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The objective of this study was to separately describe the fitting uncertainty and the
variability of individual cell in bacterial survival kinetics during isothermal and non-
isothermal thermal processing. The model describing bacterial survival behavior and
its uncertainties and variabilities during non-isothermal inactivation was developed from
survival kinetic data for Bacillus simplex spores under fifteen isothermal conditions. The
fitting uncertainties in the parameters used in the primary Weibull model was described
by using the bootstrap method. The variability of individual cells in thermotolerance and
the true randomness in the number of dead cells were described by using the Markov
chain Monte Carlo (MCMC) method. A second-order Monte Carlo (2DMC) model was
developed by combining both the uncertainties and variabilities. The 2DMC model
was compared with reduction behavior under three non-isothermal profiles for model
validation. The bacterial death estimations were validated using experimentally observed
surviving bacterial count data. The fitting uncertainties in the primary Weibull model
parameters, the individual thermotolerance heterogeneity, and the true randomness
of inactivated spore counts were successfully described under all the iso-thermal
conditions. Furthermore, the 2DMC model successfully described the variances in
the surviving bacterial counts during thermal inactivation for all three non-isothermal
profiles. As a template for risk-based process designs, the proposed 2DMC simulation
approach, which considers both uncertainty and variability, can facilitate the selection of
appropriate thermal processing conditions ensuring both food safety and quality.

Keywords: non-isothermal inactivation, quantitative microbial risk assessment, Weibull model, Bacillus simplex,
Monte Carlo simulation

Abbreviations: 2DMC, Second-order Monte Carlo; CFU, colony forming unit MC, Monte Carlo; MCMC, Markov chain
Monte Carlo; PCR, polymerase chain reaction; QMRA, Quantitative microbial risk assessment; root mean square error,
RMSE; RTE, ready-to-eat; TSB, tryptic soy broth.
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INTRODUCTION

Although thermal inactivation is the most often used procedure
for controlling microbial contamination in processed foods,
thermal processing at higher temperatures or longer heating
times can induce chemical and physical deterioration in foods
(Awuah et al., 2007; Fellows, 2009; Ling et al., 2015). The
demand for food processing has begun to exceed the fundamental
requirements of safety and shelf life, with more emphasis being
placed on comprehensively labeled, high-quality, value-added
foods that are convenient to consume (Awuah et al., 2007).
In line with these goals, the microbial inactivation process in
foods should be minimized. While thermal sterilization process
is required for shelf-stable foods, milder thermal processing
(<100◦C) allowing for higher food quality retention is usually
applied to ready-to-eat (RTE) food products intended to be
stored under refrigeration. In recent years, many RTE foods,
which maintain their quality through relieved long-time thermal
inactivation higher than 80◦C but below 100◦C and storage at
refrigeration temperatures, have been introduced. These products
are called long-life refrigeration foods. However, some bacterial
species are known to grow even at refrigeration temperatures;
in particular, spore-forming spoilage bacteria such as Bacillus
simplex can germinate and grow at refrigeration temperatures
(below 10◦C) and also have greater heat resistance than vegetative
bacterial cells (Kobayashi et al., 2016). Moreover, some of
Bacillus spp. including B. simplex can produce heat-stable
toxins similar to cereulide (Taylor et al., 2005). The control of
spore-forming bacteria can therefore help ensure food safety
and quality of minimally processed RTE foods preserved at
refrigeration temperatures.

Appropriate predictions and assessments based on
mathematical models is necessary for food safety assurance.
Many mathematical models have been used to predict bacterial
behavior in foods and ensure food safety through quantitative
microbial risk assessment (QMRA). However, one of the most
popular models, the log-linear approach based on the D-value
(decimal reduction time), can lead to over- or underestimation
of the thermal death time (Peleg, 2006). To determine safe
minimum processing levels, more accurate mathematical models
for describing bacterial behavior during inactivation are needed.

The importance of uncertainty and variability in the
evaluation of microbial behavior for QMRA purposes has
been increasingly recognized (Nauta, 2000; Hoornstra and
Notermans, 2001; Membré et al., 2006; FAO/WHO, 2008;
Pouillot and Delignette-Muller, 2010; Koutsoumanis and
Aspridou, 2017; Besten et al., 2018) In this context, “uncertainty”
represents the lack of perfect knowledge of a parameter value,
which might be reduced by further measurements, whereas
“variability” represents the true randomness or heterogeneity
of the population or environments, which are a consequence
of the physical system and irreducible through additional
measurements (Nauta, 2000). Because conventional kinetic
models do not take into account uncertainty or variability
between individual bacterial cells (Koutsoumanis and Aspridou,
2017; Besten et al., 2018), the estimation of bacterial behavior
using kinetic modeling is considered insufficient in certain

food safety management approaches (Koutsoumanis and
Angelidis, 2007; Couvert et al., 2010). To describe variability
and uncertainty in predictive modeling, stochastic models with
Monte Carlo (MC) simulation using repeated random number
simulations have been developed. As variability differs critically
from uncertainty, the stochastic model can be roughly divided
into sub-models for: (1) expressing variability, (2) expressing
uncertainty, and (3) representing both.

Many studies have tried to express the variability of
individual-cell inactivation behavior using stochastic process
models (Aspridou and Koutsoumanis, 2015; Abe et al., 2019;
Koyama et al., 2019a,b). Stochastic processes describe true
randomness (true randomness comes even if completely same
parameter value) with generating random number following
a probability distribution. However, most such models, which
describe bacterial reduction behavior at a constant temperature,
cannot be adapted to the long come-up times frequently seen
in the heating of actual food processings. In this study, it is
tried to describe the variability in dead bacterial counts at a
momentary dynamic condition during a short time lapse based
on an individual bacteria’s death or survival model.

Parameter uncertainty has been investigated using bootstrap
models to describe variations in bacterial behavior (Schaffner,
1994; Quinto et al., 2019). The bootstrap method (Efron and
Tibshirani, 1991) is a resampling technique used to estimate
statistics via computer simulation. Bootstrapping describes
statistic parameters or values as distribution, and it could enable
representing the variation in them caused from the lack of
information by random resampling following observed values.
In other words, bootstraps have been used to describe parameter
uncertainty comes from variation of observed values, in terms
of the lack of perfect knowledge of the parameter’s value (Nauta,
2000), as probability distributions.

Uncertainty and variability in bacterial behavior can be
expressed using second-order Monte Carlo (2DMC) analysis
and some researchers have advocated the application of 2DMC
to describe both factors (Cassin et al., 1998; Wu and Tsang,
2004; Nauta et al., 2009; Pouillot and Delignette-Muller, 2010;
Abe et al., 2019). The separation and combined description of
uncertainty and variability play an important role in the valid
prediction of bacterial behavior.

The objectives of this study were development and validation
of a dynamic 2DMC model constructed by combining
calculations of (i) uncertainty in model parameters, (ii) dynamic
kinetics, and (iii) variability in individual cell inactivation times.
The resulting dynamic model, which includes both uncertainty
and variability, can contribute to the improvement of risk-
based process design and the development of accurate risk
assessment models.

MATERIALS AND METHODS

Sample and Experimental Description
Bacterial Strain and Sporulation Conditions
The bacterial strain used as a model bacterium in this study was a
Bacillus simplex isolate (isolation number: 2501), a spore-forming

Frontiers in Microbiology | www.frontiersin.org 2 May 2020 | Volume 11 | Article 985

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-00985 May 16, 2020 Time: 17:0 # 3

Abe et al. Variability and Uncertainty in Bacterial Survival Kinetics

bacterial isolate associated with spoilage of refrigerated RTE food
and provided by the Japan Canners Association (Tokyo, Japan).
A sporulation procedure based on previous study (Kuroda
et al., 2019) was applied. The frozen pure bacterial cultures
were transferred to tryptic soy agar (TSA; Merck, Darmstadt,
Germany) plate and incubated at 37◦C for 5 days, after which
an isolated colony of each bacterium was transferred to 5 mL
of tryptic soy broth (TSB; Merck, Darmstadt, Germany) in
a sterile plastic tube, which was then incubated at 37◦C for
24 h. The cultures were transferred into soil extract agar (2 g/L
beef extract, 3 g/L yeast extract, 10 g/L peptone, 5 g/L NaCl,
20 g/L agar, 1 g/L starch, 1 mL/L MnSO4 solution, 250 mL/L
soil solution, 750 mL/L pure water) and the inoculated plates
were again incubated at 37◦C for 10 days. Following incubation,
the bacterial colonies were scratched and collected using a
platinum loop and suspended in 2 mL of 1/15 M phosphate
buffer. Following confirmation of spore formation using phase
contrast microscopy observations, the spores were collected by
centrifugation (1,000 × g for 10 min at 20◦C). The supernatant
was discarded, and the spores were subsequently resuspended
in 1/15 M phosphate buffer. This procedure was repeated three
times and then the spore solutions were heated to 80◦C for
10 min to remove remaining vegetative cells. The prepared spore
suspensions were stored at −80◦C and thawed gently (20 min in
ice water) as needed.

Inactivation Trials for Model Fitting Dataset
Bacterial reduction behaviors were experimentally observed
using thermally processed B. simplex. Following the methodology
applied in previous studies (Abe et al., 2018, 2019), the harvested
B. simplex spores were heated using a thermal cycler and
polymerase chain reaction (PCR) microplates. The B. simplex
spores were washed by centrifugation and diluted with pH-
adjusted TSB (pH:5.4, 5.8, 6.2, 6.6, and 7.0) and aliquots of
diluted spore suspension (100 µl) were then dispensed into
three representative wells of a 96-well PCR microplate to obtain
cell concentrations of 106 CFU/well. The temperature profile
of the wells was checked beforehand to ensure that there were
no temperature differences. Following 30 s of preheating at
25◦C to standardize the initial temperature across the trials,
the microplates were heated at various temperatures (80, 85,
and 90◦C) on a MiniAmp Plus Thermal Cycler (Thermo Fisher
Scientific, Waltham, MA, United States). Immediately after
heating, the PCR microplates were cooled to 4◦C. Figure 1A
shows examples of the thermal profiles in each one of these
processes. The total duration of the trials depended on the
temperature at various time intervals. Serial 10-fold dilutions of
samples in TSB were plated onto TSA, and population survival
was determined after a 24 h warming up of three replicate
microplates to 37◦C, a culturing condition that was previously
confirmed as capable of assuring recovery.

Inactivation Trials for Model Validation Dataset
As a validation data set, B. simplex suspensions of 100 µL, which
initial counts were 10n CFU (n = 2, 3, and 4), were heated with
the thermal cycler. Inactivation conditions were performed in
three dynamic temperature profiles (slow-come-up, bumpy, and

FIGURE 1 | Example of heating protocol using thermal cycler.
(A) Temperature profiles of inactivation trials for model fitting dataset. 80 min
heating at 80◦C (red), 35 min heating at 85◦C (green), and 18 min heating at
90◦C (blue). Preheating is conducted for 30 s at 25◦C to standardize the initial
temperature across trials. (B) Temperature profiles of inactivation trials for
model validation dataset. Slow come-up (blue), bumpy (green) and waving
(red) temperature profiles. Following the heating process, the 96-PCR
microplates are immediately chilled at 4◦C.

waving temperature profiles; Figure 1B), three pH conditions,
and 10 repetitions per each heating time. To compare the
simulated and the observed value, maximum RMSE (root mean
square error) and minimum RMSE were derived from them.

Estimation of Weibull Parameter
Uncertainty and Thermotolerance
Heterogeneity With Bootstrap Methods
Resampling Viable Bacterial Ratio Data
To obtain parameter distributions of Weibull model, we
described the parameter uncertainties and thermotolerance
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FIGURE 2 | Schematic of the bootstrapping procedure. The bootstrapping was conducted using 1,000 replicates of both the Weibullian parameter distributions and
the secondary models for each parameter, with the uncertainty of each parameter considered based on 1,000 replicates of the resampled surviving cell ratio.

heterogeneity of individual cells using a non-parametric
bootstrap. Figure 2 shows a schematic of the overall
bootstrapping process applied in this study. To carry out
bootstrapping, new samples are recollected from observed data
(non-parametric bootstrapping) or from a fitted distribution
(parametric bootstrapping). Non-parametric bootstrapping is
useful when the distribution of a population is unknown, poorly
understood, or when the investigator does not want to use a
predefined population distribution; parametric bootstrapping is
useful in problems in which some knowledge of the form of the
underlying bacteria population is available and for comparison

with non-parametric analysis (Quinto et al., 2019). In this
study, we applied non-parametric methods to account for the
uncertainties in observed values.

Sample sets of 1,000 iterations were resampled with
replacement for Weibull fitting to calculate the random
variables as Weibull model parameters. The change in surviving
bacterial counts was represented in the form of a survival
ratio, S(t), defined as the ratio between the number of survivors
after exposure time t, N(t), and the initial population, N0, i.e.,
S(t) = N(t)/N0. Each condition (heating time, pH, heating
temperature) was represented using three repetitions of
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observed data; in other words, the survival ratio data for three
replicates were resampled three times, including duplication,
per heating condition. Each set of three samples was randomly
selected as resampled data from the set of data observed at all
thermal conditions. Each resampled set was used as a replicate
bootstrapped dataset, of which a total of 1,000 were generated.

Fitting Resampled Data of Survival Ratio to Weibull
Model and Secondary Models
To perform Weibull fitting of the 1,000 bootstrapped data sets
described in the previous section, the parameters of a Weibull
model at each temperature were fitted to the respective values
at each temperature of the resampled survival ratios derived
from the inactivation experiment. The Weibull models were
constructed under the assumption that vegetative cells and spores
within a population have different resistances:

log10S(t) = −
(

t
δ

)p
(1)

where δ and p are constant parameters of the Weibull model from
which the mode, mean, variance, and coefficient of skewness
of the distribution can be calculated (Mattick et al., 2001).
The Weibull model is one of the general mathematical
models to describe various behaviors of inactivation or
reduction (Davey, 1993; Mafart et al., 2002; Van Boekel,
2002; Peleg and Normand, 2004; Gomez et al., 2005;
Koseki et al., 2015).

The δ is called the time of the first decimal reduction (time
necessary to inactivate a decimal reduction of the microbial
population when p parameter is 1.0) and is the so-called scale
parameter; n and p parameter is the so-called shape parameter
(Gomez et al., 2005). Its value depends on the shape of the
survival curve; p < 1 for concave upward survival curves, p = 1
for linear survival curves and p > 1 for concave downward
survival curves (Gomez et al., 2005). In this study, δ and p
were used to describe the experimental data obtained from
the kinetic experiments using non-linear regression analysis
(least mean square error) in which 1,000 iterations of the
resampled Weibullian parameters were estimated at each pH
and temperature.

The parameters of the secondary models were then calculated
based on the Weibullian parameters obtained for the primary
model, with 1,000 replicates of the secondary model estimated
to describe the relationship between pH, temperature, and the
primary parameters derived in the preceding section. Based on
the results of previous studies, the temperature dependency of the
Weibull model parameters δ and p was described using the fitted
exponential-type functions δ(T) and p(T), respectively, where δ(T)
is given as:

log10δ(T) = a1 × T + a2 × pH+ (intercept). (2)

This interaction-term-free polynomial equation was initially
proposed (Davey, 1993) to describe the combined effect of
temperature and pH on the D-values of Clostridium botulinum
spores (Gomez et al., 2005). It has been reported that p(T)
varies linearly or is constant at both increasing and decreasing

temperatures (Van Boekel, 2002); in a constant case, it can
be represented by a linear equation (when the coefficient of
temperature and pH is 0). The following linearly expression for
p(T) was used in this study:

p(T) = a3 × T + a4 × pH+ (intercept). (3)

The coefficients of the parameters of each of the models
were calculated using a multivariate linear least square
error regression.

The convergences of parameter distributions were indicated
by the Gelman-Rubin convergence statistic (R̂-value). The R̂-
value is generally used for confirming the convergences of
parameter distributions in Markov chain Monte Carlo (MCMC)
on Bayesian statistic (Vehtari et al., 2019); it is said that
R̂-value lower than 1.1 indicates the convergence of the
parameter distribution.

Numerical Estimation for True
Randomness Variability in Bacterial
Behavior During Non-Isothermal
Conditions With Stochastic Model
Numerical Calculation of Bacterial Non-Isothermal
Inactivation for Stochastic Simulation
To serve as the basis of our dynamic probability model,
we created a dynamic kinetic model based on previously
developed methodologies (Campanella and Peleg, 2001; Peleg
et al., 2005; Corradini and Peleg, 2009). Under fluctuating
temperature conditions, a very short time interval was taken into
consideration, [ti,ti+1]. The parameters of Weibullian model for
inactivation rate during the interval can be assumed as average of
the parameters of ti and ti+1 (Peleg, 2006), following:

δ̄ =
δti + δti+1

2
, p̄ =

pti + pti+1

2
. (4)

The actual heating time is described by transforming Eq. 1
(Campanella and Peleg, 2001) as follows:

t∗ =
[
− log10 Sti

δ̄

] 1
p̄
. (5)

Since the parameters are constant values in the intervals, the
reduction behavior can be assumed as the isothermal in the
interval. Therefore, the survival ratio at ti+1, Sti+1 , can be
described as following Eq. 6:

log10 Sti+1 = −

(
t∗ +1t

δ̄

)p̄
= −


[
− log10 Sti

δ̄

] 1
p̄
+1t

δ̄


p̄

. (6)

1t = ti+1 − ti

Furthermore, the survival counts can be described by
transformation of Eq. 6 following:

Nti+1 = N0 × 10−
(

t∗+1t
δ̄

)p̄

. (7)
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Defining the dead bacterial count over the time interval1t as

Ndead cell[ti,ti+1] = N(ti) − N(ti+1), (8)

We assumed these kinetic estimations as average behavior of
stochastic behavior.

Stochastic Description of Variability in Viable
Bacterial Counts
In this study, two types of variability were considered, namely the
initial cell counts variability and the variability in cell inactivation
during short time intervals, and were described by two types of
probability distributions. According to previous studies (Koyama
et al., 2016; 2019b; Abe et al., 2019), the initial cell counts
variability can be described as a Poisson distribution. Therefore,
the initial spore number was generated as a random number
following a Poisson distribution with an average of N(0), i.e.,

N(0) ∼ Poisson
(
N0
)
, (9)

where N(0) is the simulated initial cell count from a Poisson
distribution in which the expected value is N0 .

Next, we consider the variability in bacterial death counts
under heating process during the infinitesimal interval
(Figure 3). A model of possible explanation of bacteria death or
continued survival (Corradini et al., 2010) was used. Focusing on
individual cells, a cell has a probability of Pm to be inactivated and
1− Pm to remain viable after a short time interval 1t. Assuming
that individual bacterial cells (or spores) get inactivated during
this short time interval, the probability p(k), i.e., the probability
that k cells/spores are inactivated out of N(t) surviving cells/spore,
can be expressed as a binomial distribution. The general binomial

distribution form is p(k) =
(

n
k

)
pk (1− p

)n−k (Rychlik and

Ryden, 2006) and the expected value of the general distribution
is calculated as np. Here, the average value of the dead bacterial
counts during an interval from t to t +1t, Ndead cell[t,t+1t], was
assumed as the kinetic estimation. The binomial distributions are
generally used as a probabilistic distribution describing the pure
death process in the branch of modeling biological populations
(Renshaw, 1993). Ndead cell[t,t+1t] follows a binomial distribution

of size N(t) with a probability parameter Ndead cell[t,t+1t]
N(t)

. Thus, the
simulated survival cell counts N(ti+1) at exposure time t can be
described in terms of N(t) as

N(t+1t) ∼ N(t) − Binomial

(
N(t),

Ndead cell[t,t+1t]

N(t)

)
, (10)

where Binomial(N(t),
Ndead cell[t,t+1t]

N(t)
) is a random number derived

from a binomial distribution of size N(t) in which the probability

parameter is Ndead cell[t,t+1t]
N(t)

.

Second-Order Monte Carlo Simulation
Procedure
Three types of randomness were used to describe variability
and uncertainty under the proposed bacterial inactivation model.

Under the first type, which describes the variability in the initial
bacterial count. The second type describes the uncertainty in
an estimated parameter derived from the secondary models
obtained from the bootstrap. The third type describes true
randomness variability in bacterial reduction using Eq. 10. Using
these approaches, the specific uncertainty in bacterial behavior
was simulated as follows:

1. Using the first approach, a simulated initial count, N(0), was
generated as a random number derived from the Poisson
distribution. (Eq. 9):

2. To describe the uncertainty stemming from variation in
the observed values, a secondary model set was randomly
selected from the model set of 1,000 replicates obtained
from the bootstrap.

3. The two Weibull parameters were derived from the secondary
model set randomly selected in procedure II and the thermal
history, respectively.

4. Based on the dynamic kinetic model (Eq. 8) with
III’s parameters, the average inactivated spore count,
Ndead cell[t, t+1t], during the very short time interval
[t, t +1t] (1t was set as 1 s in this study) was obtained
from the derived Weibull parameters and N(t), the surviving
cell count at t.

5. From Ndead cell[t,t+1t], a simulated inactivated cell count
during the time interval was generated as a random
number, 1N[t, t+1t], derived from the binomial distribution.

6. A simulated survival cell count at t +1t was derived from the
simulated inactivated cell count during the short time interval
and N(t) (Eq. 10).

7. Procedures III–VI were repeated until the thermal treatment
had finished or N(t) became zero.

The above series of procedures was repeated 100 times to
determine the variance, including variability and one type of
uncertainty, in bacterial behavior. The R statistics (Ver. 3.5.1
for Mac OS X) statistical software was used to carry out all
statistical analyses.

RESULTS AND DISCUSSION

Distribution of Weibullian Parameters
Derived From the Bootstrap
The spore survival kinetics under heating for each condition
and the Weibull fitted survival curve based on 1,000 bootstrap
replicates are shown together in Figure 4, in which the error
bars indicate the standard deviations (from three observations)
under the respective conditions. Based on the variation in the
estimated Weibullian model, each condition has 1,000 replicates.
The estimated Weibull model parameters (i.e., log10δ andp)
derived from the bootstrap were convergent, since all the R̂-
values of the parameters were equal to 1.0; they followed
empirical distributions (Figure 5), with both decreasing as
either the temperature increased, or the pH decreased. These
distributions come from the variations in combinations of
resampled observed values by the bootstrap. Therefore, it
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FIGURE 3 | Schematic of the Markov Chain Monte Carlo (MCMC) procedure. The proposed stochastic explanation describes bacteria death or continued survival
based on the pure death process in the branch of modeling biological populations.

reflects the fitting uncertainty in Weibullian parameters and
the thermotolerance variability of individual cells that arise
from observations. The variation in p values was larger than
that observed in log10δ. Under some conditions in which the
variation in p was particularly large, its distribution had two peaks
(Figure 5). These indicate that it is difficult to detect the true
one parameter from observed bacterial survival kinetics during
thermal inactivation.

The secondary model was used to describe the relationship
between the bootstrapped parameters and those for pH and
temperature (Figure 6). In the figure, the points, error bars, and
lines indicate the average values of the bootstrapped parameters,
the standard deviations of the bootstrapped parameters, and
the 1,000 replicates of the bootstrapped secondary model,
respectively. It is seen that the secondary model has confirmed
the results of previous studies (Mafart et al., 2002), in which

the temperature dependencies of the δ parameter were shown to
follow a conventional D-value form. The pH dependencies of δ

also follow a conventional D-value form. Although it has been
reported that p parameter does not show any temperature and/or
pH dependency in most cases (Van Boekel, 2002), the p parameter
values obtained in the present study show a temperature and pH
dependency (Figures 6C,D). Similar to the present study, there
are some reports that it was found that p decreased linearly as
the temperature rose before reaching a constant level, suggesting
that the results for p corresponded to a partially linear regression
(Campanella and Peleg, 2001; Gomez et al., 2005).

Apart from temperature/pH dependency of the parameters
(δand p), there is an interaction between the δ and p parameters,
because the shapes depend on the both of parameters (Peleg,
2006). The developed 2DMC model enables to take into account
the interaction of both the parameters, because it estimates
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FIGURE 4 | Survival kinetics of Bacillus simplex spores under different temperature conditions, (A) 80◦C, (B) 85◦C, and (C) 90◦C. The points, error bars, and curves
indicate, average value of observed survival ratio (three replicates), standard errors of observed survival ratio, and estimated Weibull model curves, respectively,
based on 1,000 bootstrap replicates.

the Weibull parameters using sets of secondary models of
the corresponding δ and p parameters to resampled datasets.
Comparing the fitted parameters’ interaction and the estimated
parameters’ interaction by the bootstrapped secondary model
sets, the bootstrapped secondary model sets explain linearly the
interaction between δ and p parameter as shown in the right
columns of Figure 5.

Comparing the variations in p-parameters and log10δ derived
from the bootstrapped parameters, the variations in the
estimated p-parameter derived from the secondary model
using bootstrapping were larger than those of log10δ, possibly
because they arose from small differences such as those
between repetitions (Figure 6). These results confirm the
difficulty to develop a secondary model of p from only one
parameter per condition.

Validation of Dynamic Stochastic Model
Using Second-Order Monte Carlo
Simulation
Simulations based on 1,000 repetitions of the secondary models
derived from the non-parametric bootstrap methods were used
to model the variation in bacterial reduction behavior, including
the variability and uncertainty in the fitting model estimation
(Figure 7). In the figure, the temperature profile and dynamical
kinetic model predictions based on prior research (Peleg and
Penchina, 2000; Campanella and Peleg, 2001) are shown as
red and blue lines, respectively, while the gray lines indicate
the results of 100 runs of simulated spore counts under non-
isothermal inactivation. It is seen that the reduction rate follows
the heating temperature, increasing and decreasing as the latter
increases and decreases, respectively. Moreover, the predicted
survival cell counts can describe the tendency of the observed
bacterial behavior (0.12 < RMSE < 0.55). However, there were
differences between observed and estimated values in some
conditions. As described below, the cause of these discrepancies
would be considered to be another factor that cannot be
expressed in the 2DMC model. At small bacteria counts, there is

a large variation in inactivation times until an arbitrary bacterial
count (Figure 7). The variability in the time needed to reduce the
surviving cell count to a specific level is increased in the range
below 2 log10 CFU. The kinetic prediction passed through the
center of the estimated range of survival spore count derived
from the stochastic model, it is suggested that kinetic models tend
to describe the average behavior of bacterial heterogeneity. The
points in the figure indicate the observed surviving spore counts
and are used to validate the 2DMC simulation model. Although
the observed values in the region below 2 log10 CFU are within
the 2DMC-estimated range, those above 2 log10 CFU are outside
of the estimated range.

The 2DMC developed in this study gives the distribution
derived from the bootstrap and reflects the stochastic process
describing bacterial reduction. In this manner, it describes both
the uncertainty in observed value and the variability in bacterial
lethality. Although most previous stochastic models describing
bacterial behavior were based on only variability (Corradini
et al., 2010; Aspridou and Koutsoumanis, 2015; Abe et al.,
2019; Koyama et al., 2019b) or uncertainty (Schaffner, 1994),
some researchers have advocated using models that integrate
variability and uncertainty estimation (Cassin et al., 1998; Nauta,
2000; Pouillot and Delignette-Muller, 2010; Abe et al., 2019).
In this study, the variations of parameters were described
with bootstrap while the randomness of dead cell counts were
described with MCMC. The variations of parameters can describe
the fitting uncertainty and the heterogeneity in individual cell
thermotolerance; the randomness of dead cell counts can describe
the true randomness in behaviors of bacteria population with
exactly the same properties.

Evaluation of the Validity of the
Second-Order Monte Carlo Simulation
To further assess the 2DMC approach, we compared it to
“only-bootstrap” and “only-MCMC” models, i.e., to a dynamic
kinetic model derived from 1,000 secondary model sets using the
bootstrap method and a dynamic stochastic model derived from
a secondary model without the application of bootstrapping,
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FIGURE 5 | Weibullian parameter distributions under each condition derived from 1,000 bootstrap replicates, and the relationship between the two bootstrapped
Weibullian parameters. The gray lines indicate the relationship between the two estimated parameters from bootstrapped secondary model sets.
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FIGURE 6 | Changes in log10δ and p as functions of heating temperature and pH (data points). (A) log10δ against temperature; (B) log10δagainst pH; (C) p against
temperature; and (D) p against pH. Error bars indicate standard deviation of the 1,000 estimated Weibullian parameter replicates; lines indicate secondary model
(A,B: Eq. 2; C,D: Eq. 3) derived from 1,000 bootstrap replicates.

respectively. Figure 7 shows the 99% confidence intervals
for the time required to obtain a specific decrease in the
number of surviving cells under a thermal condition (pH 5.4,
heating temperature 85◦C) derived from the only-bootstrap
(blue region), only-MCMC (red region), and 2DMC models
(gray region). We compared the three models in terms of their
confidence intervals. At surviving cell counts larger than 2 log10
CFU, the confidence intervals of the 2DMC model matched
those of the only-bootstrap model, whereas those of the only-
MCMC model were much smaller. At surviving cell counts of
less than 2 log10 CFU, the confidence intervals of the 2DMC
were larger than those of the other models. Furthermore, the
confidence intervals of the 2DMC model corresponded to the
variations in the observed values (Figure 8). These results further
validate the use of a 2DMC model that describes both uncertainty
and variability and suggest that a stochastic model combining

multiple Monte Carlo simulations, such as the one used in
this study, can accurately estimate cell reduction behavior that
includes both variability and uncertainty.

Potential of Adaptation for Other
Bacterial Behavior Description
The 2DMC simulation model proposed in the present study
(Figure 7) is based on the previously developed Weibullian
dynamic models. One of the fundamental formulations used
to develop the 2DMC, Eq. 6, is based on the previous kinetic
Weibullian dynamic studies (Campanella and Peleg, 2001;
Peleg and Normand, 2004; Corradini and Peleg, 2009). The
applicability of the Weibullian dynamic kinetic model to other
types of bacteria has been demonstrated in the previous studies,
with the results of these studies confirming our description of
bacterial reduction behavior under non-isothermal heating by
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FIGURE 7 | Predictions of second-order Monte Carlo simulation (gray) and dynamic kinetic model (blue) and changes in 10 replicates of observed survival Bacillus
simplex spore counts (points) under each temperature profile (red curve) of slow come-up heating in pH 6.5 (A), bumpy heating in pH 6.3 (B), and waving in pH 6.4
(C). ×represents no colonies were detected.

FIGURE 8 | Comparison of 99% confidence intervals derived from
only-bootstrap model (blue region), only-MCMC model (red region), and
2DMC models (gray region) during heating at 85◦C in pH-adjusted TSB at pH
5.4. The data points indicate two or three replicates of observed values. The
only-bootstrap model is derived from the dynamic kinetic modeling of 1,000
secondary-model sets using the bootstrap method, while the only-MCMC
model is derived from a dynamic stochastic secondary model constructed
without application of the bootstrap model.

an adaptation of conventional kinetic models. In addition to the
conventional Weibullian dynamic models mentioned above, the
proposed model enables to assess the variation in bacterial count
during an actual thermal process. This suggests the possibility
of developing a 2DMC model based on a database such as
ComBase (Baranyi and Tamplin, 2004) for not only average
behaviors but also variabilities and uncertainties of vegetative
cells’ behaviors as well as spores, although the results would
need to be validated. Generalizing the proposed model, the
model can also be used to calculate the bacterial or sporular

death behaviors including variation in real-time under existing
or planned industrial thermal processes.

There is a possibility of application of the Markov property for
other dynamic model than thermal inactivation. The proposed
2DMC model performs MC simulation by applying the Markov
property, i.e., by using only the current state to predict the
next state, with any other information about the past states
disregarded (Durrett, 2011). This simulation approach, referred
to as MCMC, is generally used for the simulation of stochastic
processes with probability densities known up to a constant of
proportionality (Geyer, 1992). In this paper, the Markov property
is introduced in Eq. 10. Unlike the conventional stochastic
Weibullian dynamic model (Corradini et al., 2010), which does
not consider the influence of the randomness of instantaneous
survival ratio, the proposed stochastic dynamic model takes
both S(t) and the instantaneous count of surviving bacteria
N(t) into account. From Eq. 5, as adapted from previous work
(Mattick et al., 2001; Peleg et al., 2005), the randomness of the
instantaneous survival ratio depends on the instantaneous values
of S(t). Considering the dependency to instantaneous S(t), it is
important to take an idea of the Markov property into account
for not only in Weibull models but in any type of reduction
model. In addition to reduction behavior, formulations based on
the Markov property such as Eq. 10 can describe growth behavior
because growth behaviors depend on the instantaneous bacterial
counts. Thus, by applying MCMC it is possible to create multiple
stochastic prediction models even under dynamic environments.

Limitations of the Developed Modeling
Procedure
The proposed dynamic model, however, might have some
limitations in its ability to predict variations in the reduction
behavior of arbitrary bacterial types. The proposed model
ignores several factors, including the interactive influence
between bacteria and thermal unevenness. As cell (and in
this particular case spore) interactions are not taken into
account in the developed modeling approach, it is possible
that the proposed model cannot be used to predict bacterial
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population dynamics involving such interactions. As Eq. 10
describes change over an infinitesimal interval under any
type of bacterial reduction model, it can be applied via
Eq. 10 to express average bacterial behavior through a
kinetic model. In this study, very small (100 µL) bacterial
suspensions were tested to avoid uneven temperature
conditions across the samples. Under conditions of actual
thermal inactivation in food or beverages, however,
there will be significant temperature unevenness as a
result of heating, which should therefore be taken into
account through the use of a temperature-predictive
physical model established via the modeling of heat
transfer with a fine mesh. By doing so, the problem of
kinetic modeling of the interactive dependence among
bacteria can be solved.

Another critical limitation with the proposed model is
that it cannot completely express uncertainty and variability.
The proposed 2DMC method attempts to use the bootstrap
method to express uncertainty in the Weibull model parameter
estimations, although it does not account for uncertainty related
to experimental procedures (e.g., plate counting), model selection
and other sources. The same applies for variability sources not
explicitly taken into account in the present modeling approach
such as intra-species (i.e., strain-to-strain) variability, other
than true randomness and thermotolerance variability within
a bacterial strain. The differences seen in Figure 7 between
the estimated and observed surviving cell counts in the range
above 2 log10 CFU demonstrate its failure to obtain accurate
parameter values. This discrepancy arises from various factors
in the creation of the primary and secondary models, and
the development of a more robust dynamic model requires
the selection of a more appropriate combination of these
models. The proposed model is based on a conventional kinetic
dynamic model, and the use of inappropriate secondary or
primary models can therefore result in inappropriate dynamic
predictions. In particular, the bootstrap process through which
the model estimates the parameter distribution involves the
selection of a most suitable value for each iteration via the
least square method. However, the standard error of fitting
using the least squares method was not considered in this
study. In future applications of the proposed method, this could
be addressed by resampling the prediction parameters based
on a normal distribution with a standard error equivalent to
that of the fitting to widen the parameter distribution and
obtain a more accurate parameter value. In addition, Bayesian
analysis might be useful in describing the uncertainties in
the primary parameters. Given that the observed values used
for validation will themselves have inherent and unavoidable
uncertainties, full validation of the stochastic process model will
require a method that can completely account for uncertainty in
observed values.

CONCLUSION AND FUTURE
PERSPECTIVES

If the problems described above can be overcome, it would
be possible to model the heterogeneity of bacterial behavior
throughout the entire manufacturing process. A simulation
model such as the one described in this study can be used to
obtain the survival probability of bacteria populations and a
distribution of surviving cell counts (Abe et al., 2019), which
would aid in the risk assessment of food processing. Real food
manufacturing processes inevitably have many variabilities and
uncertainties. Describing all the variabilities and uncertainties
using 2DMC or even 3DMC or higher-order simulations
to obtain better-detailed assessments of heterogeneities in
bacterial behavior will enhance the bacterial food safety in
the manufacturing processes. Such models would also make
it possible to determine the inactivation conditions of safety-
guaranteed foods while better maintaining original food quality.

The results of this study demonstrate the potential of
2DMC simulation to describe bacterial inactivation behavior
during non-isothermal inactivation with variability in individual
cell heterogeneity and parameter uncertainty both taken into
account. Comparison of the results of the 2DMC approach
with models looking only at uncertainty or variability further
revealed the importance of using a combined model. The 2DMC
simulation model developed in this study should be useful in
quantitative microbial risk assessment, aiding in the design of
risk-based thermal processes for the efficient inactivation of
bacterial spores, and ensuring food safety and quality with
minimal negative impact on the sensorial attributes of foods.
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