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As humans age many suffer from a decrease in normal brain functions including spatial
learning impairments. This study aimed to better understand the molecular mechanisms
in age-associated spatial learning impairment (ASLI). We used a mathematical modeling
approach implemented in Weighted Gene Co-expression Network Analysis (WGCNA)
to create and compare gene network models of young (learning unimpaired) and aged
(predominantly learning impaired) brains from a set of exploratory datasets in rats in the
context of ASLI. The major goal was to overcome some of the limitations previously
observed in the traditional meta- and pathway analysis using these data, and identify
novel ASLI related genes and their networks based on co-expression relationship
of genes. This analysis identified a set of network modules in the young, each of
which is highly enriched with genes functioning in broad but distinct GO functional
categories or biological pathways. Interestingly, the analysis pointed to a single module
that was highly enriched with genes functioning in “learning and memory” related
functions and pathways. Subsequent differential network analysis of this “learning
and memory” module in the aged (predominantly learning impaired) rats compared
to the young learning unimpaired rats allowed us to identify a set of novel ASLI
candidate hub genes. Some of these genes show significant repeatability in networks
generated from independent young and aged validation datasets. These hub genes are
highly co-expressed with other genes in the network, which not only show differential
expression but also differential co-expression and differential connectivity across age
and learning impairment. The known function of these hub genes indicate that they
play key roles in critical pathways, including kinase and phosphatase signaling, in
functions related to various ion channels, and in maintaining neuronal integrity relating
to synaptic plasticity and memory formation. Taken together, they provide a new insight
and generate new hypotheses into the molecular mechanisms responsible for age
associated learning impairment, including spatial learning.
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INTRODUCTION

One of the most significant effects of aging is the decrease in
normal brain functions, particularly, cognition and memory.
The incidence of cognitive impairments, including normal
age-associated spatial learning impairment (ASLI), has risen
dramatically in past decades due to increasing human longevity
(Burger et al., 2007; Peleg et al., 2010; Glorioso et al., 2011). As
such trends are expected to continue, it has become imperative
to better understand the underlying molecular biology and
genetics of ASLI. Towards that goal, in a previous meta-analysis
study (Uddin and Singh, 2013), we integrated several microarray
gene-expression data generated from independent studies in
the context of ASLI in the hippocampus in rats. The data
represented young rats that were learning unimpaired and
aged rats that were learning impaired and unimpaired. The
carefully designed original studies investigated spatial learning
tasks in young (3–6 months old) and aged (24–26 months
old) animals using the Morris Water Maze as the training
and assessment protocol. All experimental young animals
demonstrated learning unimpairment. While the majority of the
experimental aged animals demonstrated learning impairment,
some demonstrated learning unimpairment. Since, hippocampus
in the brain is integral to memory function including spatial
memory both in humans and in rodents (Morris et al.,
1982; Burgess, 2002), microarray gene-expression data were
generated using the hippocampus tissue. These datasets allowed
us to assess a combined gene expression changes related
to aging, as well as ASLI in rats across multiple studies
(Uddin and Singh, 2013). We used traditional methods such
as differential expression analysis, followed by functional and
pathway analysis using the Ingenuity Pathway Analysis (IPA)
software1, to identify ASLI genes and networks. Though our
meta-analysis identified a number of significant differentially
expressed genes and networks across age or across ASLI in
several interesting biological categories, however, the results
highlighted some limitations in such traditional analyses. One of
the limitations is that gene networks and regulatory interactions
among the genes in these networks are modeled based on
current biological knowledge only. For example, IPA pathway
or similar knowledge base analysis can only model gene
networks based on information that is available in the literature.
Therefore, such analyses are unable to fully utilize the gene
transcript expression information captured by the microarray
data. Another limitation is that they are not able to identify
a single network that could be solely associated with ASLI,
as we previously observed that the candidate ASLI genes
were all scattered in different networks (Uddin and Singh,
2013). Finally, there is no prioritization of molecules within
the knowledge-based network models of affected pathways.
As a result, to overcome the above limitations, mathematical
modeling of gene networks from large scale gene-expression
data is becoming a popular alternative choice in the network
discovery process, and has proven highly useful in recent
years (Friedman et al., 2000; Margolin et al., 2006; Opgen-

1http://www.ingenuity.com

Rhein and Strimmer, 2007; Langfelder and Horvath, 2008;
Ideker and Bandyopadhyay, 2010). Particularly, the correlation-
based modeling method implemented in WGCNA (Zhang
and Horvath, 2005) has gained a lot of popularity (Fuller
et al., 2007; Oldham et al., 2008; Mason et al., 2009; Plaisier
et al., 2009; Miller et al., 2010; Levine et al., 2013; Fontenot
and Konopka, 2014; Rickabaugh et al., 2015; Ye and Liu,
2015).

Numerous studies have applied gene co-expression network
analysis using WGCNA to associate co-expression modules
with brain and psychiatric diseases (Oldham et al., 2006;
Miller et al., 2008; de Jong et al., 2010; Torkamani et al.,
2010; Voineagu et al., 2011). However, no study investigating
gene network modeling in ASLI appears in the literature.
Therefore, we felt it necessary to initiate such a modeling to
explore and identify key functional modules and gene hubs
in the context of ASLI. Here, we performed a co-expression
network analysis (using WGCNA) as a follow up to our
previous study (Uddin and Singh, 2013) using the same
datasets. The specific goals in this study were to create
gene network models from a set of exploratory datasets,
separately for aged (predominantly learning impaired) and
young (learning unimpaired) samples; to perform a differential
network analysis between these aged and young networks;
and to evaluate results (significant functional modules and
hub genes) by comparing them against a set of validation
datasets.

This analysis has identified several reproducible network
modules each highly significant with genes functioning in
specific biological functional categories (Uddin, 2015). It
identifies a ‘‘learning and memory’’ specific module containing
many potential key ASLI hub genes, some of which were
also identified (but not prioritized) in the meta-analysis. Many
of these candidate hub genes not only show differential
co-expression between young and aged networks, but are also
reproducible in independent datasets. Functions of these ASLI
hub genes link a different set of mechanisms to learning
and memory formation, which meta-analysis was unable to
detect. Future follow up research can help further understand
their potential molecular mechanisms underlying complex
behavioral traits such as cognitive impairments including ASLI.
Modern meta- and network approaches as implemented in
this study can be applied to any large-scale dataset to identify
potential key molecules and networks and thus generate new
hypotheses.

MATERIALS AND METHODS

Data Selection for Network Analysis
For this study, we have selected five microarray datasets referred
here as BL (Blalock et al., 2003), B7 (Burger et al., 2007), R7
(Rowe et al., 2007), B8 (Burger et al., 2008) and K9 (Kadish
et al., 2009). They consist of a total of 287 arrays and used
two different Affymetrix chip types, RG_U34a and RAE230a.
The data represented young rats that were learning unimpaired
and aged rats majority of which were learning impaired with
some learning unimpaired animals. The BL and K9 studies
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were similar in design where only the unimpaired young
and impaired aged animals were considered for comparison.
The B7, R7 and B8 studies were similar in design where
both young and aged groups contained controls animals that
were learning impaired, e.g., cage controls, stress controls and
controls for visual impairment. These datasets were quality
checked and normalized using RMA methods (Bolstad et al.,
2003; Gautier et al., 2004), had outliers removed and batch
effect adjusted using age and spatial learning impairment as
covariates (Uddin and Singh, 2013). For each dataset, aged
and young samples were separated and assessed further for
the presence of array outliers (Supplementary Table S1 and
Supplementary Figures S1–S6). Since the WGCNA network
construction method is correlation based, before proceeding
with network analysis it was made sure that the correlations
between genes in each dataset were reasonable as suggested in
the literature (Miller et al., 2010). This was done by calculating
Pearson’s correlations between the expression levels of each pair
of genes in the aged or young preprocessed datasets and by
plotting the correlation values in histogram plots (Supplementary
Figure S7). All data preparation steps including WGCNA, GO,
and statistical analyses were performed in R using appropriate
software packages.

Co-Expression Network Analysis
Using the preprocessed transformed data (genes in columns
and samples in rows), gene networks were constructed for
aged and young using the WGCNA R package (Zhang and
Horvath, 2005; Langfelder and Horvath, 2008) following a
slightly modified protocol based on the approaches previously
described (Oldham et al., 2006, 2008; Miller et al., 2008, 2010).
The overall network analysis process for a single dataset is
described below.

Creating an Adjacency (Connection
Strength) Matrix
A weighted correlation between two genes represents connection
strength between the genes in a network. For each dataset,
a network adjacency or connection strength matrix (network
data) was created by taking the signed correlations of the gene
expression values between each pair of genes raised to a power
of beta. Beta is the weight, a soft threshold, and was determined
in advance in such a way so that the resulting network follows
approximate scale free topology. The values in the diagonal (self-
correlation) were converted to zero.

Filtering Out Genes with Very Low
Connectivity
To save computational time, genes were filtered out from a
network adjacency matrix based on their connectivity (i.e., only
genes with above average median connectivity were kept for
network analysis). The overall connectivity for each gene
(denoted by k) is the sum of connection strengths (weighted
correlation) between that gene and all other genes in the network.
It is scaled to lie between 0 and 1 and represents how strongly a
gene is connected to all other genes in the network.

Creating and Visualizing Network Modules
Following filtering an adjacency matrix contained genes
with reasonably high network connectivity. This adjacency
matrix was used to determine a network topological
overlap, construct a hierarchical clustering dendrogram of
1—topological overlap, determine network modules using
a hybrid tree-cutting algorithm, and to visualize network
modules. In a co-expression network, an edge between two
genes (nodes) represents a co-expression relationship. For each
dataset or module a network interaction file was created from its
adjacency matrix, and used in Cytoscape for visualization and
analysis.

Network analysis often results in a large number of modules.
It is sometimes useful to reduce the number of modules
by merging those whose expression profiles are very similar.
This was accomplished by merging modules whose member
genes were highly co-expressed. To calculate the co-expression
similarity of entire modules, their module eigengenes were
calculated. The module eigengene is defined as the first principal
component of a given module. It can be considered as a
representative of the gene expression profiles in a module.
The module eigengenes were clustered on their consensus
correlation, which was the minimum correlation across the
two sets.

Exploring the Functional Significance of
Modules
A list of genes belonging to each network module was exported
to tab delimited text files along with all necessary information.
For each module there were two files, the first file contained
a list of genes with their gene symbols, mean expression,
module names, and intra-modular connectivity. This file was
used for GO analysis using The Database for Annotation,
Visualization and Integrated Discovery (DAVID)2 (Huang
et al., 2007, 2009a,b). The second file contained co-expression
interaction information between each pair of genes in a module
along with the topological overlap and correlation information.
This interaction file was used for network visualization and
analysis.

GO functional Annotation Clustering analysis was performed
through DAVID web-services using the gene list for each
young network module. In this research, DAVID web-services
were accessed programmatically by using an R package called
RDAVIDWebService (Fresno and Fernández, 2013). Since gene
symbols can be confusing and often fail to produce a perfect
match, the corresponding affymetrix IDs were used to query the
DAVID database. GO functional annotation information was
obtained for all modules in the young and the aged categories.

In DAVID, for each functional cluster an enrichment score
is calculated. This enrichment score is the geometric mean (in
−log scale) of the p-values of all member annotation terms and
is used to rank their biological significance (Huang et al., 2009b).
Thus, the top ranked annotation clusters will most likely have
consistently lower p-values for their annotation members. The
significance of a gene-enrichment p-values for each annotation

2http://david.abcc.ncifcrf.gov/
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term is calculated based on a modified Fisher exact test method
known as the EASE score (Hosack et al., 2003). The default
threshold of the EASE score was set at 0.1.

Validating Network Modules
Network modules for young and aged were compared across
studies and platforms for their repeatability using the statistics
implemented in WGCNA software package. This was done in
two ways: (a) module preservation; and (b) module overlap.

Module Preservation
Module preservation statistics (Zhang and Horvath, 2005;
Miller et al., 2010; Langfelder et al., 2011) can qualitatively
and quantitatively measure network preservation at the
module level. As a qualitative assessment, the gene module
assignment from one network was mapped on the same
genes in the second network. The results were then plotted in
a dendrogram, which offers a visual mean to qualitatively
assess preservation. Quantitative measure of network
preservation assesses how well a module in one study is
preserved in another study using a number of statistics.
Module preservation was estimated quantitatively between
the young and the aged networks in different datasets. In
all comparisons, the R7 top most connected genes, their
transcription profiles, and their module assignments were used
as a reference.

Module Overlap
Comparing networks by calculating module overlap allows
one to determine whether a module that was found in one
dataset can also be found in another dataset (Miller et al.,
2010; Horvath, 2011). Fisher’s exact test is used to calculate
a p-value of significance of pair-wise module overlap. In
this research, module overlaps were calculated along with
their significance of overlaps between the young modules
and between the aged modules in different datasets following
the approach described in Oldham et al. (2008). In brief,
top most connectivity genes common between a network
from R7 (exploratory set) aged (or young) and another aged
(or young) network from a validation set were selected.
Next, the module labels between the two networks were
matched. The purpose was to see which modules in one
network contain a significant number of overlapping genes
with modules in the second network. Next, module labels
were reassigned in the second network such that corresponding
modules were assigned the same color label. After matching
labels between the modules in exploratory and validation
networks, their percentage overlaps and significance p-values
were calculated.

Differential Network Analysis of Young vs.
Aged
Differential network analysis allows one to compare two different
networks side by side, for example, between a control and
a disease network. Networks for several interesting modules
identified in this research were visualized side by side between

the young and aged groups using Cytoscape and compared for
their differential co-expression.

Identifying and Validating Hub Genes
Top hub genes were identified by using module eigengene-
based connectivity or kME values in both the young (learning
unimpaired) and aged (predominantly learning impaired)
networks. Module eigengene-based connectivity kME, also known
as module membership, is calculated for each gene. It is
defined by correlating each gene’s expression profile with the
module eigengene of a given module (Zhang and Horvath,
2005; Langfelder and Horvath, 2008; Miller et al., 2010). Hub
genes were validated by assessing their repeatability in networks
constructed from independent datasets and by investigating their
functions in relevant pathways. In addition, expression patterns
of selected hub genes were verified using meta-analysis and forest
plots.

Repeatability
Repeatability of the candidate hub genes were assessed as follows.
For each module, hub genes identified in the exploratory (R7)
networks were checked if they are also identified as hub genes in
the validation networks (e.g., B8, K9, or B7) with high kME values
as well as with t-test p-values ≤ 0.05 (between two networks at
a time e.g., one exploratory and one validation). In cases where
a module from an exploratory network matched to multiple
modules in a validation network, genes from multiple significant
modules in the validation network were combined together and
then compared to the hub genes in the exploratory network
module.

Literature Search
Literature searches were performed using PubMed to explore
characteristics and functions of selected ASLI candidate hub
genes and their relationship to learning and memory formation.

RESULTS

In order to model, explore and identify ASLI genes and
their networks, this analysis followed a detailed and through
investigation that included the identification of GO enriched
significant functional modules and hub genes, as well as
validation of results using independent datasets. The results are
described below.

Data Selection for Network Analysis
Based on the quality of data and number of samples
(Supplementary Table S1), R7 aged (R7-A) and young (R7-Y)
datasets were chosen as the exploratory datasets; B8 young
(B8-Y), K9 young (K9-Y), B7 aged (B7-A), and B8 aged (B8-A)
datasets were chosen as the validation datasets (Table 1).
After preprocessing, other groups did not have sufficient
number of samples for WGCNA, they were excluded from this
analysis. The networks were constructed for each of the aged
and young datasets separately (i.e., B7-A, B8-Y, B8-A, K9-Y,
R7-Y, and R7-A). However, GO based functional analysis and
visualization was done only for the networks from R7 young
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TABLE 1 | Datasets selected for network analysis.

Dataset Number of young sample Exploratory/Validation (Young) Number of aged sample Exploratory/Validation (Aged)

B7 (Burger et al., 2007) 28 Validation
R7 (Rowe et al., 2007) 19 Exploratory 27 Exploratory
B8 (Burger et al., 2008) 18 Validation 28 Validation
K9 (Kadish et al., 2009) 18 Validation

and aged exploratory datasets, and the results were validated
independently in networks constructed from the validation
datasets. All datasets combined, this research included 65 young
rat samples that were identified as learning unimpaired, 66 aged
samples that were identified as learning impaired, and 29 aged
samples that were identified as learning unimpaired.

Determining the Weights or Soft Power
Beta
Based on the scale free topology model fit analysis the
soft-threshold power for both R7-Y and R7-A was determined
to be 6. This power also results in an approximate straight
line relationship in the scale-free topology plots (Supplementary
Figures S8, S9). Performing similar analyses, the soft powers for
B8-Y and B8-A were determined to be 10 and 8, respectively. For
the B7-A dataset, the soft power was 9 and for K9-Y it was 10.

Creating Adjacency (Connection Strength)
Matrices
The genes that remained after preprocessing (Supplementary
Table S2) were used to calculate the signed Pearson correlation
coefficients for all pairwise comparisons of gene-expression
values across all young and aged samples. The correlation matrix
for each group was then transformed into a matrix of connection
strengths (i.e., an ‘‘adjacency’’ matrix) using a soft power beta
as determined above. This resulted in a network adjacency
matrix for each dataset, for example, for R7 it generated an
8053× 8053 matrix.

Filtering Out Genes with Very Low
Connectivity
First, connectivity value for each gene was calculated from the
adjacency matrix. Next for each dataset, the average median
connectivity kmed was used as a cut-off value to filter out genes
with very low connectivity. For R7-Y kmed was 0.46 and for
R7-A kmed was 0.54. We selected the average kmed = 0.5 as
the minimum connectivity cut-off, which removed 2379 genes,
leaving 5674 high connectivity genes for the R7 network analysis
(Supplementary Table S2). For B8 and K9 the median kmed was
0.4 and 0.35, which resulted in 5202 and 4796 high connectivity
genes, respectively. The number of B7 genes was already low and
close to the numbers of other filtered datasets. So, in order to
prevent information loss no filtering was done on these B7 genes.

Creating and Visualizing Networks and
Modules
A major goal of gene correlation network analysis is to
identify groups of highly interconnected genes (Zhang and

Horvath, 2005; Oldham et al., 2006) termed as modules. The
expression profiles of genes in a module are highly correlated
across the samples. In a co-expression network, modules
are identified by searching for genes with similar patterns
of connection strengths to other genes, or genes with high
topological overlap. The topological overlap values are calculated
using the adjacency and connectivity values, which determine
which genes will be in which module and form a network.
The values range between 1 and 0 representing maximum
and minimum interconnectedness. The module identification
method in WGCNA is based on using a node dissimilarity
measure in conjunction with a clustering method. Since the
topological overlap matrix is non-negative and symmetric, it
is turned into a dissimilarity measure by subtracting from 1.
Genes are hierarchically clustered using the average linkage
method, taking 1-topological overlap as the distance measure
and modules are determined by choosing a height cutoff for
the resulting dendrogram. In the dendrogram, discrete branches
of the tree correspond to modules of co-expressed genes.
Following these steps, gene network modules for the young
and aged samples were identified separately for each dataset
using the filtered weighted correlation matrices as prepared
above.

Figures 1, 2 show the hierarchical dendrograms of topological
overlaps for the 5674 genes in R7-Y and R7-A, respectively.
There are several height cut-off algorithms implemented
in the WGCNA R package. In this research, the cut-tree
hybrid method was chosen to pick a height cut-off and
to identify modules, which are shown in the panel below
the dendrograms. The default lowest cut-off resulted in six
modules in the young network and 15 modules in the
aged network. Each module is labeled with a unique color
(except gray) for easy visualization and understanding. The
color gray is preserved for genes that do not belong to any
module.

The aged network resulted in many modules, most with
small numbers of genes, for example, 13 of the modules had
fewer than 300 genes each and nine of them had less than
200 genes each (result not shown). For better comparison, the
number of modules in the aged network was brought closer to
that of the young network. This was accomplished by merging
the modules (Supplementary Figure S10). In order to keep the
module numbers similar to that of the young network, a cut
height of 0.4 was chosen that generated seven modules in the aged
network (including the gray module; Figure 3).

Since module names/labels in a network were randomly
generated, the seven aged modules were matched to the seven
young modules to check for similarity and module overlap of
gene members (Supplementary Tables S3, S4). Once a significant
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FIGURE 1 | Hierarchical clustering dendrogram of topological overlaps of R7-Y genes. The cut-tree hybrid method was used to pick a height cut-off and to identify
modules, which are shown in the panel below the dendrogram. Each module is labeled with a unique color for easy visualization and understanding.

FIGURE 2 | Hierarchical clustering dendrogram of topological overlaps of R7-A genes. The cut-tree hybrid method was used to pick a height cut-off and to identify
modules, which are shown in the panel below the dendrogram. Each module is labeled with a unique color for easy visualization and understanding.

match was found, modules in the aged network were renamed
after the matched young network module names. Table 2 shows
the final modules in the young and aged networks along with
the number of genes belonging to each module. In addition,
Table 2 shows which aged modules are matched to which young
modules. The black module from the aged network had genes
matching significantly to both the blue and brown modules in the
young network. The aged brown, red and cyan modules matched
to the green, red and yellow young modules, respectively, while
the blue and pink aged modules matched a single turquoise
young module. This module matching process is helpful when
comparing similar modules between networks, for example, aged
vs. young.

For clarity, only the top 500–600 most connected genes and
their co-expression interactions were used to create each module

network. Co-expression information from all modules were
combined and imported into the Cytoscape for visualization.
Figure 4 shows all six modules in the R7 young networks where
the modules are represented by the color of their respective
names (e.g., the blue module is represented by the color blue).

Exploring the Functional Significance of
Modules
Biological significance analysis of the network modules was
performed using the functional annotation clustering analysis
in DAVID that utilizes the GO and other biological pathway
information databases. DAVID functional annotation clustering
analysis was used through the RDAVIDWebService tool in R
to identify the most relevant (overrepresented) biological terms
associated with each module gene list. The DAVID database
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FIGURE 3 | Hierarchical clustering of the final aged modules.

offers extended annotation coverage with over 40 annotation
categories, including GO terms, protein-protein interactions,
protein functional domains, disease associations, bio-pathways,
sequence features, homology and many more (Huang et al.,
2009b). However, for reasons of simplicity and to better
understand the biological significance of the network modules
identified above, only the biological processes (BP), molecular
functions (MF), and cellular components (CC) GO terms and all
KEGG Pathway terms were included in the functional annotation
clustering analysis.

Affymetrix probe set identifiers of all the genes belonging to a
network module (Table 2) were used as the input gene list. The
total number of genes from the RAE230A array for the R7 dataset
(after preprocessing and filtering) was 5674, and was used as a
background population. Rattus norvegicus was used as species.
The function getClusterReportFile(...) in RDAVIDWebService
was used with default parameters to retrieve all relevant

information. Next getClusterReport(. . .) function was used to
extract the functional annotation chart file, which was saved as a
text file and later analyzed. An enrichment score cutoff of 1.0 was
used to minimize the number of clusters that were returned.

Table 3 shows the summary result of GO analysis for the
young modules. The most significant GO functional categories
represented by the genes belonging to each module are also
shown in Figure 3. The results show that, in general, each module
is highly enriched with genes functioning in broad but distinct
GO functional categories or biological pathways with highly
significant enrichment scores.

Validating Network Modules
Network modules were validated by assessing their preservation
and overlap across datasets. This was done by comparing the
modules’ gene expression data as follows: R7 young vs. R7 aged;
R7 young vs. B8 and K9 young; R7 aged vs. B8 and B7 aged.

TABLE 2 | Modules in the R7 young and aged networks.

Samples Module names

Young Blue Brown Green Gray Red Turquoise Yellow
# of genes 1015 759 380 1319 341 1129 731
Aged (original labels∗∗) Blue (Black) Brown (Black) Green (Brown) Gray (Gray) Red (Red) Turquoise (Blue and Pink) Yellow (Cyan)
# of genes 1151 1151 554 2600 206 508 and 366 289

There were seven modules in each group including the gray module. Aged modules were matched to the young modules to find modules containing the maximum number
of matching genes. Once identified, the aged module names were changed to match the respective young module names for easy comparison. ∗∗Original labels/names
of the aged modules before matching to the young modules are in bracket.
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FIGURE 4 | All six modules in the R7 young networks. The modules are represented by the color of their respective names, for example, the blue module is
represented by the color blue. The most significant GO functional categories represented by the genes belonging to each module are also shown.

Module Preservation
Module preservation was assessed quantitatively where the R7
5674 top most connected genes from the young networks were
compared to the same genes in other datasets to see how well
the module assignment of these R7 genes and their module-wise
functions are preserved in other datasets. However, in each
comparison the R7-Y network module definition was used as a
reference and networks were created from gene expression data
accordingly for comparison. For example, in the comparison
between R7-Y vs. B8-Y, the same R7 top most connected
5674 genes were selected from B8-Y. Next, the same R7-Y gene
module definition was mapped to the B8-Y genes. There was
an exception for the R7-A vs. B7-A comparison where only
2140 genes were used because only these genes were common
between the two different chip types used in the two independent
studies.

Module network preservations were estimated by keeping
the maximum module size at 700 and using 30 permutations.
The results are summarized in the bar plot in Figure 5. It
presents the preservation of R7 young and aged modules in
each comparison as Zsummary statistics along the x-axis. All the
R7 young modules (e.g., brown, yellow, turquoise, blue, green

and red) along with their major significant functional categories
are represented in the y-axis. Except the green module, all
other modules generally show moderate to high preservation
across independent studies. The brown module shows the highest
preservation among all the modules while the green module
shows the lowest preservation. All modules in general in the
R7 aged vs. B7 aged comparison shows comparatively lower
preservation than in the other comparisons.

Module Overlap between Networks
Comparing networks by calculating module overlaps between
networks provides another way to validate network modules
using independent datasets. We performed a pair-wise
comparison for all datasets. After merging datasets by matching
genes, there were 3626 top most connectivity genes common
between R7 and B8, 3138 between R7 and K9, and 2140 between
R7 and B7 networks (Supplementary Table S2).

Once two datasets had the same matching genes selected,
next, for each comparison (e.g., between R7-Y and B8-Y) all
modules were compared between the two datasets (i.e., the
module assignment of the genes in R7 were matched to the
same genes in B8). For each comparison, the results generated

TABLE 3 | GO functional analysis summary for the R7 young modules.

Module Major GO Categories p-value

Blue Ribosome, translation elongation 9.85E-08–2.02E-09
Brown Cellular process, GTPase activity, myelination, cell communication 0.02–0.006
Green Developmental process 9.36E-04
Red Oligodendrocyte development, histine deacetylase activity 0.01–0.005
Turquoise Mitochondrion, many diseases, ribosome 1.20E-04–3.12E-06
Yellow Synaptic activity, synaptic transmission, learning and memory 2.94E-04–4.77E-15
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FIGURE 5 | Preservation of R7 young network modules across studies, age and platform. The x-axis presents the preservation Zsummary statistics and the y-axis
represents the R7-Y modules such as brown, yellow, turquoise, blue, green and red along with their major significant functional categories. In each comparison
R7 module assignment was used as a reference. The preservation of modules in R7-Y vs. R7-A is shown as a guide. The vertical dotted line at Zsummary score
2.0 indicates the borderline between no preservation and very weak preservation. Generally, 5 < Z < 10 indicates moderate preservation and Z > 10 indicates high
preservation. Legends: gr, green; turq, turquoise; yell, yellow; br, brown.

an overlap table and a p-value table showing the number
of genes that matched between each pair of modules and
their associated p-value significance, respectively. From these
results, percentage overlap for each module was calculated by
dividing the total genes matched to a module (e.g., number
of genes from an R7 module matching to the genes from a
module in the second dataset) with the total matched to all
modules (e.g., number of genes from an R7 module matching
to the genes in all modules (max. shared) in the second
dataset). In cases where an R7 module was matched to multiple
modules in the second network, overlap with the lowest p-value
was considered. For example, the R7-Y yellow module genes

(731) matched to only 85 genes in the B8-Y red module with
the lowest p-value (highest match), while they matched to
385 genes in the B8 young network shared by all the modules.
Therefore, the percentage overlap is 85/385 = 22.08% with a
p-value of 8.50e-09. The final results for all four comparisons
(column five in Supplementary Table S2) are summarized in
the bar plots in Figure 6 for young and in Figure 7 for aged
networks.

For the young, all modules in R7-Y were compared for their
significant overlap in B8-Y and K9-Y (Figure 6). The results show
that except the blue module in the R7-Y vs. B8-Y comparison, all
modules show a significant repeatability with a p-value < 0.05.
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FIGURE 6 | Validation of young modules in independent datasets. All modules in R7-Y were compared for their significant overlaps in B8-Y and K9-Y. The
percentage overlap is shown on the x-axis and the modules, along with their broad significant GO categories, are shown on the y-axis. Legends: gr, green; turq,
turquoise; yell, yellow; br, brown.

The red module showed the maximum overlap trailed by brown,
turquoise, yellow, green and blue.

For the aged, all modules in R7-A (using the R7 young
module definition) were compared for their significant overlap
in B8-A and B7-A (Figure 7). The results show that
all modules demonstrate a significant repeatability with a
p-value < 0.05 across independent datasets. The blue module
showed the maximum overlap trailed by turquoise, brown,
yellow, red and green.

Differential Network Analysis of Young vs.
Aged
In order to assess the changes in co-expression patterns of the
young as they age and how the aging would affect learning
impairments, we compared several interesting network modules
between young (learning unimpaired) and aged (predominantly
learning impaired) networks generated from the R7 data. This
comparative investigation involved visualizing them side by side,
comparing expression patterns between networks, and searching
for key genes. In addition, it involved identifying the key genes’
functions and pathways that can help explain the learning
differences as well as the aging effect that had been observed
between the young and aged animals. Differential expression

levels for the top 5674 genes in the R7 data were calculated by
using the limma package in Bioconductor. The log fold changes
of expression differences between young and aged for all genes
were saved as a tab delimited text file, and later loaded as node
attributes in Cytoscape for each module.

The module that is most relevant to this article is the
yellow (‘‘learning and memory’’) module. Figures 8A,B presents
the differential co-expression networks of this module between
young (A) and aged (B) rats, which demonstrates a clear
difference in expression patterns between the young and the aged
genes. The majority of the genes in the aged yellow network
show lower expression compared to the young. In addition,
the comparative analysis demonstrates differential co-expression
for many genes between the two networks (i.e., some genes
display more co-expression interaction than others and this
varies between the young and the aged networks). The results
allow one to identify a number of key ASLI genes for further
investigation (see below).

Identifying and Validating ASLI Candidate
Hub Genes
In a co-expression network, genes that are highly connected
with many other genes are called hub genes. These genes show
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FIGURE 7 | Validation of aged modules in independent datasets. All modules in R7-A were compared for their significant overlaps in B8-A and B7-A. The
percentage overlap is shown on the x-axis and the modules, along with their broad significant GO categories, are shown on the y-axis. Legends: gr, green; turq,
turquoise; yell, yellow; br, brown.

FIGURE 8 | Differential co-expression network analysis of the yellow “learning and memory” module in the young (A) and aged (B) in R7. The color of each node
displays differential expression level (log fold change value) between young and aged samples. Each node size is proportional to the number of co-expression
interaction the node has. Legends: red is upregulation; green is downregulation.

significant correlation with the module eigengenes and have high
within-module connectivity. After closely studying the networks
in young (learning unimpaired) and aged (predominantly
learning impaired), we have identified a set of key hub genes in
each module. Some of the hub genes in the yellow module in
R7 are shown in Table 4. Some of them are already known as
learning genes and were identified in our previous meta-analysis
(Uddin and Singh, 2013). Table 5 shows the number of

significant AY (aged vs. young) meta-analysis genes that are also
members of different modules in the R7-Y network. Particularly,
it shows that there are 165 AY significant meta-analysis genes in
the yellow module. Effect size estimates from the meta-analysis
for the above ASLI candidate hub genes are summarized in
Supplementary Table S5. In addition, we have created individual
forest plots for some of these hub genes, which are presented in
Supplementary Figures S11–S25.
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TABLE 4 | Top candidate age-associated spatial learning impairment (ASLI) hub genes in the yellow module of the R7 dataset.

Hub gene Function description Reference

Camk1g Encodes a protein similar to calcium/calmodulin-dependent protein
kinase (CaMK), but its exact function is not known. CaMKs activated
by the neuronal Ca2+ influx phosphorylate cyclic adenosine
monophosphate (cAMP) responsive element binding protein (CREB),
which has been implicated in spatial learning and memory formation.

Thomas and Huganir (2004) and Voglis and Tavernarakis (2006)

Cdk5r1∗ Involved in the pathology of Alzheimer’s disease through the
deregulated activity of cyclin-dependent kinase 5 (Cdk5), and also
involved in synaptic plasticity, and learning and memory.

Angelo et al. (2006) and Shukla et al. (2012)

Cntn1 Contributes to the formation and function of neuronal connections,
axon-glia communication, and necessary for myelin sheath
formation by oligodendrocytes.

Ranscht (1988) and Çolakoǧlu et al. (2014)

Dlg3∗ Encodes a member of the membrane-associated guanylate kinase
protein family; may play a role in clustering of N-methyl-D-aspartate
(NMDA) receptors at excitatory synapses. It is highly enriched in
the postsynaptic density (PSD), and plays essential roles in synaptic
organization and plasticity.

Elias and Nicoll (2007), Elias et al. (2008) and Wei et al. (2015)

Dpp6 Encodes an auxiliary subunit of voltage-gated potassium-4 channels
and regulates the A-type K+ current gradient, which regulates
dendritic excitability.

Nadal et al. (2003) and Wolf et al. (2014)

Eif5 Make 80S ribosomal initiation complex functional for translation. Si et al. (1996)

Gabrg1 Belongs to the ligand-gated ionic channel family. It is an integral
membrane protein and plays an important role in inhibiting
neurotransmission.

Pirker et al. (2000) and Ye and Carew (2010)

Kcnab2∗ Encodes one of the beta subunits of the shaker-related Kv channels
(Kv1.1 to Kv1.8) and found as a component of almost all potassium
channel complexes containing Kv1 α subunits. It is a learning gene
that is known to contribute to certain types of learning

Voglis and Tavernarakis (2006) and McKeown et al. (2008)

Mapk1∗ Encodes a member of the MAP kinase family and is known as a
learning gene. Hippocampal expression of Mapk1 is essential for
synaptic plasticity and spatial learning.

Selcher et al. (2001), Sweatt (2001) and Thomas and Huganir (2004)

Mapre1 It is involved in the regulation of microtubule structures and
chromosome stability.

Tirnauer et al. (2002) and Kim et al. (2013)

Ndfip2 Affects receptor tyrosine kinase signaling by ubiquitinating several
key components of the signaling pathways through binding to
E3 ubiquitin ligases.

Cristillo et al. (2003) and Mund and Pelham (2010)

Ppp2r2c Ppp2r2c gene encodes one of the four B regulatory subunits of the
protein phosphatase 2A (PP2A) enzyme complex. Inhibition of PP2A
by inhibitor I1PP2A results in deficits in spatial reference memory and
memory consolidation in adult rats.

Xu et al. (2006) and Backx et al. (2010)

Prkacb Encodes the catalytic beta subunit of protein kinase A (PKA).
PKA activates CREB and contributes to learning induced gene
expression. Prkacb expression is required for LTP in the
Hippocampus.

Qi et al. (1996), Howe et al. (2002) and Nguyen and Woo (2003)

Pten∗ It modulates activation of the phosphatidylinositol 3-kinase
(PI3K)/protein kinase B (Akt) pathway. PTEN independently controls
the structural and functional properties of hippocampal synapses
and plays a direct role in activity-dependent hippocampal synaptic
plasticity such as LTP and LTD.

Maehama and Dixon (1998), Blair and Harvey (2012) and Sperow
et al. (2012)

Rasgrp1 It is a guanine nucleotide-exchange factor. When it is activated by
Ca2+/calmodulin and diacylglycerol (DAG), it facilitates exchange of
GDP to GTP and activates Ras.

Stone (2006)

Scn2b Scn2b is a complex glycoprotein comprised of an alpha subunit and
often one to several beta subunits. It was reported to have a role in
epilepsy.

Baum et al. (2014) and XiYang et al. (2016)

Stxbp1 Plays a role in release of neurotransmitters via regulation of syntaxin,
a transmembrane attachment protein receptor.

Kurps and de Wit (2012)

Genes with an “*” were also identified as learning genes in a previous meta-analysis (Uddin and Singh, 2013). Legend: Camk1g, Calcium/calmodulin-dependent protein
kinase I gamma; Cdk5r1, Cyclin-dependent kinase 5, regul. subunit 1 (p35); Cntn1, Contactin 1; Dlg3, Discs, large homolog 3; Dlgap1, Discs, large homolog-associated
protein 1; Dpp6, Dipeptidyl-peptidase 6; Eif5, Eukaryotic translation initiation factor 5; Gabrg1, Gamma-aminobutyric acid (GABA) A receptor, gamma 1; Impact, Impact
RWD domain protein (RWDD5); Kcnab2, Potassium channel, voltage gated shaker related subfamily A regulatory beta subunit 2; Mapk1, Mitogen-activated protein
kinase 1 (ERK); Mapre1, Microtubule-associated protein, RP/EB family, member 1; Ndfip2, Nedd4 family interacting protein 2; Ppp2r2c, Protein phosphatase 2, regulatory
subunit B, gamma; Prkacb, Protein kinase, cAMP-dependent, catalytic, beta; Pten, Phosphatase and tensin homolog; Rasgrp1, RAS guanyl releasing protein 1 (calcium
and DAG-regulated); Scn2b, Sodium channel, voltage-gated, type II, beta; Stxbp1, Syntaxin binding protein 1.
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TABLE 5 | Significant AY meta-analysis genes (Uddin and Singh, 2013) common
in R7-Y modules.

R7 Modules Number of genes Number of AY meta-analysis genes
matching to each module

Blue 1015 275
Brown 759 195
Green 380 130
Gray 1319 334
Red 341 133
Turquoise 1129 275
Yellow 731 165

The candidate ASLI hub genes were checked for their
repeatability in networks constructed independently from B8,
K9, and B7. The results are summarized in Table 6. Details
of the hub gene validation data are available in Supplementary
Tables S6–S11. The results show that a number of hub
genes from the yellow module are repeated in one or
more independent datasets in B8, K9 or B7 with a p-value
≤ 0.05. From the R7 yellow module Prkacb, Scn2b, Cntn1,
Pten and Ndfip2 were found present as hub genes in the
K9 network; Dlgap1 was found in the B7 and B8 networks;
and Camk1g was found repeated in the B7 network. Notably,
many of these hub genes were in the list of top 20 mean
KME values in other networks, but their p-values were not
significant, for example, Dlg3, Mapre1, Dpp6, Stxbp1, Impact and
Mapk1.

DISCUSSION

In this research, we explored the idea that recent mathematical
modeling approaches have the potential to fully utilize the gene
interaction information present in microarray data and to help
identify useful new candidate genes and their networks. In
this respect, we investigated the use of co-expression networks
using WGCNA for the first time in the analysis of ASLI

microarray gene expression data. The data represented young
rats that were learning unimpaired and aged rats that were
predominantly learning impaired. This allowed us to identify
a set of network modules and ASLI candidate hub genes.
These modules and candidate hub genes are repeatable across
independent datasets. The implications of major findings are
discussed below.

Co-Expression to Co-Functionality—From
the Perspective of Modules
One useful property of a co-expression network is module. In
a module the expression patterns of the genes are mutually
correlated (Langfelder and Horvath, 2008). The focus on
co-expression modules, each consisting of possibly hundreds
of genes with common co-expression across samples, allows
for a biologically motivated reduction of data while also
alleviating the problem of multiple comparisons (Levine
et al., 2013). Further, just as correlated genes tend to
have similar biological functions, on a larger scale, modules
tend to contain genes with similar biological functions (Lee
et al., 2004).The results obtained in this research and the
follow up network analysis support these hypotheses. For
example, the use of WGCNA reduced R7 data into a few
biologically meaningful co-expression modules. The follow
up GO analysis and literature search results were persuasive
enough to indicate that each module gene set likely serve
a distinct major biological function, thus, pointing to the
widely held notion of ‘‘co-expression to co-functionality’’.
It is important to note that the networks and modules
constructed from R7 microarray data were based on the gene
expression patterns alone (i.e., there was no prior knowledge
of the genes’ function at the time of network construction).
Once the networks were divided into modules and their
module-wise GO functional analysis was performed, it was
indeed observed that each module pointed to a broad but
distinct category of biological function, and genes in each module

TABLE 6 | Significant ASLI candidate hub genes from the yellow “learning and memory” module and their repeatability in independent datasets.

Gene symbol Number of co-expression in R7 network Hub gene repeated in study t-test Known learning gene

Young Aged p-value

Camk1g 0 4 B7-A 0.0003 No
Cdk5r1 5 22 Yes
Cntn1 6 0 K9-Y 0.0186 No
Dlg3 63 1 Yes
Dlgap1 0 7 B7-A, B8-A 0.0332 No
Dpp6 2 68 No
Eif5 36 1 No
Gabrg1 23 1 No
Impact 24 1 No
Kcnab2 2 10 Yes
Mapk1 9 19 Yes
Mapre1 49 1 No
Ndfip2 4 0 K9-Y 0.0217 No
Ppp2r2c 6 47 No
Prkacb 76 103 K9-Y 0.0523 No
Pten 2 0 K9-Y 0.0308 Yes
Rasgrp1 15 5 No
Scn2b 5 1 K9-Y 0.0028 No
Stxbp1 1 49 No
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shared similar subcategories of functions all converging to the
broad functional category of the module (Table 3, Figure 4).
Particularly, the genes in the yellow module showed significant
enrichment in GO functions and pathways related to learning
and memory formation in the brain. This is expected as
the young and aged rats used in the original research were
tested for their memory performances where the experimental
young animals displayed clear learning unimpairment and
the majority of the aged animals demonstrated learning
impairment. The inclusion of various controls, including the
aged animals that demonstrated learning unimpairment, served
as controls e.g., for stress, physical ability as well as for
factors that may contribute to learning irrespective of age.
It is likely that the learning unimpaired aged rats might
also display sign of learning impairment as they progress
towards further aging. Although, the other modules are enriched
with functions not directly related to learning and memory,
they are critical for normal neuronal processes such as
communication, growth, development and maintenance. For
example, genes in the brown module are significantly enriched
in functions contributing to the various cellular processes and
communication, the green module genes in developmental
processes, and the red module genes in oligodendrocyte
development.

Thus, alteration of these modules’ normal module-wise
functions at old age through altered gene expression, as
observed in the datasets, has the potential to affect normal
functioning of learning and memory formation process.
Preservation of these modules were not only validated across
networks created from independent datasets, but also the gene
members of these modules demonstrated significant module
membership (module overlap) across the independent networks
(Figures 6–8).

Gene co-expression analysis studies in multiples species,
tissues and platforms have shown that co-expressed genes tend
to be functionally related (Williams and Bowles, 2004; Obayashi
et al., 2008; Oldham et al., 2008). In order to investigate,
whether observed clusters or modules of co-expressed genes are
of functional significance, Lee and Sonnhammer (2003) observed
that genes involved in the same biochemical pathways tend
to be clustered together in a number of eukaryotic genomes.
By a heuristic generalization known as ‘‘guilt by association’’,
it has been computationally established that functionally
related genes are organized into co-expression networks, in
practice assisting functional annotation of uncharacterized genes
(Michalak, 2008). For example, physically interacting proteins
in yeast were found to be encoded by co-expressed genes
(Ge et al., 2001; Wuchty et al., 2006). These observations
likely have inspired the development of co-expression network
analysis methods. Gene network modeling using co-expression
approaches provide insight into cellular activity as genes that
are co-expressed often share common functions (Piro et al.,
2011). Such networks have been widely used to study many
diseases and phenotypes because of their ease of use and
their ability to provide more biologically meaningful results
(Gargalovic et al., 2006; Chen et al., 2008; Min et al., 2012;
Zhou et al., 2014; Holtman et al., 2015; Maschietto et al.,

2015; Rickabaugh et al., 2015; Spiers et al., 2015; Ye and Liu,
2015).

Microarray data captures functional relationship among
genes that can provide biologically relevant information. In
traditional microarray data analysis, however, these relationships
remain essentially unexplored. Thus, a modular approach to gene
function through WGCNA provides a sensible way to extract
such functional information from large microarray datasets
in a biologically meaningful way. Particularly, this analysis
has shown that specific learning associated functional gene
modules can be identified through co-expression network
modeling where genes in the module show significant
enrichment in learning and synaptic plasticity related GO
functions.

Gene Co-Expression to
Co-Functionality—From the Perspective of
Hub Genes: New Insight into the Molecular
Mechanisms of Learning and Memory
Formation
Hub genes play a central role in the structure of co-expression
networks as they are often relevant to the function of regulatory
networks. The ability to efficiently transit cellular signals within
and between co-expressed clusters is facilitated by ‘‘hubs’’,
which are connected to a large number of nodes (Gaiteri
et al., 2014). Analysis of the yeast protein-protein interaction
network revealed that highly connected nodes are more likely
to be essential for survival (Jeong et al., 2000; Carter et al.,
2004; Han et al., 2004). The co-expression networks of the
yellow ‘‘learning and memory’’ module (Figure 8) display a
tight interrelationship of a large number of nodes with some
hub genes. What is most interesting is that the co-expression
of these hubs and nodes, as demonstrated in this network
analysis, is not a random aggregation of some genes. Literature
review suggests that the correlated expression pattern of the
hub genes in the yellow networks (Figure 8A) may in fact be
highly coordinated, and inside the young rats’ hippocampus
they may be serving a common purpose. The combined effect
of the functions of the hub genes that are co-expressing
together in individual modules may in fact contribute to the
co-functionality of the whole module. The purpose could be
to maintain the functional integrity of the normal process
of learning and memory formation mechanisms, which are
disrupted in the aging brain. Indeed, the side-by-side comparison
(Figure 8) of the yellow module networks between young and
aged rats demonstrates a clear difference in expression patterns.
The majority of the genes in the aged yellow network show
lower expression compared to the young. In addition, the
comparative analysis demonstrates differential co-expression for
many genes between the two networks. These genes display
more co-expression interaction than others and the number of
interaction varies between the young and the aged networks.
For example, the gene Dlg3 has 63 co-expression connections
with other genes in the young network while only one in the
aged. Similarly, Dpp6 has only two co-expression connections
with other genes in the young network while 68 in the

Frontiers in Systems Neuroscience | www.frontiersin.org 14 October 2017 | Volume 11 | Article 75

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Uddin and Singh Gene Networks in Learning Impairment

aged (Table 6). Since, such genes with many co-expression
connections with other genes in a network often play a role
as hubs; we have short listed 19 of these genes as candidate
ASLI hub genes from both the young and aged yellow module
networks. These genes include Camk1g, Cdk5r1, Cntn1, Dlg3,
Dlgap1, Dpp6, Eif5, Gabrg1, Impact, Kcnab2, Mapk1, Mapre1,
Ndfip2, Ppp2r2c, Prkacb, Pten, Rasgrp1, Scn2b and Stxbp1
(Table 4). The results show that some of these hub genes
are already known as key learning and memory genes and
have well established roles in memory functions. While for
others, information is emerging indicating their direct or
indirect role in learning and memory. Below we summarize
what is already known from the literature about the molecular
mechanisms of learning and memory formation and how the
candidate ASLI hub genes from this research fit into that big
picture.

Role of Camk1g, Dlg3, Dlgap1, Dpp6, Kcnab2,
Mapk1 and Stxbp1 in CREB Related Pathways
Several major signaling pathways seem to modulate synaptic
plasticity mechanisms in the brain and have been implicated
in learning and memory formation processes (Sweatt, 2001;
Nguyen and Woo, 2003; Ye and Carew, 2010; Baudry et al.,
2015). Some of the major pathways relevant to this study
include the PKA, CaMKs, MAPK and PI3K/Akt pathways that
have been implicated in LTP formation. LTP is a synaptic
plasticity mechanism and a cellular correlates thought to underlie
learning and memory. Following external stimulation, a set
of crucial upstream events are necessary for their activation,
which include NMDA receptors and the resulting calcium
influx.

Calcium-dependent phosphorylation of CREB is primarily
caused by PKA, CaMK and MAP kinase, which leads to
prolonged CREB phosphorylation. CREB in turn contributes to
the transcription of a set of immediate early genes implicated in
learning and memory formation. CREB is thought to mediate
long-lasting changes in brain function. For example, CREB has
been implicated in spatial learning, behavioral sensitization,
long-term memory of odorant-conditioned behavior, and
long-term synaptic plasticity (Thomas and Huganir, 2004;
Alberini, 2009; Chen et al., 2010; Sweatt, 2010). The ASLI
candidate hub genes that are important in the CREB related
pathways include Camk1g, Dlg3, Dlgap1, Dpp6, Kcnab2, Mapk1
and Stxbp1. For example, Stxbp1 plays a role in releasing
of neurotransmitters via regulation of syntaxin (Kurps and
de Wit, 2012) and may serve to transfer of signal through
the synapse. Dlg3, also known as synapse-associated protein
102 (SAP102), is a scaffolding protein highly enriched in
the postsynaptic density (PSD), and plays an essential role
in synaptic organization and plasticity (Elias and Nicoll,
2007). Dlg3 interacts directly or indirectly with major types
of glutamate receptors. It binds directly to N-methyl-d-
aspartate receptors (NMDARs), anchors receptors at synapses,
and facilitates transduction of NMDAR signals (Wei et al.,
2015).

CaMKs, particularly CaMKII has been shown to be directly
activated by calcium influx through the NMDA receptor. CaMKs

play a significant role in learning and memory formation
through the activation of CREB signaling (Sweatt, 2001; Bito and
Takemoto-Kimura, 2003; Thomas and Huganir, 2004; Baudry
et al., 2015). It is very likely that Camk1g, which has not been
reported before in relation to memory impairment, may function
in a similar manner. It is likely that down-regulation of Camk1g
in the aged rats may in fact contribute to ASLI in those animals
through the CaMK pathway to modulate CREB phosphorylation.

Camk1g co-expression with other learning genes such as
Mapk1, Kcnab2 and Dpp6, functioning in the MAPK pathway
or in various ion channels indicate a potential co-functioning
of these genes towards learning and memory formation. Some
may involve a feed-back loop type activation/mechanism. For
example, during the early phase of LTP at postsynaptic terminals
of CA1 hippocampal neurons, calcium entering through α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
and NMDA receptors activates CaMKII, which phosphorylates
Kv channels and increases neuronal excitability (Sweatt, 2001).
Similarly, Mapk1, stimulated by elevated levels of cAMP
as a result of calcium entry and subsequent activation
of adenylyl cyclase-1, phosphorylates the A-type potassium
channel (Kv1.4 and Kv4.2) resulting in increased depolarization,
allowing influx of Ca2+ through the NMDA and voltage-
gated Ca2+ channels, which results in increased cAMP
levels in the hippocampus in mice. The increase in Ca2+

and cAMP induces the MAPK pathway. Thus, the induced
pathway activates additional pools of MAPK1, some of
which can further increase phosphorylation of Kv1.4 and
Kv4.2, whereas others may phosphorylate nuclear targets.
Voltage-gated potassium (Kv) channels play important roles
in regulating the excitability of neurons and other excitable
cells. Subthreshold activating, rapidly inactivating, A-type K+

currents are non-uniformly expressed in the primary apical
dendrites of rat hippocampal CA1 pyramidal neurons, with
density increasing with distance from the soma (Hoffman et al.,
1997). These changes correlate with impaired spatial memory
and context discrimination (Morozov et al., 2003). Note that
the ASLI candidate gene Kcnab2 encodes one of the beta
subunits of the Kv channels (Kv1.1 to Kv1.8) and this subunit
is found as a component of almost all potassium channel
complexes containing Kv1α subunits (McKeown et al., 2008).
Deletion of Kcnab2 in mice leads to deficits in associative
learning and memory and loss of this gene function likely
contributes to the cognitive and neurological impairments
in humans (Voglis and Tavernarakis, 2006; Perkowski and
Murphy, 2011). The role of Mapk1 through MAPK (ERK)
signaling is not only documented in LTP, but also in spatial
learning (Blum et al., 1999; Selcher et al., 2001; Sweatt,
2001; Thomas and Huganir, 2004). DPP6 may take part
by regulating the A-type K+ current gradient, ultimately
contributing to synaptic integration and dendritic excitability
(Nadal et al., 2003; Wolf et al., 2014). The action potential
firing and dendritic excitability must be balanced by inhibition
in hippocampal neuron. This is likely achieved by Gabrg1
(Costa et al., 2002; Cui et al., 2008) and a number of other
GABA receptors that demonstrated co-expression in the yellow
module.
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Dendritic integration of synaptic inputs is fundamental
to information processing in neurons of diverse function,
serving as a link between synaptic molecular pathways and
higher-order network function (Sun et al., 2011). Dendritic
ion channels play a critical role in regulating such information
processing and are targets for modulation during synaptic
plasticity (Shah et al., 2010). Normal experience-dependent
changes in the excitability of dendrites (dendritic plasticity),
involving the down-regulation of A-type K+ currents by
down-regulation of Dpp6 (observed here), may represent
a mechanism by which neurons store recent experience
in individual dendritic branches (Makara et al., 2009).
Down-regulation of Kcnab2 may contribute to the reduction of
A-type potassium channel currents through reduced availability
of Kv1.4. Future studies are required to investigate the effect of
Dpp6 and Kcnab2 in synaptic development and spatial memory
formation.

Role of Prkacb in the PKA Pathway
Prkacb, a new ASLI candidate in the PKA pathway, once
activated by a variety of upstream signals, including calcium,
can phosphorylate and regulate a variety of downstream
signaling cascades linked to regulation of transcription
and translation (Baudry et al., 2015). It can phosphorylate
AMPA and NMDA receptors and regulate their functions.
PKA plays a major role in long-term changes in synaptic
strength in the brain (Nguyen and Woo, 2003) and has
been well known for its critical role in learning and
memory formation (Waltereit and Weller, 2003). There are
direct genetic evidence that the Prkacb isoform is required
for long-term depression, long-term potentiation and
depotentiation in the hippocampus (Qi et al., 1996; Howe
et al., 2002).

Role of Ndfip2, Pten and Rasgrp1 in the PI3K/Akt
and Related Pathway
Another pathway that is making itself relevant in this big
picture is the PI3K/Akt pathway. A set of genes involved here
include the ASLI candidate genes Ndfip2, Pten and Rasgrp1.
Ndfip2 and Pten were down-regulated in the aged compared
to the young (effect size = −0.38, p-value = 0.22 and effect
size = −0.37, p-value of 0.01, respectively). In the brain,
tyrosine kinase receptor TrkA is phosphorylated on the plasma
membrane by the binding of another growth factor NGF,
which later activates three major signaling pathways: the PI
3 kinase pathway leading to activation of Akt kinase, the
ras pathway leading to MAP kinases, and the PLC pathway
leading to release of intracellular Ca2+ and activation of PKC
(Purves et al., 2004). Ndfip2 affect tyrosine kinase signaling
pathway through Nedd4 ligases (Cristillo et al., 2003), which
associate with EGF receptor and Pten (Blair and Harvey, 2012;
Sperow et al., 2012). Based on literature information it can
be hypothesized that Ndfip2 may modulate the EGF signaling
cascade (Mund and Pelham, 2010); it is possible that Ndfip2
might be working in the same fashion as NGF in the brain
to influence not only Akt kinase pathway through Akt, but
also other pathways such ras, MAPK, and PLC. In fact, EGF

and NGF share the same Raf → MEK → MAPK pathway
to promote distinct outcomes (Vaudry et al., 2002). However,
EGF and NGF likely work differently and on different receptor
tyrosine kinases (Lee et al., 2002). Therefore, the role of
Ndfip2 in learning and memory can be investigated in a future
experiment.

MAPKs are normally inactive in neurons but become
activated when they are phosphorylated by other kinases.
In fact, MAPKs are part of a kinase cascade in which
one protein kinase phosphorylates and activates the next
protein kinase in the cascade (Purves et al., 2004). The
extracellular signals that trigger these kinase cascades are
often extracellular growth factors that bind to receptor
tyrosine kinases that, in turn, activate monomeric G-proteins
such as Ras. Rasgrp1, once activated by Ca2+/calmodulin
and diacylglycerol (DAG), facilitates the exchange of GDP
for GTP and may trigger downstream Mapk1 signaling
(Stone, 2006). Once activated, MAPKs can phosphorylate
transcription factors, proteins that regulate gene expression,
and may contribute to long-term memory formation
(Adams and Sweatt, 2002; Sharma et al., 2003). Indeed,
Rasgrp1 may be a novel link between molecules activated
in behavioral paradigms such as phospholipase C and the
well-known Ras–MAPK pathway (Buckley and Caldwell,
2004).

Although, Pten is known to play a direct role in regulating
hippocampal synaptic plasticity, the precise mechanisms
underlying Pten modulation of synaptic plasticity such
as LTP and LTD are not fully known. Recent studies
suggest its involvement in postsynaptic mechanism as
PTEN inhibition promotes AMPA receptor trafficking to
synapses leading to a persistent increase in excitatory synaptic
strength in adult hippocampal slices (Moult et al., 2010).
On the other hand, enhanced PTEN lipid phosphatase
activity has been reported to depress excitatory synaptic
transmission, which in turn is required for NMDA receptor-
dependent LTD (Jurado et al., 2010). In light of this
research, Pten is an excellent candidate to study further for
it potential involvement in ASLI and the mechanisms in
play.

Role of Cntn1, Mapre1 and Ppp2r2c in Learning and
Memory
Co-expression of genes like Cntn1, Mapre1, etc., which have
known functions in neuronal structure, indicates that these
genes play an essential role in learning and memory along
with other genes discussed above. For example, Mapre1 is
well known to regulate microtubule dynamics (Tirnauer et al.,
2002). It plays a crucial role in ADNP function along with
other molecules including Dlg4 and offer protection against
cognitive deficiencies in mice (Oz et al., 2014). Cntn1 is
necessary for myelin sheath formation by oligodendrocytes and
provides critical signal in axon-glia communication (Ranscht,
1988; Çolakoǧ lu et al., 2014). Ppp2r2c, another new ASLI
candidate gene, forms a part of PP2A (protein phosphatase 2A)
enzyme complex, which catalyzes a broad range of substrates
(Xu et al., 2006). Ppp2r2c has been suggested to have a role in
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synaptic plasticity and hence learning and memory (Backx et al.,
2010).

SUMMARY

Taken together, this research has identified a set of candidate
hub genes that all co-express together in a single gene network
module. These genes are known to participate in multiple
different cellular signaling pathways such as PKA, MapK and
CamK as discussed above. Overall, reversible phosphorylation of
proteins by kinase and phosphatase enzymes constitutes some
major forms of signaling (Backx et al., 2010). These different
signaling cascades converge on a common set of mechanisms:
(1) post-translational protein modifications; (2) translational
regulation; and (3) regulation of gene expression (Purves
et al., 2004; Sweatt, 2010; Baudry et al., 2015). Ultimately,
these mechanisms are linked to a few of the common
events responsible for LTP such as increased number of
postsynaptic receptors, and increased dendritic spines. In fact,
these mechanisms are not isolated; rather, multiple cross-talk
between the signaling pathways exist, which suggests that
depending on the conditions, various form of LTP or LTD can
be triggered with different features (Middei et al., 2014; Baudry
et al., 2015). Thus, the signaling pathways are involved in the
mechanism of synaptic plasticity, which in turn is the molecular
mechanism for learning and memory (Sweatt, 2001; Barco et al.,
2006; Chen et al., 2010). Thus, co-expression of the hub genes
along with other genes in the yellow module seems to be
leading to a common function in the hippocampus in the brain,
which in this case is ASLI. Results from the meta-analysis for
these genes strengthen this conclusion (Supplementary Figures
S11–S25). The combined meta-analysis results for these hub
genes show that they were expressed at a very low level in the
brain with comparatively lower standardized mean differences
between young and aged, and thus failed to appear towards
the top in the differentially expressed aging or learning gene
list (Supplementary Tables S1, S2 in Uddin and Singh, 2013).
Down-regulation of the majority of the hub genes in the aged
rats (Figure 8B) may play a critical role in the spatial learning
impairment in the Morris water maze protocol. Interestingly,
many of the hub genes’ individual expression patterns follow
what is reported in the literature in respect to their potential
role in aging associated learning and memory impairment,
for example Camk1g, Dlg3, Dpp6, Mapk1, Mapre1, Ndfip2,
Ppp2r2c, Pten, Prkacb and Rasgrp1. Some other hub genes
such as Cdk5r1, Cntn1, Impact, Kcnab2, Scn2b and Stxbp1 may
have more indirect role. The main function of this second
category of genes may involve contributing to the regulation
of normal neuronal structure and functions, dysregulation of
which become vulnerable at old age, and thus may indirectly
contribute to the overall instability of the memory formation
mechanism.

In this research, the findings of a specific ‘‘learning
and memory’’ module and the associated key hub
genes with their known role in learning and memory
formation offer a promising insight and a plausible
logical expansion to our existing knowledge about the

molecular correlates of the mechanisms underlying memory
formation, synaptic plasticity and age-associated learning
impairment.

Differential Expression vs. Differential
Co-Expression vs. Differential Connectivity
Differential co-expression refers to changes in gene-gene
correlations between two sets of phenotypically distinct
samples (de la Fuente, 2010). Changes in gene-gene
correlation may occur in the absence of differential expression,
meaning that a gene may undergo changes in regulatory
pattern that would be undetected by traditional differential
expression analysis (Gaiteri et al., 2014). The fact that the
altered regulatory patterns observed within tissues across
phenotypic states in manners that are reflected in altered
co-expression networks has been shown in aging mice
(Southworth et al., 2009), across corticolimbic regions in
major depression (Gaiteri et al., 2010) and between miRNA’s
in Alzheimer’s disease (Bhattacharyya and Bandyopadhyay,
2013).

What becomes apparent is that the differential expression
and differential co-expression may point to distinct cellular
mechanisms involved in ASLI, which may be working in
different ways in the cell. For example, our differential expression
meta-analysis has identified a large number of genes showing
significantly altered expression in the aged rats compared
to young rats (Supplementary Tables S1, S2 in Uddin and
Singh, 2013). These genes include many immediate early
(e.g., Arc) or late phase genes (during gene expression) as
well as other genes contributing to aging and ASLI. Major
functions disrupted by these genes include cell viability,
axonogenesis, quantity and synthesis of IP3 and formation of
cells.

On the other hand differential co-expression analysis
presented here identified a set of modules each with distinct
functions. In addition, it has identified a set of candidate
ASLI hub genes in one of those modules. From the known
function of these hub genes as explained above, it is
evident that many of these genes function as kinases and
phosphatases in the neuronal information flow process, starting
from the synaptic junctions/synapses to the nucleus to
activate various transcription factors. Though scattered in
different networks, meta-analysis has also identified few hub
genes functioning as kinases or in ion channels. Thus the
hub genes may be triggering one or more mechanisms
that activate other key factors in a number of pathways,
which set the stage for the expression of several immediate
early or late phase genes, which again most likely activate
the expression of majority of the differentially expressed
genes. Learning in the young animals most likely induces
such mechanisms that synchronously regulate transcription of
multiple genes, and may potentially generate co-expression
relationships.

Another important observation to note is that all the
learning related genes identified in the differential expression
and pathway analyses (and genes they generally interact with)
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are scattered in different networks and pathways (Appendix
6.3.1 to Appendix 6.4.4 in Uddin, 2015). In contrast, the
current differential co-expression analysis identified many
known learning genes (or genes that appear to be contributing to
learning and memory functioning) that are highly concentrated
and co-expressed in the yellow ‘‘learning and memory’’
module.

Interestingly, the candidate ASLI hub genes are expressed
at a comparatively lower level, with small differences in
expression (e.g., effect size) between young and aged samples.
For example, the Prkacb hub gene was not known to be a
learning gene (Supplementary Tables S3, S4 in Uddin and
Singh, 2013). Like Prkacb, most of the hub genes failed to
show significant effect size or differential expression values
and remained undetected in the meta-analysis (Supplementary
Tables S1, S2 in Uddin and Singh, 2013). This fact highlights
the importance of alternate analysis like WGCNA to identify
genes that are not detected using the traditional methods. Similar
observations have been demonstrated in past studies (Rhinn
et al., 2012). For example, the alpha synuclein gene variant
‘‘aSynL’’, containing a long 3′sUTR, was identified as the most
differentially coexpressed gene in several Parkinson’s disease
datasets. However, aSynL was not highly differentially expressed
and thus would have likely been overlooked by traditional
microarray analysis (Gaiteri et al., 2014). Thus, through the
identification of modules and hubs, differential co-expression
analysis can be used to prioritize specific phenotype-related
important molecules.

Another very interesting property of co-expression networks
is the network connectivity. Our findings (Supplementary
Figure S26) support the newly emerging hypothesis (Oldham
et al., 2006; Miller et al., 2008) that differential connectivity
is different from differential expression. During the network
construction process, I selected genes with high connectivity
and filtered out all low connectivity genes (Supplementary
Table S2). The observation is that the resulting network
modules represent a set of highly connected genes as hubs
that were virtually absent in the differentially expressed top
gene list (in Uddin and Singh, 2013) and vice versa. In fact,
it has been reported that gene-gene correlations in disease
can occur with or without changes in expression (Hudson
et al., 2009). In addition, differentially expressed genes in
some complex psychiatric diseases can have low connectivity,
which reside on the periphery of co-expression networks for
neuropsychiatric disorders such as depression, schizophrenia
and bipolar disorder (Gaiteri and Sibille, 2011; Gaiteri et al.,
2014).

FUTURE DIRECTIONS

The candidate ASLI genes (including hub genes) and gene
networks identified in this research become excellent candidates
for further investigations. Particularly, the hub genes can
provide a different perspective on gene regulation as they can
serve as excellent targets to examine the biological significance
of a network module. They could be targeted to see not
only a perturbation effect of altered regulation on network

module structure and function, but for therapeutic use as well.
Co-expression modules are not in fact completely modular as
there are often correlations among the members of different
modules (Gaiteri et al., 2014). Therefore, any perturbation effect
will likely extend outside of a module and will need to be studied.
Since, differential co-expression is likely related to altered
gene regulation, experiments involving ChIP, or ChIP-seq of
potential transcription factors, can be designed to capture
related gene regulatory mechanisms after any perturbation.
Epigenetic mechanism are also intimately involved during the
gene expression process in learning and memory formation
(Levenson and Sweatt, 2005, 2006; Gräff and Mansuy, 2008;
Franklin and Mansuy, 2010; Sweatt, 2010). So, changes in
chromatin structure, methylation and acetylation pattern, as well
as miRNA population changes should also be investigated.

For the purpose of future investigation, the candidate
ASLI hub genes could be grouped into three categories:
(1) Hub genes whose role in learning (including spatial
learning) is more transparent than others (i.e., gene with
well-established roles in memory, for example, Camk1g, Dlg3,
Mapk1, Ppp2r2c and Prkacb); (2) Hub genes (e.g., Cdk5r1,
Cntn1, Scn2b, Stxbp1, Eif5 and Gabrg1) where there is
not enough information in the literature to support which
direction their expression pattern contributes to the ASLI
phenotype; and (3) Hub genes where information is emerging
indicating their direct or indirect role in learning and
memory (e.g., Pten, Kcnab2, Mapre1, Ndfip1, Rasgrp1 and
Dpp6).

One way to learn the specific effects of hub genes is through
knockout experiments. This is because the hub genes are likely
to act as drivers of the disease status due to their key positions
in the gene networks (Allen et al., 2012). It is known that
transmission of signal through scale-free cellular networks is
unlikely to be affected by random node deletion; rather it
is especially vulnerable to targeted hub attack (Albert et al.,
2000). This observation is supported by examples from multiple
molecular and brain networks in which hub targeting leads to
crucial functional impairment (Stam et al., 2007). Practically, hub
genes have been the specific focus for investigations into many
disease-correlated modules (Miller et al., 2008; Ray et al., 2008;
Torkamani et al., 2010; Voineagu et al., 2011; Maschietto et al.,
2015; Ye and Liu, 2015). Analysis of hub genes has been shown to
be a promising approach in identifying key genes in many other
phenotypic conditions (Kendall et al., 2005; Mani et al., 2008;
Slavov and Dawson, 2009; Nibbe et al., 2010; Zhou et al., 2014;
Holtman et al., 2015; Rickabaugh et al., 2015; Spiers et al., 2015).
Such genes are often of biological interest because of their critical
involvement in regulatory pathways or sub-networks and these
genes often incur a substantial effect on the pathways as a whole.
The candidate ASLI hub genes identified in this research may
very likely present a snapshot of what is going on inside brain
cells during the memory formation process.

CONCLUSION

Despite significant research in the past, ASLI genes and networks
remain largely unclear and were the main focus of this article.
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The major goal of this research was to identify genes and gene
networks in ASLI in rats from multiple independent but related
gene expression datasets.

In order to overcome some limitations in traditional meta-
and pathway analysis, we explored the option of using a
mathematical modeling approach that could better utilize the
information captured in microarray data. We chose to use
WGCNA and applied it on a set of R7 exploratory datasets
containing young rats that were learning unimpaired and aged
rats that were predominantly learning impaired. This analyses
identified a set of gene network modules. To our satisfaction,
WGCNA offered a way of prioritizing the molecules solely
based on data and without any knowledge of their functions
(i.e., by grouping genes into co-expressing network modules).
This finding was confirmed by the follow up GO analysis
which showed that each module is highly enriched with genes
functioning in some broad but distinct GO functional categories
or biological pathways. Further, these modules show significant
repeatability in independent young and aged validation datasets.
Interestingly, this analysis identified a single learning and
memory related module and within the module a set of unique
hub genes related to ASLI. Majority of the candidate ASLI
hub genes from this module remained undetected in our
previous meta- and differential expression analysis. Some of
these hub genes also show significant repeatability in networks
generated from independent validation datasets. These hub
genes are highly co-expressed with other genes in the ‘‘learning
and memory’’ module. In network comparison between young
and aged, these genes not only show differential expression
but also differential co-expression and differential connectivity.
These likely explain the spatial learning impairment that
was observed in the aged rats compared to the young. The
known function of these hub genes indicate that they play
key roles in critical pathways relating to synaptic plasticity
and memory formation. Collectively, they provide a deeper
understanding of the mechanisms that may be involved.

These candidate ASLI hub genes seem highly promising to
investigate further to understand the regulatory networks in
ASLI.

Co-expression network analysis as applied in this research
shows how to transform large-scale gene expression microarray
data involving spatial learning impairment in rats into several
testable hypotheses related to ASLI. This type of analysis can
complement traditional analysis of microarray data and can help
better understand how genes interact with each other, how they
are regulated, and what target genes they may affect in order
to elucidate the mechanisms behind complex phenotype such as
aging and ASLI.
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