safety and immunogenicity were evaluated in a phase II/III trial in a prime-boost regimen in young and old adults. In 14 days after receiving the boost dose, >99% of participants had neutralizing antibodies [9].
- BNT162b2 is a COVID-19 RNA vaccine candidate that has been announced by BioNTech/Pfizer. This vaccine encodes the receptor-binding domain (RBD) of the
- ⁵ Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- ⁶ Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
- ⁷ World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov University, Moscow, Russia
- ⁸ Department of Molecular Biology, Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- ⁹ Department of Polymers and Composites, NN Semenov Institute of Chemical Physics, Moscow, Russia

SARS-CoV-2 spike protein. Data from a phase III clinical trial showed vaccine efficiency over 95% [12, 13].

- CoronaVac is inactivated SARS-CoV-2 manufactured by Sinovac Life Sciences (Beijing, China). Its safety, tolerability, and immunogenicity have been approved in healthy adults aged 18–59 years in a phase I/II clinical trial [14]; and now it is under investigation in a phase III clinical trial (NCT04582344).
- Gam-COVID-Vac (Sputnik V) is a combined vector vaccine that consists of recombinant adenovirus type 26 (rAd26) and type 5 (rAd5) vectors. They carry the spike glycoprotein gene. Gam-COVID-Vac has been developed by Gamaleya National Research Center for Epidemiology and Microbiology (Moscow, Russia) [15]. Its safety and immunogenicity was approved in two formulations in a phase I/II clinical trial [15]. And now, the safety and efficiency of this vaccine is under assessment in a phase III clinical trial (NCT04530396).
- Using Ad5 vector to carry the spike glycoprotein gene, CanSino Biologics Inc. (China) has developed a recombinant novel coronavirus vaccine which safety and efficiency has been being evaluated in a phase III clinical trial (NCT04526990).

The progress in vaccine development is critically discussed in the following recently published reviews in detail [10, 11].

SARS-CoV-2 therapeutic approaches

In our recently published paper entitled "Novel therapeutic approaches for treatment of COVID-19," we grouped novel therapies into passive immunotherapy, cell-based therapies (including immune cell and non-immune cell therapies), monoclonal antibodies, and anti-viral drugs.

Searching terms "COVID-19" and "treatment" using https://clinicaltrials.gov/ resulted in more than 2200 clinical trials (October 29, 2020). Among these clinical trials, over 200 studies were related to cell-based therapies. They included mesenchymal stromal cell (MSC) therapies and adoptive T cell and natural killer (NK) cell therapies. Other studies applied monoclonal antibodies and nano-medicine to treat COVID-19 patients (Table 1) (Figs. 1 and 2).

Mesenchymal stromal cells in COVID-19 treatment

 Due to the immunomodulatory effects of MSCs [16, 17], clinical trials using MSCs from various sources including the umbilical cord, adipose tissue, and bone marrow have been registered for the treatment of acute respiratory distress syndrome (ARDS) caused by COVID-19 (NCT04341610, NCT04366063). Primary results showed that this strategy was safe and effective. The MSC therapy improved lung function, downregulated inflammatory cytokines, increased anti-inflammatory ones, and decreased mortality rate [18-20]. MSCs exert their antiinflammatory properties through direct cell-cell contact, paracrine effects, and their extracellular vesicles such as exosomes [21, 22]. It seems that application of MSCs and their exosomes could be a promising approach for the management of respiratory complications in COVID-19.

Adoptive T cells in COVID-19 treatment

Some studies reported lymphopenia and functional exhaustion due to the over-activation of the immune system during infection [23]. COVID-19 specific T and T_{CD8+} cells play an important role in the virus clearance by producing inflammatory cytokines and their cytotoxicity effects [24]. Moreover, virus-specific memory T cells were isolated from the serum of the recovered patients [25–27]. Based on this evidence, recent clinical trials designed and used the adoptive T cells in severe COVID-19 patients. Using this treatment protocol, HLA-matched T cells from fully recovered patients were transfused into newly infected individuals. This approach may help patients who are at the risk of requiring mechanical ventilation (NCT04457726, NCT04401410, and NCT04406064).

Exosomes derived from adoptive T cells in COVID-19 treatment

- In addition, another clinical trial used COVID-19-specific T cell-derived exosomes (CSTC-Exo) for the treatment of early infected patients in order to boost the IFN-γ production. Compared to the cells, CSTC-Exo does not need HLA-matching, and their administration route is an aerosol inhalation (NCT04389385). If it meets the endpoints, it could be a suitable alternative as an off-the-shelf product.
- Since regulatory T cells (Treg) are known as major antiinflammatory T cell subsets, Treg cell therapy may be a novel regenerative and anti-inflammatory treatment strategy for COVID-19. Infusion of cord blood-derived Treg cells (CK0802) may improve the ARDS symptoms in these patients (NCT04468971). RAPA-501-ALLO is a hybrid Treg/Th2 off-the-shelf reprogrammed Treg cell product produced by the healthy donors. RAPA-501-ALLO could have a dual advantage by modulating Th1 and Th17 subpopulations and inhibiting the massive production of inflammatory cytokines, as well as regenerating the damaged alveolar tissues [28]. This product may be a useful therapeutic option for the treatment of severe COVID-19 (NCT04482699).

Table 1 SARS-CoV-2 therapeutic approaches

Therapeutic approach	Number of studies	CT number	Status	Phase	The product used
MSC	65	NCT04366063	Recruiting	II/III	MSC, MSC + MSC-EVs
		NCT04333368	Recruiting	1/11 1/11	UC-MSC Disconta dominad MSC/LIC MSC
		NCT04461925 NCT04486001	Not yet recruiting	1/11 T	Allogenic AD MSC
		NCT04348435	Enrolling by invitation	Î	AD-MSC
		NCT04473170	Completed	II	Peripheral blood stem cells
		NCT04445454	Recruiting	II	BM-MSC
		NCT04349631	Enrolling by invitation	II	Autologous AD-MSC
		NC104525378	Recruiting	1 1/11	MSC MSC
		NCT04592778	Completed	1/11 T	MSC UC-MSC
		NCT04447833	Recruiting	I	Allogenic BM-MSC
		NCT04437823	Recruiting	II	UC-MSC
		NCT04288102	Completed	II	UC-MSC
		NCT04252118	Recruiting	Ι	MSC
		NC1042/3646 NCT04331613	Not yet recruiting	- 1/II	UC-MSC CAStem: regulatory cells from (hESCs)
		NCT04537351	Recruiting	1/11 1/11	CYP-001(MSC from iPS)
		NCT04313322	Recruiting	I	Wi-MSC
		NCT04299152	Recruiting	II	BM-MSC
		NCT04400032	Enrolling by invitation	Ι	Olfactory mucosa-derived MSCs
		NCT04382547	Not yet recruiting	1/11	Cord-blood MSC
		NC104345601 NCT04565665	Recruiting	I T	Cord-Diood MISC
		NCT04361942	Not vet recruiting	II	AD-MSC
		NCT04527224	Recruiting	II	UC-MSC
		NCT04366271	Recruiting	II	UC-MSC
		NCT04339660	Active, not recruiting	I/II	WJ-MSC
		NCT04456361	Not yet recruiting	1 1/11	WJ-MSC
		NCT04535856	Not yet recruiting	1/11 T	MSC UC MSC
		NCT04457609	Not vet recruiting	I	BM-MSC
		NCT04346368	Active, not recruiting	Ī/II	UC-MSC
		NCT04371601	Active, not recruiting	Ι	AD-MSC
		NCT04362189	Not yet recruiting	II	MSC
		NCT04467047	Not yet recruiting	I II	AD-MSC
		NCT04348461 NCT04416139	Recruiting	11 11	DP-MSC
		NCT04336254	Not vet recruiting	1/II	UC-MSC
		NCT04452097	Not yet recruiting	I	AD-MSC
		NCT04428801	Recruiting	II	WJ-MSC
		NCT04390139	Recruiting	I/II	AD-MSC
		NC104366323	Active, not recruiting	1/11 1/11	hC1-MSC
		NCT04399889	Not vet recruiting	1/11 1/11	UC-LSC
		NCT04429763	Recruiting	II	UC-MSC
		NCT04494386	Recruiting	I/II	UC-MSC
		NCT04269525	Not yet recruiting	II	Remestemcel-L
		NCT04490486	Recruiting	l III	BM-MSC
		NCT04371393	Not yet recruiting	111 11	Autologous AD MSC
		NCT04397796	Not vet recruiting	Ĭ	placental mesenchymal-like adherent stromal cells
		NCT04352803	Recruiting	Î	DP-MSC
		NCT04389450	Not yet recruiting	II	MSC
		NCT04302519	Recruiting	I	MSC
		NCT04466098	Not yet recruiting	II T	NestaCell®
		NCT04322980	Not yet recruiting	I	MSCs or MSCs RNA-engineered
		NCT04398303	Not vet recruiting	1/II	UC-MSC
		NCT04524962	Recruiting	I/II	MultiStem; BM-MSC
		NCT03042143	Recruiting		
		NCT04367077	Available		
		NCT0433834/			
		NCT04445220			
T cell	7	NCT04351659	Recruiting	Ι	Convalescent donor
		NCT04457726	Recruiting	I/II	Convalescent donors
		NCT04482699	Not yet recruiting	I/II	RAPA-501-ALLO (allogeneic hybrid TREG/Th2 Cells)
		NCT04389385	Active, not recruiting	I	T cell-derived exosomes
		NCT04406064	Not yet recruiting	II T	viral-specific 1 cells
		NCT04401410	Recruiting	I	cord blood-derived T regulatory cells
NK cell	5	NCT04324996	Recruiting	Î/II	NKG2D-ACE2 CAR-NK
		NCT04365101	Recruiting	I/II	CYNK-001(human placental)
		NCT04280224	Recruiting	I	NK
		NCT04344548	Not yet recruiting	1/11 T	Allogeneic NK cell transfer
		110104303340	Recruiting	1	INIX CEII UCIIVEU IIOIII AII IPSC

Table 1 (continued)

Therapeutic approach	Number of studies	CT number	Status	Phase	The product used
CD34+ cells	1	NCT04522817	Not yet recruiting	Ι	Peripheral blood-derived autologous CD34+ cells
Acellular product	1	NCT04384445	Recruiting	I/II	Zofin; human amniotic fluid (HAF)
Monoclonal antibody	80	NCT04413838	Not yet recruiting	11	Nivolumab
		NC104268537	Not yet recruiting	11 T	PD-1 blocking antibody
		NCT04334044	Recruiting	і І/П	Ruxolitinib is an inhibitor of $IAK1/2$
		NCT04390464	Recruiting	IV	Ravulizumab/Baricitinib
		NCT04331665	Not yet recruiting	-	Ruxolitinib
		NCT04439006	Recruiting	II	Ibrutinib
		NCT04346277	Available	-	IC14, against human CD14
		NCT04441918	Recruiting	Ι	Anti-SARS-CoV-2
		NC104354766	Recruiting	- T /TT	Anti-SARS-CoV-2
		NCT04425629	Recruiting	1/11 1/11	Anti-Spike (S)
		NCT04420095 NCT04483375	Recruiting	1/11 T	Anti-SARS-CoV-2
		NCT04409509	Recruiting	Î	Garadacimab: anti-factor XIIa
		NCT04391309	Not vet recruiting	II	Antibody to CD14
		NCT04351152	Recruiting	III	Lenzilumab; anti GM-CSF
		NCT04341116	Recruiting	I/II	Anti GM-CSF
		NCT04519437	Recruiting	I	Anti-Spike (S)
		NCT04432298	Recruiting	II	Pamrevlumab; anti-Connective tissue growth factor
		NCT04545060	Recruiting		Anti-SARS-CoV-2
		NCT04452518	Active net recruiting	III T	Anti-Spike (S)
		NCT04429329	Recruiting		Fmanalumah/anakinra
		NCT04561076	Not vet recruiting	I	Anti-Snike (S)
		NCT04351243	Recruiting	ÎI	Gimsilumab: Anti GM-CSF
		NCT04343651	Active, not recruiting	II	Leronlimab; Anti-CCR5
		NCT04386239	Not yet recruiting	Ι	Sarilumab; Anti-IL-6
		NCT04357808	Recruiting	II	Sarilumab; Anti-IL-6
		NCT04305106	Recruiting	-	Bevacizumab; Anti-VEGF
		NCT04570397	Not yet recruiting	III	Ravulizumab; Anti- Complement component 5
		NCT04435184	Recruiting		Crizanlizumab; anti-P-selectin
		NCT04516564	Recruiting	IV	AK119: anti-CD73
		NCT04519424	Not vet recruiting	П	CSI 324 [•] anti-GCSF
		NCT04447469	Recruiting	II/III	Mavrilimumab: anti-GM-CSF-Ra
		NCT04397497	Not yet recruiting	II	Mavrilimumab; anti-GM-CSF-Ra
		NCT04454398	Recruiting	Ι	Anti-Spike (S)
		NCT04476979	Recruiting	II	Tocilizumab; anti-IL-6R
		NCT04347239	Recruiting		Leronlimab; anti-complement component 5
		NCT04324073	Active, not recruiting	11/111 11	Sarihumab; anti-IL-6 Conskinumsh; anti-IL-1 G
		NCT04322773	Recruiting	II	Tocilizumah: anti-IL-1-15
		NCT04331808	Active. not recruiting	II	Tocilizumab; anti-IL-6R
		NCT04355494	Available	-	Eculizumab; anti-complement component 5
		NCT04369469	Recruiting	III	Ravulizumab; anti-complement component 5
		NCT04445272	Recruiting	II	Tocilizumab
		NCT04479358	Recruiting	II	Tocilizumab
		NCT04317092	Recruiting	II II	Tocilizumab
		NCT04345445	Not yet recruiting		Tooilizumab
		NCT04412772 NCT04331705	Recruiting	III	Tocilizumab
		NCT04377659	Recruiting	II	Tocilizumab
		NCT04412291	Recruiting	II	Tocilizumab/anakinra
		NCT04359667	Not yet recruiting	II	Tocilizumab
		NCT04335071	Recruiting	II	Tocilizumab
		NCT04372186	Active, not recruiting	III	Tocilizumab
		NCT04356937	Active, not recruiting	III	Tocilizumab
		NCT04320615	Completed	111	Tocilizumab
		NCT04363736	Completed	11 11	Tocilizumab
		NCT04363853	Recruiting	II	Tocilizumab
		NCT04361032	Not vet recruiting	III	Tocilizumab
		NCT04409262	Recruiting	III	Tocilizumab
		NCT04424056	Not yet recruiting	III	Anakinra, Tocilizumab, Ruxolitinib
		NCT04332913	Recruiting	-	Tocilizumab
		NCT04335305	Recruiting	II	Tocilizumab, Pembrolizumab
		NCT04560205	Recruiting	1	l ocilizumab
		NCT04306705	Recruiting	-	Tocilizumab
		NCT04310228	Active not recruiting	- II	Tocilizumab
		NCT04339712	Recruiting	П	Anakinra, Tocilizumab
		NCT04519385	Completed	-	Tocilizumab
		NCT04423042	Not yet recruiting	III	Tocilizumab
		NCT04492501	Completed	-	Tocilizumab
		NCT04380519	Completed	II/III	Olokizumab

Table 1 (continued)								
Therapeutic approach	Number of studies	CT number	Status	Phase	The product used			
Nanoparticle	6	NCT04330638 NCT04486521 NCT04378244 NCT04517162 NCT04385095 NCT04276987 NCT04491240 NCT04493242	Recruiting Recruiting Not yet recruiting Recruiting Recruiting Completed Enrolling by invitation Not yet recruiting	III - I II I/II I/II	Anakinra, Tocilizumab, Siltuximab Tocilizumab DeltaRex-G; mimic RNA virus SARS-CoV-2 by binding to viral receptors in human cells and may serve as a decoy Polymerized-type I collagen Inhaled IFN-β MSCs-derived exosomes MSCs-derived exosomes			
Polyclonal antibody	1	NCT04453384	Recruiting	II	BM-derived MSC Swine glyco-humanized polyclonal antibody			

NK cells in COVID-19 treatment

 NK cells are an essential part of the innate immune system and play an important role in mediating virus-induced immune responses. So, interventional therapies using NK cells have been developed for the COVID-19 treatment. Recently, the adoptive transfer of allogenic NK cells has been developed to boost the antiviral immune responses and clearance of the infected cells in COVID-19 patients (NCT04344548, NCT04280224). NKG2D-ACE2 CAR-NK is an off-the-shelf product that has been investigated in a phase I/II clinical trial (NCT04324996). These cells simultaneously target ACE2 (the main receptor for SARS-CoV-2) [29] and NKG2D on the infected cells and removed them. Therefore, they could inhibit the SARS-CoV-2 infection through ACE2 blockade.

Monoclonal antibodies in COVID-19 treatment

 It has been shown that monoclonal antibodies could be a promising treatment approach for COVID-19. Monoclonal antibodies against inflammatory cytokines such as anti-IL-1 receptor, IL-6 antagonist, anti-TNF-α,

Fig. 1 Overview of molecular- and cellular-based treatments

Fig. 2 Comparative analysis of therapeutic approaches to treat COVID-19

anti-GM-CSF, anti-IFN- γ , and C5a inhibitor have been studied in different clinical trials. Over 60 clinical trials have been registered to evaluate the treatment efficiency of Tocilizumab and Olokizumab (anti-IL-6 mAbs) [30–33]. The published studies showed that Tocilizumab (anti-IL-6 mAb) could improve the outcomes in COVID-19 patients and inhibit a cytokine storm [34]. Anakinra (IL-1ra) [35, 36] also showed beneficial effects for the treatment of COVID-19 patients and could decrease the mechanical ventilation need. Moreover, REGN-COV2 has been developed and consists of two neutralizing antibodies (REGN10987 + REGN10933) targeting SARS-CoV-2 spike protein [37, 38].

Nano-medicine in COVID-19 treatment

• Using nano-medicine including aerosol inhalations of therapeutic agents attracts lots of attention. Recent studies have investigated the efficiency and safety of the MSC-derived exosome (NCT04491240, NCT04276987) and interferon beta inhalation (NCT04385095).

Now, most of the mentioned studies are ongoing. The growing number of clinical trials in this field could provide more validated designs and higher quality data. In this context, the increase in international collaborations to provide larger number of patients will be helpful to obtain more definite results [39]. Identifying the exact mechanisms of the COVID-19 immunopathogenesis will ensure the development of more effective therapies.

Funding This work was supported by Royan Institute and the Russian Foundation for Basic Research (N. 20-04-60063).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interests.

References

- Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP (2020) The trinity of COVID-19: Immunity, inflammation and intervention. Nat Rev Immunol 20(6):363–374
- Touma M (2020) COVID-19: Molecular diagnostics overview. J Mol Med (Berl) 98(7):947–954

- Khoshdel-Rad N, Zahmatkesh E, Shpichka A, Timashev P, Vosough M (2020) Outbreak of chronic renal failure: Will this be a delayed heritage of COVID-19? J Nephrol 2:1–3
- Hossein-Khannazer N, Shokoohian B, Shpichka A, Aghdaei HA, Timashev P, Vosough M (2020) Novel therapeutic approaches for treatment of COVID-19. J Mol Med (Berl) 98(6):789–803
- Corbett KS, Edwards DK, Leist SR et al (2020) SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 586:567–571
- Anderson EJ et al (2020) Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. N Engl J Med 383: 2427–2438
- Sharpe HR, Gilbride C, Allen E, Belij-Rammerstorfer S, Bissett C, Ewer K, Lambe T (2020) The early landscape of coronavirus disease 2019 vaccine development in the UK and rest of the world. Immunology. 160(3):223–232
- van Doremalen N, Lambe T, Spencer A, Belij-Rammerstorfer S, Purushotham JN, Port JR, Avanzato V, Bushmaker T, Flaxman A, Ulaszewska M et al (2020) ChAdOx1 nCoV-19 vaccination prevents SARS-CoV-2 pneumonia in rhesus macaques. bioRxiv [Preprint] 2020.05.13.093195. Update in: Nature. 2020 Jul 30. https://doi.org/10.1101/2020.05.13.093195
- Ramasamy MN, Minassian AM, Ewer KJ, Flaxman AL, Folegatti PM, Owens DR, Voysey M, Aley PK, Angus B, Babbage G et al (2021) Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): A single-blind, randomised, controlled, phase 2/3 trial. Lancet 396(10267):1979–1993 Erratum in: Lancet. 2021 Dec 19;396(10267):1978
- Poland GA, Ovsyannikova IG, Kennedy RB (2020) SARS-CoV-2 immunity: Review and applications to phase 3 vaccine candidates. Lancet 396:1595–1606
- Krammer F (2020) SARS-CoV-2 vaccines in development. Nature 586(7830):516–527
- Walsh EE, Frenck R, Falsey AR, Kitchin N, Absalon J, Gurtman A, Lockhart S, Neuzil K, Mulligan MJ, Bailey R et al (2020) RNAbased COVID-19 vaccine BNT162b2 selected for a pivotal efficacy study. medRxiv:2020.08.17.20176651. https://doi.org/10.1101/ 2020.08.17.20176651
- 13. Dong Y et al (2020) A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduct Target Ther 5(1):1–14
- Zhang Y et al (2020) Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: A randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis. https://doi.org/10.1016/S1473-3099(20)30843-4
- Logunov DY, Dolzhikova IV, Zubkova OV, Tukhvatullin AI, Shcheblyakov DV, Dzharullaeva AS, Grousova DM, Erokhova AS, Kovyrshina AV, Botikov AG et al (2020) Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous primeboost COVID-19 vaccine in two formulations: two open, nonrandomised phase 1/2 studies from Russia. Lancet 396(10255): 887–897
- Hossein-Khannazer N et al (2019) Study of the immunomodulatory effects of osteogenic differentiated human dental pulp stem cells. Life Sci 216:111–118
- Hashemi SM, Hassan ZM, Hossein-Khannazer N, Pourfathollah AA, Soudi S (2020) Investigating the route of administration and efficacy of adipose tissuederived mesenchymal stem cells and conditioned medium in type 1 diabetic mice. Inflammopharmacology 28(2):585–601
- Leng Z, Zhu R, Hou W, Feng Y, Yang Y, Han Q, Shan G, Meng F, du D, Wang S et al (2020) Transplantation of ACE2-mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis 11(2):216–228

- Chen X, Shan Y, Wen Y, Sun J, Du H (2020) Mesenchymal stem cell therapy in severe COVID-19: A retrospective study of shortterm treatment efficacy and side effects. J Infect 81(4):647–679
- Ramezankhani R, Solhi R, Memarnejadian A, Nami F, Hashemian SMR, Tricot T, Vosough M, Verfaillie C (2020) Therapeutic modalities and novel approaches in regenerative medicine for COVID-19. Int J Antimicrob Agents 56:106208
- Xiao K et al (2020) Mesenchymal stem cells: Current clinical progress in ARDS and COVID-19. Stem Cell Res Ther 11(1):1–7
- Golchin A, Seyedjafari E, Ardeshirylajimi A (2020) Mesenchymal stem cell therapy for COVID-19: Present or future. Stem Cell Rev Rep 16(3):427–433
- Mathew D, Giles JR, Baxter AE, Oldridge DA, Greenplate AR, Wu JE, Alanio C, Kuri-Cervantes L, Pampena MB, D'Andrea K et al (2020) Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science 369(6508):eabc8511
- Olwenyi OA, Dyavar SR, Acharya A, Podany AT, Fletcher CV, Ng CL, Reid SP, Byrareddy SN (2020) Immuno-epidemiology and pathophysiology of coronavirus disease 2019 (COVID-19). J Mol Med (Berl) 98(10):1369–1383
- Chen Z, John Wherry E (2020) T cell responses in patients with COVID-19. Nat Rev Immunol 20(9):529–536
- De Biasi S et al (2020) Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nat Commun 11(1):1–17
- Le Bert N et al (2020) SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature 584(7821):457–462
- Ghosh A, Menon A, Hussain A, Dubey M, Kumar R (2020) A review of mesenchymal stem cell therapy for severe SARS-CoV-2 infection. PUMRJ [Internet]. [cited 21Dec.2020];3(SPECIAL). Available from: http://www.praxisug.com/index.php/Praxis/ article/view/104
- Bellone M, Calvisi SL (2020) ACE polymorphisms and COVID-19-related mortality in Europe. J Mol Med 98(11):1505–1509
- Luo P, Liu Y, Qiu L, Liu X, Liu D, Li J (2020) Tocilizumab treatment in COVID-19: A single center experience. J Med Virol 92(7):814–818
- Zhang C et al (2020) The cytokine release syndrome (CRS) of severe COVID-19 and Interleukin-6 receptor (IL-6R) antagonist Tocilizumab may be the key to reduce the mortality. Int J Antimicrob Agents 55:105954
- 32. Xu X, Han M, Li T, Sun W, Wang D, Fu B, Zhou Y, Zheng X, Yang Y, Li X et al (2020) Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci 117(20):10970– 10975
- 33. Russell B, Moss C, George G, Santaolalla A, Cope A, Papa S, Van Hemelrijck M (2020) Associations between immune-suppressive and stimulating drugs and novel COVID-19-a systematic review of current evidence. Ecancermedicalscience 14:1022
- Comentale G, Manzo R, Pilato E (2020) Sars-Cov-2 interference in HEME production: Is it the time for an early predictive biomarker? J Mol Med 98(8):1053–1054
- Navarro-Millán I, Sattui SE, Lakhanpal A, Zisa D, Siegel CH, Crow MK (2020) Use of anakinra to prevent mechanical ventilation in severe COVID-19: A case series. Arthritis Rheum 72(12):1990– 1997
- 36. Iglesias-Julián E, López-Veloso M, de-la-Torre-Ferrera N, Barraza-Vengoechea JC, Delgado-López PD, Colazo-Burlato M, Ubeira-Iglesias M, Montero-Baladía M, Lorenzo-Martín A, Minguito-dela-Iglesia J et al (2020) High dose subcutaneous Anakinra to treat acute respiratory distress syndrome secondary to cytokine storm syndrome among severely ill COVID-19 patients. J Autoimmun 115:102537

- 37. Baum A, Ajithdoss D, Copin R, Zhou A, Lanza K, Negron N, Ni M, Wei Y, Mohammadi K, Musser B et al (2020) REGN-COV2 antibodies prevent and treat SARSCoV-2 infection in rhesus macaques and hamsters. Science 370(6520):1110–1115
- Matthews DB (2020) A cocktail of antibodies for COVID-19 therapy. Nat Rev Immunol 20(10):591
- Lythgoe MP, Middleton P (2020) Ongoing clinical trials for the management of the COVID-19 pandemic. Trends Pharmacol Sci 41:363–382

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.