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Abstract: Mesenchymal stem cells (MSCs) intrinsically possess unique features that not

only help in their migration towards the tumor-rich environment but they also secrete

versatile types of secretomes to induce nerve regeneration and analgesic effects at inflam-

matory sites. As a matter of course, engineering MSCs to enhance their intrinsic abilities is

growing in interest in the oncology and regenerative field. However, the concern of possible

tumorigenesis of genetically modified MSCs prompted the development of non-viral trans-

fected MSCs armed with nanotechnology for more effective cancer and regenerative treat-

ment. Despite the fact that a large number of successful studies have expanded our current

knowledge in tumor-specific targeting, targeting damaged brain site remains enigmatic due to

the presence of a blood–brain barrier (BBB). A BBB is a barrier that separates blood from

brain, but MSCs with intrinsic features of transmigration across the BBB can efficiently

deliver desired drugs to target sites. Importantly, MSCs, when mediated by nanoparticles, can

further enhance tumor tropism and can regenerate the damaged neurons in the central

nervous system through the promotion of axon growth. This review highlights the homing

and nerve regenerative abilities of MSCs in order to provide a better understanding of

potential cell therapeutic applications of non-genetically engineered MSCs with the aid of

nanotechnology.

Keywords: glioblastoma multiforme, tumor inhibition, mesenchymal stem cell, nanocarrier,

nerve regeneration, anti-inflammation

Introduction
The heterogeneity and complexity of tumors make cancer treatment as an ongoing

challenge, but the tumor mortality rate has been relatively decreased in recent years

due to a better understanding of tumor biology and advance in technology.1 Despite

the huge progress in cancer treatment, glioblastoma multiforme (GBM), a lethal

brain tumor, is still associated with poor prognosis and a median life expectancy of

less than fifteen months.2,3 Unfortunately, current therapies are not effective against

GBM due to the presence of a brain–blood barrier (BBB) and endothelial mem-

branes with high transendothelial electrical resistance located within brain capil-

laries that tightly regulate paracellular and transcellular perviousness of molecules

in the systemic circulation.4,5

Since conventional brain tumor chemotherapy exhibits poor tumor brain–blood

barrier penetrability, developing new chemotherapies with improved BBB penetr-

ability is important.6 For example, despite improved therapeutic nanocarrier
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platform enhances antitumor efficacy, drug delivery to

brain is hindered by the poor perviousness through

BBB.7 In this aspect, stem cell therapy gains great atten-

tion to overcome BBB permeability since MSCs can not

only cross the BBB but also migrate to target region after

transmigrating the BBB for drug delivery.

Mesenchymal stem cells (MSCs) are multipotent cells

that can self-renew and differentiate into multiple cell types.8

Due to their self-renewal and multilineage differential poten-

tial, MSCs are widely used for tissue regeneration and

immune disorders.9 In addition, significant progress in the

understanding of MSC biology has opened up their potential

for therapeutic use in brain tumor.8,10 The BBB-penetrable

ability of MSCs has been explored in order to overcome the

barricade of transporting drugs to brain tumor sites, and the

multi-differentiating capacity of MSCs has been proposed as

a potential solution for regenerative therapy.11–14

Transmigration of MSCs across the BBB is facilitated

under both physiological and pathophysiological condition.-
15,16 In addition, the regenerative potential of MSCs is asso-

ciated with nerve regeneration and secrete factors that can

reduce inflammation.17 As such, MSCs have both abilities on

tumor tropism and anti-inflammatory property. In clinical

aspect, MSCs are also relatively easy to isolate and transplant

back into the patients after their propagation.18,19 Due to their

unique abilities and ease of manipulation, the ability of

MSCs can be further enhanced therapeutic efficiencies

through genetic engineering, but the potential tumorigenesis

induced by viral vectors is a major concern over their clinical

application despite the promising results in antitumor treat-

ment using genetically modified stem cells.20

In this aspect, non-genetically engineered MSCs assisted

by nanoparticles have garnered attention due to their less

immunotoxicity compared to that of genetically modified

MSCs.21,22,23,24,25 Concurrently, nanotechnology has made

significant contributions to the field of oncology over the past

decades. Various nanocarriers including liposomes, inorganic

nanocarriers, and polymeric micelles hold huge nanotherapeu-

tic potential, and these types of nanocarriers have shown

promise in clinical practice with several nanotherapeutic plat-

forms such as chemotherapy, hyperthermia, gene therapy, and

radiotherapy already being used in clinical practice.26–30 In

nanoparticles-assisted stem cell therapy, the homing and apop-

tosis-inducing properties of MSCs are enhanced using adju-

vant drug-loaded and membrane-conjugated nanoparticles.31–

33 This reviewwill address on the clinical application ofMSCs

advancedwith nanotechnology, specifically, inGBMtreatment

and post nerve regenerative therapy.

General concept of BBB
The BBB is a continuous endothelial membrane, placed in

brain microvessels, that has tight junctions and maintains

its barrier properties by constantly interacting with astro-

cytes and pericytes (Figure 1).34 Both astrocytes and peri-

cytes play vital roles in maintaining the barrier properties

of the BBB by providing cellular connections and struc-

tural integrity.35,36 The BBB is essential not only for

sustaining homeostasis of brain microenvironment but

also for protecting the neurons from toxins.37 The BBB

restricts the entry of molecules with a molecular weight

greater than 400 Daltons and molecules with hydrophili-

city by containing more than 8 hydrogen bonds, whereas

certain molecules including molecules with lipophilicity,

glucose, oxygen, and carbon dioxide can transverse the

BBB mainly via passive diffusion.34,38 Carrier-mediated

transport and receptor-mediated transport also support the

uptake of nutrients, but the BBB can also efflux unwanted

molecules from the brain.39 The BBB under intact condi-

tions, therefore, prevents the efficient delivery of drugs

thereby reducing the drug efficiency. Conversely, altera-

tion of the BBB can worsen neuro-disorders by allowing

the entry of neurotoxins, xenobiotics, and pathogens that

can induce neuronal damages.40 This phenomenon of the

BBB rupture is associated with aberrant vascularization in

GBM (Figure 1).41 Since tumor angiogenesis is inevitable

and occurs in response to the oxygen and nutrient require-

ments of the tumor, the structure of BBB is compromised

(Figure 1).41,42 The dramatic increase in the number of

blood vessels at the tumor microenvironment increases the

nanoparticle distribution in tumor tissue more than normal

tissue via the enhanced permeability and retention effect.43

Brain tumor (GBM)
GBM is the most common and a malignant form of primary

brain tumor in adults. The morbidity and mortality of GBM

remain high despite the technological advances in cancer

treatment. Prognosis of GBM is poor, with median survival

rates of approximately fifteen months.44 Conventional treat-

ment for GBM is surgical resection followed by radiotherapy

and chemotherapy, but tumor recurrence after surgical

removal and therapeutic resistance to radiotherapies and

chemotherapies results in the poor prognosis of

GBM.45,46,47 Therefore, development of a new strategy

with improved tumor specificity and reduced normal cell

toxicity is required to overcome tumor vitality and for max-

imizing drug accumulation at tumor sites.48
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Brain tumor-induced BBB disruption
The function and structure of BBB can be disrupted hetero-

geneously under pathophysiological conditions, and the dis-

ruption of BBB can be observed using gadolinium-based

MRI contrast agents and immunohistochemistry.49,50,51

Heterogeneous alteration of the BBB is initiated by cyto-

kines released from glioma cells and aberrant angiogenesis

(Figure 1).52,53 In GBM, a large number of glioma cells

interact with blood vessels and infiltrate the healthy brain

cells. The gradual progression of random neovasculariza-

tion and growth of glioma cells breakdown the tight junc-

tions of the BBB that can lead the formation of a leaky and

heterogeneous nature of BBB, known as the blood–brain

tumor barrier (BBTB) (Figure 1).41,53 Specifically, the dif-

ference in drug permeability is observed in tumor-dense

areas and peripheral areas due to distinct tumor microvessel

populations and spatial structures of the capillary pores

presented in GBM.41 Interestingly, uneven permeability

induced by abnormal microvessel population has higher

gold nanoparticle distributions of 10 nm, 50 nm, and 100

nm diameter in the tumor brain tissue than in normal brain

tissue, and 10 nm gold nanoparticles showed the highest

accumulation in the tumor brain tissue compared to bigger

sized gold nanoparticles. This phenomenon may contribute

to the increased drug delivery when nanodrugs are exposed

to leaky structure of the BBB.43 Similarly, the increased

permeability of the BBTB compared to that of the intact

BBB may potentially result in higher accumulation of

migrated MSCs in tumor cells in pathophysiological condi-

tion without direct transmigration of BBB.

Conventional radio-, chemo-, and immune

cell therapies for treating GBM
The conventional therapy for patients with GBM requires

surgical resection of tumor sites followed by chemotherapy

or radiotherapy. However, minimal progress in prognosis has

been observed over the past years due to the infiltration of

tumor cells inside healthy brain cells.54 This heterogeneous

nature of tumor cells results in the incomplete removal of

tumor cells, and, thus, insufficient tumor resection area greatly

increases the probability of tumor recurrence, resulting in a

corresponding decline in survival rate.55,56 Post-operative che-

motherapy or radiotherapy is performed in order to eradicate

residual tumor from surgery and increase the survival rate of

patients, but chemo- and radioresistance of tumor cells remains

a significant hurdle. Conventional radiotherapy with high-

energy X-ray induces apoptosis in tumor cells by damaging

DNA strands, but the presence of EGFRvIII in tumor cells

upregulates the DNA repair system (Figure 2).57 Similar to

radiotherapy, chemotherapy uses temozolomide, which is an

alkylating agent that induces apoptosis bymethylating purines,

but resisted by O6-methylguanine-DNA methyltransferase

(MGMT), an arbitrator of DNA repair.58 Higher expression

Figure 1 The structure of blood–brain barrier (BBB) and blood–brain tumor barrier (BBTB). The blood vessels with the intact BBB are enclosed by endothelial cells with

tight junction while the tight junction between endothelial cells is disrupted by infiltration of tumor cells in the BBTB.
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ofMGMT in tumor cells results in low temozolomide-induced

anticancer efficacy.59 Furthermore, increased expression of

ATP-binding cassette transporters in tumor cells contributes

to the chemoresistance of tumor cells due to the efflux of

chemotherapeutic agents from tumor cells with multidrug

resistance.39,60

As of today, aside from radio- and chemotherapy, chi-

meric antigen receptor T cell (CAR T-cell) therapy holds

great promise in brain tumor treatment.61 CART-cell therapy

is an immunotherapy that genetically engineers autologous T

cells to express appropriated CAR for the desired antigen.62

The primary method of CAR T cells delivery, however, is

limited to local administration to circumvent the BBB, a

barrier that blocks most of the innate T cells from entering

the brain.62 As such, the efficiency of antitumor therapies

remains a challenge due to the factors discussed earlier.

Homing ofmesenchymal stem cells to
cancer cells is acknowledged, but
tumor suppression is still controversial
MSCs are non-hematopoietic stem cells with the ability of

self-renewal and multiple-lineage differentiation. MSCs

can also recruit at the tumor or inflammatory site for tissue

regeneration upon receiving endocrinal signals, such as

SDF-1, TNF-α, and interleukins from injured tissues.63–65

Interestingly, favorability of tumor tropism varies from

one MSC lineage to another, such that, for instance,

tumor tropism of bone marrow MSCs is the most favor-

able for lung tumors (A549 and H1975 cells).24 Despite

their different favorability of tumor tropism, MSCs can

migrate to multiple types of tumors, including gliomas,

breast, colon, ovarian, lung, and metastatic tumors.63–67

Along with inherent tumor tropism, MSCs are relatively

easy to isolate, culture, expand, and differentiate in vitro,

which makes MSCs as excellent candidates for cell

therapy.68,69

MSC-mediated suppression of tumor growth was

observed in various cancer models such as melanoma (skin

cancer), hepatoma (liver tumor), and breast cancer.70–72

MSC-mediated tumor inhibition is induced by suppressing

angiogenesis, regulating signaling pathways, and promoting

apoptosis in the tumor microenvironments.73–76 However,

the potential clinical application of MSCs is still controver-

sial. Although the unique features of MSCs such as tumor-

specific targeting and easy manipulation make MSCs a

potential candidate for tumor targeting agent,77 the repro-

duction of the same MSC phenotypes, which is affected by

Figure 2 The radiotherapy resistance mechanism in glioma cell. After the break of DNA, Ku70/Ku80 heterodimers bind to damaged ends of DNA and triggers the

recruitment of overexpressed DNA-PKcs from EGFRvIII to the damaged DNA ends. Then, XRCC4, DNA ligase IV and XLF subsequently bind to the damaged ends of DNA

for the ligation.
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various factors including cell density, culture conditions,

and passages, must be addressed before future clinical

application.78,79 Along with the optimization ofMSC repro-

ducibility, the tumor progression induced by MSCs is also a

hurdle in the clinical application of MSCs. For example,

MSCs are known to be associated with a higher degree of

metastasis development.80–82 When MSCs are co-injected

with human breast cancer cells such as MCF-7, MDA MB-

231, and MDA MB-435, enhanced tumor growth and lung

metastases are observed.83 Production of CCL5 fromMSCs

that are stimulated by breast tumor cells promotes breast

cancer metastasis. Furthermore, TGF-β1 secreted by MSCs

suppresses leukocytes proliferation, contributing to the

tumor progression.82 Due to the integrated tumor suppres-

sion and progression effects of MSCs, numerous factors

including the types of tumor, heterogeneity, tumor micro-

environment, and MSC source need to be thoroughly con-

sidered before clinical applications.

Brain tumor tropism by MSCs
The migration of MSCs to multiple types of tumors, such

as gliomas, colon, ovarian, lung, and breast tumors may

infer that tumor tropism of MSCs is independent of type of

the tumor sites.84,85 Regardless of tumor types, endocrinal

signals from tumor microenvironment influence the migra-

tion of MSCs to tumor sites, and among these signals,

CXCR4/SDF-1 is the main signal that regulates the migra-

tion of MSCs.86–88

Internalizing magnetic iron oxide nanoparticles into

MSCs can further enhance the tumor tropism of MSCs.32

Previous study showed that the migration process is heavily

depended on the interaction between SDF-1α and CXCR4,

and the elevation of CXCR4 levels in MSCs was observed

after internalization of magnetic iron oxide nanoparticles and

any gene modification.89 The increase in CXCR4 levels

resulted in improved migration in both traumatic brain injury

and glioblastoma models (Figure 3A).

BBB-penetration by MSCs under

physiological condition
Despite technological advances in molecular biology and

related fields, the molecular mechanism of tumor tropism

by MSCs is still poorly understood.90 Recent findings

revealed that multiple factors such as chemokines, cyto-

kines, and their receptors (mainly SDF-1/CXCR4 interac-

tion) are involved in the migration of MSCs in vitro.16

Furthermore, expression of the α-4/β-1 heterodimer, also

known as very late antigen-4 (VLA-4), on the cell surface

facilitates cell to cell interaction with vascular cell adhe-

sion molecule-1 (VCAM-1) which help in the anchoring

MSCs to endothelial cells (Figure 3B).91 Similar to the

VLA-4 and VCAM-1 interaction, CD44 expressed on the

surface of MSCs also mediate the cell to cell interaction

with hyaluronic acid receptor in order to strengthen the

MSCs anchorage.92 As MSCs transmigrate across BBB,

matrix metalloproteinases-2 secreted by MSCs regulates

the homing ability of MSCs by degrading the extracellular

matrix (Figure 3B).93

Importantly, the proposed mechanism of MSC migration

across the BBB is relatively similar to that of leukocytes –

multistep-targeted cascades interacting with endothelial cells

(Figure 3B). The leukocyte is a type of blood cell that plays a

vital role in the immune system. The presence of BBB also

restricts the migration of leukocytes into brain cells, but

various studies have reported that during inflammation, leu-

kocytes can traverse the BBB.94 The mechanism underlying

the transmigration of leukocytes is a series of adhesion and

migration process. Leukocytes interact with endothelium

through intercellular adhesion molecule-1 and VCAM-1-

mediated interactions.95 Leukocytes then firmly anchor on

the surface of the endothelium. Subsequently, leukocytes

migrate laterally over the luminal surface.91 Then, leukocytes

utilize the cytoskeletal protrusions to transmigrate across the

BBB via transcellular and paracellular migration.96

Molecules expressed by MSCs, including chemokine recep-

tors and cell adhesion molecules, resemble those expressed

by leukocytes. MSCs, in a mechanism similar to leukocytes,

associate with endothelial cells and transmigrate via paracel-

lular and transcellular processes. However, unlike leuko-

cytes, MSCs do not laterally migrate over the luminal

surface.91 Rather, MSCs form blebs, a cell surface protrusion

with diameter of 1–5 μm, and interact with endothelial cells

to trigger transmigration.97

Roles of MSCs in tumor inhibition
Cancer apoptotic induction by MSCs
Although some studies discussed tumor promotion induced

by MSCs, MSCs can promote apoptosis of tumor cells by

regulating apoptotic signaling pathways. The inhibitory

effects of murine-derived MSCs on hepatoma H22 (murine

hepatic carcinoma cells) and insulinoma INS-1 (murine

pancreatic carcinoma cells) cell lines were heavily influ-

enced by the upregulation of p21, which is a downregulator

of cell cycle and apoptosis-associated caspase-3 pathway in
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a direct co-culture condition.98 This phenomenon further

suggests the tumor suppressive efficacy of MSCs by cancer

apoptosis stimulation through G0/G1 phase arrest regardless

of host immunosuppression.74 Factors released from MSCs

induce apoptosis in tumor cells through triggering various

apoptosis signaling pathways.70,99,100 Similar to the direct

co-culture condition, the MSC conditioned media exhibits

inhibitory effects on melanoma cell growth via G0/G1 phase

arrest and caspase-3/7 pathway activation.70 Consistent

with these results, hUCBSC (human umbilical cord blood

mesenchymal stem cells) downregulates the X-linked inhi-

bitor of apoptosis protein (XIAP), and, consequently,

induces apoptosis in glioma cells through the activation of

caspase-3/9 pathways.99 Conditioned MSC media alone

also can downregulate XIAP and survivin genes, which in

turn, results in the upregulation of caspase-3/9 genes in

glioma cell lines.100

Although MSCs alone can induce apoptosis in tumor

cells by regulating signaling pathways, apoptotic induction

of MSCs can be improved by triggering the overexpres-

sion of tumor necrosis factor related apoptosis-inducing

ligand (TRAIL) in MSCs through the internalization of

amino group-end poly (β-amino esters) based

nanoparticles.101 Non-virally overexpressed TRAIL on

Figure 3 The tumor tropism of mesenchymal stem cells (MSCs). (A) Schematic illustration of tumor tropism of CXCR4-overexpressed MSCs (B) Homing mechanism of

MSCs to tumor sites.
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the surface of MSCs interacts with DR4 and DR5 recep-

tors and induces apoptosis by activating the caspase-8

pathway in glioblastoma-xenograft models and sarcoma

models.101,102

Inhibition of cancer angiogenesis by MSCs
MSCs can not only induce apoptosis of tumor cells but

also inhibit angiogenesis through the interaction with

endothelial cells to stop nutrient supply of tumor cells. A

study discussed that high dosages of MSCs inhibit the

development of vasculature by producing reactive oxygen

species (ROS), whereas low dosages of MSCs can pro-

mote tumor angiogenesis by secreting proangiogenic fac-

tors and differentiating into pericytes.100 Exposing

endothelial cells (EC) to high concentration of MSCs

prompts the formation of connexin-43-containing gap

junction channels.103 MSCs-EC gap junctional communi-

cation induces the apoptosis of EC, leading to capillary

degeneration.104 Another study details the dysfunction of

vascularization and reduction in tumor size in GBM tumor

xenograft models after systemic injection of MSCs.105

MSCs-mediated downregulation of proangiogenic factors

is the mechanism underlying the suppression of vascular-

ization in glioma cells. MSCs, when co-cultured with

glioma cells, release antiangiogenic factors that downre-

gulate levels of PDGF-BB and IL-1β, which result in the

reduction of microvessel density (Figure 4A–C).106

Antitumor efficacy of oncolytic virus-

loaded MSCs
The inherent nature of MSCs to migrate to tumor sites

prompted the development of nanodrug-assisted stem cell

therapy. MSCs can not only migrate to tumor sites but also

infiltrate into the heterogeneous structure of tumor cells.107,108

Thus, utilizing MSCs to deliver chemotherapeutic drugs and

vectors into tumor microenvironment may enhance antitumor

therapy. Various studies have investigated the potential clinical

use of nanocarriers.109–113

Internalizing oncolytic virus to MSCs has been widely

investigated as a method for safe delivery to target sites.

Oncolytic viruses are genetically modified viruses that selec-

tively replicate within tumor cells.114 Viral infections by

oncolytic virus to cancer cells induce lysis of tumor cells in

situ and release viral particles into the neighboring tumor

cells, those resulting in more viral infections. Similar to

infectious disease, new candidates of tumor cells will subse-

quently spread viruses throughout their surroundings and

completely eradicate the entire tumor after countless rounds

of infections.115 However, the major hurdle behind oncolytic

virus treatment is limited in cell delivery system.116 Although

intratumoral injection is the primary method for delivering

oncolytic viruses, a considerable amount is lost due to back-

flow of the solution during intratumorally injected.

Furthermore, the intravenous injection of oncolytic virus is

not preferred since the immune system hinders the delivery

of oncolytic virus to target sites.117 Thus, most of the onco-

lytic virus systematically administered is either removed by

macrophage phagocytosis or stored in the spleen and liver by

mononuclear phagocytes. Therefore, internalization of onco-

lytic viruses into MSCs only allows for intravenous injection

and safe migration toward tumor cells (Figure 5).118 Due to

the rising interests in the internalization of oncolytic virus,

various studies have explored the efficacies of oncolytic

virus-loaded MSCs. 118,119 With regards to brain tumor,

oncolytic virus-loaded MSCs showed antitumor efficacy in

U87MG xenograft models.118 Similar to internalizing onco-

lytic virus into MSCs, loading or conjugating nanoparticles

to MSCs can help in the accumulation of nanoparticles at

tumor sites and will be discussed in the next section.

Antitumor efficacy of non-genetically

engineered MSCs conjugated with

nanodrug
Genetic alternations of MSCs were extensively investigated

for their potential therapeutic effects.120–122 For instance,

TRAIL-secreting MSCs can effectively inhibit brain tumor

by directly binding to the TRAIL-death receptor (DR4 and

DR5) on the membrane of tumor cells.123,124 Genetically

engineered MSCs can not only induce apoptotic signals of

brain tumor cells but also can secrete pro-inflammatory

cytokines (IL-18 and IL-12) to promote cytotoxic T cell

activity.120,125 MSCs can also transduce with prodrugs or

enzymes as an alternative method for inducing cytokines

secreted from MSCs. One of the most popular enzymes or

prodrugs is herpes simplex virus type I thymidine kinase

(HSV-TK). MSCs-expressing HSV-TK can induce apopto-

sis of brain tumor cells through the activation of the caspase

pathway.126 Despite their promising results in brain tumor

inhibition, potential tumorigenesis of genetically modified

MSCs is a major hurdle to clinical application, so antitumor

efficacy without genetic alternation draws attention as an

alternative strategy.20

Despite the advances in nanoparticle delivery system,

using nanoparticles in animal models has been challenging
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due to their inefficient accumulation in tumor sites. One of

the most promising approaches in resolving this problem is

to use MSCs as carriers.113,127 Internalization or

conjugation of therapeutics-loaded nanoparticles to MSCs

can increase therapeutic efficacy by actively delivering

them to the tumor microenvironment.22,32,113 For example,

Figure 5 The mechanism of oncolytic virus-loaded mesenchymal stem cell therapy. Replication of oncolytic virus in healthy cells is inhibited and is induced in tumor cells.

The rapid replication of oncolytic virus in tumor cells triggers the apoptosis of tumor cells and infects neighboring tumor cells.

Figure 4 Tumor anti-angiogenesis induced by mesenchymal stem cell (MSC). (A) The gross image and histological analysis of Gil36 and Gil36/MSC co-cultured tumor

section (B) Scheme of anti-angiogenesis of MSC when co-cultured with Gli36 cell (C) Schematic figure of capillary degeneration induced by connexin-43 gap junctional

channel between MSC and endothelial cell. Reproduced from Ho IA, Toh HC, Ng WH, et al. Human bone marrow-derived mesenchymal stem cells suppress human glioma

growth through inhibition of angiogenesis. Stem Cells. 2013;31(1):146–155, with permission from John Wiley and Sons.106
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promising antitumor efficacy was achieved when a brain

tumor is treated with paclitaxel-poly (lactic-co-glycolic

acid) nanoparticle-loaded MSCs due to the sustained

release of the encapsulated paclitaxel to the tumor

microenvironment.33 Another study demonstrated that

silica nanorattle-doxorubicin conjugated MSC when intra-

tumorally administered exhibited delivery of doxorubicin

with greater tumor-dispersed distribution and extended the

retention time than that of silica nanorattle-doxorubicin in

U251 xenograft model but reduced migration ability was

observed on MSC.22 However, nanodrug-conjugated

MSCs exhibited strong lung tumor tropism compared to

that of MSCs and succeeded in deep lung tumor model

without ruining migration ability (Figure 6A–C).24 The

tumor homing ability of MSCs is accompanied by conju-

gated CDs, surface proteins, since conjugation of specific

CD to MSCs greatly reduced homing ability such as CD73

while negligible difference in homing ability was observed

when conjugation of CD90 to MSCs.24 Thus, types of CD

that conjugated to MSCs need to be selected carefully to

sustain homing ability to cancer cells.

The concept of nanoparticles-loaded MSCs includes pH-

sensitive gold nanoparticles internalized by MSCs for the

treatment of photothermal therapy.112 Internalizing photo-

therapeutic agents into MSCs did not reduce tumor tropism

feature of MSCs and photothermal conversion efficiency.

Despite studies exploring brain homing effects and anti-

tumor efficacies ofMSCs, antitumor efficacy of nanoparticles-

loaded MSCs on brain tumor model, unfortunately, has not

been studied, but only on brain tumor xenograft model.128–130

This platformmay establish the potential clinical use of MSCs

as a nanodrug carrier by observing enhanced antitumor effi-

ciencies of nanodrug-loaded MSCs. The recent development

of nanomedicine has led to the emergence of a new drug

delivery system, which enables to load versatile types of

therapeutic agents onto appropriable nanocarriers.

Correlation of central nerve
regeneration and inflammation
reduction by MSCs
Axonal damage is commonly observed in the central ner-

vous system injury.131 Axon degeneration is stimulated by

several factors: energy depletion for neuron, calcium-

mediated apoptosis, myelin-associated inhibitors.131

However, unlike regeneration of the peripheral nervous

system, regeneration of the central nervous system is

inhibited by two main sources: glial scar and myelin. In

the central nervous system, glial cells are essential for

immune function in responses to inflammation,132 and

when damaged, glial scars are formed. Glial scars consist

of reactive astrocytes, extracellular matrix (ECM) mole-

cules, chondroitin sulfate proteoglycans, and macrophages

and are responsible for protecting damaged neurons and

reconstructing the blood–brain barrier.133 Despite its ben-

efits, the glial scar prevents axon growth by creating a

mechanical barrier and inhibiting molecules.134 Similar to

glial scar, myelin also inhibits axon regeneration by pro-

ducing myelin-associated inhibitors such as Nogo and

MAG (myelin-associated glycoprotein).135

Interestingly, recent studies found that secretomes such as

growth factors, cytokines, and antioxidants released from

MSCs recruited at inflammatory sites can not only provide

analgesic effects in neuropathic models but also promote

central nerve regeneration of damaged nerve cells.136

Nevertheless, caution is required in activating M2

macrophage for nerve regenerative and anti-inflammatory

effect after the tumor eradication since activation of M2

macrophage can not only trigger nerve regeneration but

also stimulate tumor growth through the release of IL-4

and IL-13.137 Phenotypes of M2 macrophage can be sub-

divided into M2a, M2b, M2c, and M2d phenotypes, and

unlike other phenotypes, M2d phenotype is classified as

tumor-associated macrophage (TAM).138 Importantly, all

these phenotypes participate in pro-tumorigenesis.139 All

phenotypes of M2 macrophage except M2d phenotype

promote tumorigenesis by secreting anti-inflammatory

cytokines including IL-10 and IL-1RA to inhibit cytotoxic

T cell activity.140,141 Similar to other phenotypes of M2

macrophage, M2d phenotype, TAM, enhances tumor

growth by promoting the activity of regulatory T cells

and inhibiting dendritic cell maturation through the secre-

tion of IL-10 and TGF-β1. TAMs also express PD-L1 on

the surface to further suppress immune responses of T

cells.142 Understanding of M2 polarization and tumor

microenvironment is essential when developing MSCs

secretomes for clinical translation.

Anti-inflammation by MSCs can promote

regeneration of central nerve system
Although applications of MSCs were originally focused

on the regeneration of damaged tissues, recent studies

have discovered the analgesic effects accompanied by

inflammation response from MSCs.17,136 Among various

methods in suppressing inflammatory sites, MSCs
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mainly regulate the inflammatory process by releasing

anti-inflammatory cytokines to trigger appropriate

macrophage polarization.143 In this aspect, macrophages

are an essential component in immune responses and

their fates controlled by MSCs. Specifically, classically

activated (M1) macrophage is widely known as a pro-

inflammatory macrophage that can inhibit tumor cells

and pathogens while alternatively activated (M2) macro-

phage is an anti-inflammatory macrophage which is

associated with tumor growth as well as tissue repair.144

Due to their plasticity in monocyte-macrophage polar-

ization, macrophages can switch between activation

states in response to pathological conditions, and when

monocytes for M2 macrophage differentiation are pro-

moted, the process of monocyte polarization to M1

macrophage is inhibited.145,146 Importantly, MSCs can

control monocytes polarization into either M1 macro-

phages or M2 macrophages by secreting appropriate

cytokines in response to pathophysiological condition

(Figure 7).

In particular, MSCs can induce anti-inflammatory effects

by programing monocytes to polarize into M2 macrophage

by releasing cytokines.147 In adequate pro-inflammatory

states, MSCs produce immunosuppressive factors such as

IL-4, IL-6, IL-10, IDO, PGE-2, and TGF-β1, in a manner

similar to the complex cascades of immunomodulation-

related mechanism.92,148,149 These anti-inflammatory cyto-

kines direct monocytes to differentiate into M2 macrophage,

which further suppresses immune response by subsequently

triggering regulatory T cell proliferation (Figure 7).150

Figure 6 Mesenchymal stem cell (MSC) as a chemotherapeutic carrier. (A) Lung tumor homing ability of MSCs (B) Schematic figure of CD73 or CD90 conjugation to MSCs

(C) Schematic figure of silica nanorattle conjugated MSC in xenograft model and nanodrug conjugated MSC for A549 deep tumor treatment. Reproduced from Kim SW, Lee

YK, Hong JH, et al. Mutual destruction of deep lung tumor tissues by nanodrug-conjugated stealth mesenchymal stem cells. Adv Sci (Weinh). 2018;5(5):1700860.24
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Among these anti-inflammatory cytokines, TGF-β1 also

plays a crucial role in regulating proliferation of neural and

glial cells and regulating analgesic effect. 151,152 TGF-β1 can
not only mediate neuropathic pain through pleiotropic effects

but also suppress neuropathic pain upon intrathecal injection

of MSCs.136 Apart from anti-inflammation, these anti-

inflammatory cytokines including TGF-β1, IL-4, and IL-10

can also promote neurite outgrowth in the central nervous

system, and, regulatory T cells promoted by M2 macro-

phages can support myelin regeneration in the central

nervous system.153,154 As such, MSCs can not only secrete

anti-inflammatory cytokines but also secrete neurotrophic

factors to support nerve regeneration.

In addition, various studies have shown that adminis-

tration of MSCs derived from bone marrow, adipose

tissues, and umbilical cord can regenerate peripheral

nerve tissues.155,156 Intravenously administered MSCs

lead to downregulation of inflammation and upregulation

of axonal regeneration, while local injection of MSCs can

regenerate peripheral nerve tissue. However, the potential

therapeutic use of MSCs in central nerve regeneration is

still controversial. Although MSCs can differentiate into

neuron-like cells with neuronal markers under specific

conditions, MSCs-derived neuron cells cannot communi-

cate with each other.157–161 However, various studies

have reported the positive results of MSCs-promoted

neurogenesis.162–164 The study of the improved neurolo-

gical state in a brain hypoxic-ischemic injury model after

intravenous administration of adipose-derived MSC-

derived conditioned media suggests that neural differen-

tiation of MSCs does not contribute to neurological

improvement, rather secretomes released from non-

genetically modified MSCs result in improvement after

neurological damage.163 When MSCs reach the inflam-

matory sites, they secrete pro-survival factors, which

include brain-derived neurotrophic factor (BDNF), vascu-

lar endothelial growth factor, fibroblast growth factor-2

(FGF-2), and nerve growth factor (NGF) in order to

increase survival rates and for axonal regeneration of

damaged neurons (Figure 8).162–164 Likewise, viral trans-

fection of MSCs through intrastriatal, intracerebral, and

intrathecal injections further enhances the delivery of

neurotrophic factors that can support axonal growth and

decrease apoptosis of damaged neurons.165–167

Figure 7 The anti-inflammatory mechanism of mesenchymal stem cells (MSCs). Anti-inflammatory cytokines released from MSCs suppress M1 polarization while induce M2

polarization. M2 polarization subsequently triggers the proliferation of regulatory T cells. The red arrow represents suppression while black arrow refers to promotion of

the process.
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Enhanced nerve regeneration by

nanodrug-assisted MSC
Neurogenesis is particularly important to compensate for

neurodegenerative disease, but natural neurogenesis in

the central nervous system is limited due to growth

inhibition by glial scar and adult myelin.168 As of

today, various growth factors, extracellular matrix

degrading enzymes, myelin neutralization have been

reported to increase neural growth, but their usages are

limited due to their low BBB perviousness.162,169

Therefore, various studies have explored bioactive mole-

cules-loaded nanoparticles for improving neurogenesis

in neurodegenerative models. For instance, curcumin-

loaded poly(lactic-co-glycolic acid) nanoparticles induce

proliferation of NSCs in vitro through the activation of

Wnt/β-Catenin signal pathways.170 BDNF-loaded silica

nanoparticles support the survival of spiral ganglion

neurons in vitro.171 Likewise, iron oxide nanoparticles-

conjugated NGF, glial cell-derived neurotrophic factor,

and basic FGF-2 are not only stable but also show

improved nerve regeneration compared to free neuro-

trophic factors on organotypic dorsal root ganglion. In

in vivo studies, bilaterally injected silica-DNA complex

successfully triggered neurogenesis of neuronal stem/

progenitor cells via stimulation of FGF Receptor 1 sig-

naling pathway.172 However, again, the primary method

of nanoparticle delivery is via local injection due to low

BBB permeability. The major drawback of local injec-

tion is loss of nanoparticles due to backflow of the

solution.173

Based on previous studies, it is anticipated that utiliz-

ing MSCs as cargo molecule can pave a way for safe

delivery of neurotrophic factors loaded nanoparticles to

target sites for nerve regeneration. In addition, the com-

bined efficacy of MSCs and neurotrophic factors including

myelin neutralization and degrading ECM enzyme can

synergistically improve axon growth.

Therapeutic usage of MSC-derived
secretomes
MSCs can promote nerve regeneration by releasing specific

cytokines or secretomes to the damaged nerve environment.

The types of secretomes released from MSCs differ from

the MSC lineages and pre-conditioning of MSCs with fac-

tors including hypoxia, inflammatory cytokines, and 3D

culture.174,175,176 For instance, adipose-derived mesenchy-

mal stem cells induced higher expressions of IGF-1 and IL-

8, but bone marrow-derived mesenchymal stem cells trig-

gered significant expressions of IL-6, IL-8, IL-1α, and IL-

1β without any pre-conditioning treatment.177 In induced

hypoxia condition, MSCs can secrete growth factors and

pro-angiogenic cytokines such as VEGF and IGF-1.162

Likewise, conditioned medium of bone marrow-derived

stem cell inhibits apoptosis and promotes VEGF-involving

pro-angiogenic activity of neurons to support neuronal sur-

vivability in in vitro study.178 Utilizing MSCs secretomes

can provide many advantages in terms of storage, econom-

ical cost, and modification, but the clinical application of

only-secretome treatment for therapeutic use remains

BDNF
NGF
FGF-2

Damaged neuron Mesenchymal
stem cell

Myelin sheath New axon
growth

Neurotropic
factors

(BDNF,NGN,
FGF-2)

Figure 8 The mechanism of nerve regeneration assisted by mesenchymal stem cells. Neurotrophic factors including BDNF, NGF, and FGF-2 released by MSCs interact with

damaged axons and induce axonal outgrowth.
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challenging due to poor protein stability, pharmacokinetics,

and tissue transport.179,180

Discussion and perspective
Despite technological developments in antitumor therapeutics,

the majority of chemotherapeutics is precluded from entering

the brain due to the presence of the BBB. Moreover, the BBB

can efflux undesired molecules from the brain even if they

enter the brain. Thus, GBM is widely known as one of the

most devastating diseases without well-defined solutions.

Conventional chemotherapies for GBM are accompanied

with adverse side effects, worsening the quality of patients’

lives. Treatment for GBM is problematic since its heteroge-

neous structure and overexpression of its corresponding genes

makes it resistant to not only chemotherapy but also radio-

therapy. Therefore, studies developing new chemotherapies

have been extensively investigating methods to improve

tumor-migration and BBB-perviousness of a drug.

Although genetic alternation of MSCs showed the promis-

ing results, intactMSCs can hold similar therapeutic efficiency

by loading various therapeutic agents and can reduce potential

tumorigenesis from genetic alternation. This review introduces

non-genetically modified MSCs as a new strategy in over-

coming this hurdle given the unique features of MSCs in

tumor inhibition and tropism, and highlights thatMSCs loaded

with chemotherapeutics can efficiently deliver the loaded che-

motherapeutic agents to tumor sites. Furthermore, as the che-

motherapeutic agent is delivered to tumor sites, MSCs can

induce apoptosis and inhibit angiogenesis of tumor cells,

synergistically eradicating glioma cells.

The nervous system of patients after either completion

of surgical or chemotherapeutic treatment is severely

damaged, and neurogenesis is rarely induced naturally.

The ability to artificially promote nerve regeneration

through the anti-inflammation effect achieved via release

of anti-inflammatory cytokines from MSCs and nerve

regeneration-promoting nanodrug, nanoparticle-loaded

MSCs is a promising treatment that can regenerate

damaged nerve system. Although secretomes or cytokines

released from MSCs can alone induce pro-survival of

neurons, poor stabilities and pharmacokinetics of secre-

tomes in physiological conditions limit the usage of secre-

tomes. On the other hand, MSCs can efficiently deliver

adjuvant drug-loaded nanoparticles to inflammation sites

for anti-inflammation and neuroregeneration after com-

plete removal of tumor cells. Furthermore, MSCs at

inflammation sites can mediate inflammations by secreting

desired secretomes to activate M2 macrophages.

In conclusion, this review discusses the potential clin-

ical application of nanocarrier-assisted MSCs as not only

antitumor agents through improved tumor specificity and

apoptosis but also regenerative and anti-inflammatory

agents through neurogenesis factor delivery and MSC-

released secretomes. Since some pathways inducing neu-

rogenesis promote tumor progression as well, great care

should be taken to ensure that treatment of damaged neural

tissue is done after the complete eradication of tumor. The

distinctive abilities of MSCs with the assist of nanotech-

nology introduced in this review can pave the way for new

guidelines on antitumor and nerve regenerative therapy

with promising results in the near future and overcome

the limitation of genetically engineered MSCs.
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