
RESEARCH ARTICLE Open Access

A geospatiotemporal and causal inference
epidemiological exploration of substance
and cannabinoid exposure as drivers of
rising US pediatric cancer rates
Albert Stuart Reece1,2* and Gary Kenneth Hulse1,2

Abstract

Background: Age-adjusted US total pediatric cancer incidence rates (TPCIR) rose 49% 1975–2015 for unknown
reasons. Prenatal cannabis exposure has been linked with several pediatric cancers which together comprise the
majority of pediatric cancer types. We investigated whether cannabis use was related spatiotemporally and causally
to TPCIR.

Methods: State-based age-adjusted TPCIR data was taken from the CDC Surveillance, Epidemiology and End
Results cancer database 2003–2017. Drug exposure was taken from the nationally-representative National Survey of
Drug Use and Health, response rate 74.1%. Drugs included were: tobacco, alcohol, cannabis, opioid analgesics and
cocaine. This was supplemented by cannabinoid concentration data from the Drug Enforcement Agency and
ethnicity and median household income data from US Census.

Results: TPCIR rose while all drug use nationally fell, except for cannabis which rose. TPCIR in the highest cannabis
use quintile was greater than in the lowest (β-estimate = 1.31 (95%C.I. 0.82, 1.80), P = 1.80 × 10− 7) and the time:
highest two quintiles interaction was significant (β-estimate = 0.1395 (0.82, 1.80), P = 1.00 × 10− 14). In robust inverse
probability weighted additive regression models cannabis was independently associated with TPCIR (β-estimate =
9.55 (3.95, 15.15), P = 0.0016). In interactive geospatiotemporal models including all drug, ethnic and income
variables cannabis use was independently significant (β-estimate = 45.67 (18.77, 72.56), P = 0.0009). In geospatial
models temporally lagged to 1,2,4 and 6 years interactive terms including cannabis were significant. Cannabis
interactive terms at one and two degrees of spatial lagging were significant (from β-estimate = 3954.04 (1565.01,
6343.09), P = 0.0012). The interaction between the cannabinoids THC and cannabigerol was significant at zero, 2
and 6 years lag (from β-estimate = 46.22 (30.06, 62.38), P = 2.10 × 10− 8). Cannabis legalization was associated with
higher TPCIR (β-estimate = 1.51 (0.68, 2.35), P = 0.0004) and cannabis-liberal regimes were associated with higher
time:TPCIR interaction (β-estimate = 1.87 × 10− 4, (2.9 × 10− 5, 2.45 × 10− 4), P = 0.0208). 33/56 minimum e-Values
were > 5 and 6 were infinite.
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Conclusion: Data confirm a close relationship across space and lagged time between cannabis and TPCIR which
was robust to adjustment, supported by inverse probability weighting procedures and accompanied by high e-
Values making confounding unlikely and establishing the causal relationship. Cannabis-liberal jurisdictions were
associated with higher rates of TPCIR and a faster rate of TPCIR increase. Data inform the broader general
consideration of cannabinoid-induced genotoxicity.

Keywords: Cannabis, Cannabinoid, Δ9-tetrahydrocannabinol, Cannabigerol, Genotoxicity, Acute leukaemia, Pediatric
cancer

Background
CDC Surveillance, Epidemiology and End Results (SEER)
data from 9 US cancer registries indicates that the age-
adjusted total Pediatric (age less than 20 years) cancer
incidence rate (TPCIR) has risen 49.0% from 12.96 to
19.32 / 100,000 from 1975 to 2015 [1]. Cancer incidence
is U-shaped across the pediatric age range being higher
in the under 5 years and over 14 years age groups [2].
Leukaemias, brain and nervous system, neuroblastoma,
soft tissue sarcoma, lymphoma and testicular cancer are
amongst the commonest pediatric cancers [2, 3].
Notwithstanding a generally falling mortality rate from

childhood cancer, the TPCIR incidence is acknowledged
to be rising since the records of collated cancer registries
were first published in 1975 [2]. The cause of this unpre-
cedented increase is at present unclear. Moreover major
ethnic differentials are evident for tumours such as All
Childhood Cancer (ACC), acute lymphatic leukaemia
(ALL) and brain and testicular cancers where the rates
in African-American patients vary from 20 to 70% of
those in the Caucasian-American community [2]. Again
the reasons for such large ethnic disparities are un-
known. It therefore appears that several of the major
questions relating to the aetiopathogenesis of pediatric
cancer are outstanding.
Whilst in adult populations the relationship between

cannabis use and cancer incidence is controversial with
both positive and negative reports in existence [4, 5],
amongst pediatric populations the situation is much
clearer. It was noted by the California Environmental
Protection Agency in a very detailed literature review
that five of six studies reported a positive relationship
[6–11]. Parental cannabis use has been linked with acute
lymphatic leukaemia, acute myeloid leukaemia, child-
hood astrocytoma, rhabdomyosarcoma and neuroblast-
oma [2, 7–12]. Together these comprise 60–70% of the
total cancers seen in children younger than 14 years and
those between 15 and 20 years [2]. In such a context it
becomes plausible that the rise in cannabis use since the
1960’s may be a primary driver of total pediatric cancer.
Testicular cancer is a particularly interesting case. It is

well established that testicular cancer occurs mainly in
younger men with an age peak at 30–34 years and 20%

of cases occur in the pediatric age range [1]. The tes-
tes houses the germ cells and cannabinoids are
known to have myriad direct effects on the repro-
ductive tract in both sexes [13–17]. There is great
uniformity in studies of the cannabis-testicular cancer
link as all four studies found a risk elevation of over
two-fold [18–21] with an overall risk for current,
weekly and chronic smokers of non-seminomatous
germ cell tumours estimated in meta-analysis of 2.59
(95%C.I. 1.60–4.19) [22]. Since pediatric cancer often
results from inherited genetic errors [23, 24] this
implies that major genetic errors in germ cells are
induced by parental cannabis exposure.
Adding to concerns related to the potentially geno-

toxic actions of prenatal cannabinoid exposure (PCE) is
an increasing interest in elevation of many birth defects
following PCE in Hawaii, Colorado, Canada and
Australia [25–28]. A recent report noted a three-fold rise
in total congenital defects in the northern Territories of
Canada where more cannabis is smoked [28]. Downs
syndrome, due to a major genetic trisomic error, has
also been found to be elevated following PCE in Hawaii,
Colorado and Australia [25–27] and this syndrome has
an established link with childhood ALL with 6–10% of
Downs syndrome children being affected by this
malignancy [29, 30].
As discussed below the physiology and pathophysi-

ology of both the endocannabinoid system and the
impacts of diverse exogenous phytocannabinoids is pres-
ently being studied in great detail and major impacts on
reproductive health, genetic and physiological quality of
gametes, epigenetic effects on both DNA methylation
and histone synthesis and signalling, immunomodulatory
and mitochondriopathic effects, and transgenerational
inheritable epigenetic effects in both man and mouse are
well established and have been demonstrated by a num-
ber of investigators [15, 17, 31–38].
Concerns are heightened by the recent demonstration

that 69% of cannabis dispensaries in Colorado recom-
mended cannabis use to pregnant patients for various
symptoms in a recent telephone survey [39] and that in
2017 an estimated 161,000 women used cannabis whilst
pregnant across USA [40, 41].
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Taken together these data suggest that an improved
understanding of cannabis-related carcinogenesis in the
closely defined pediatric context might well lead to im-
portant insights into cannabis-related genotoxicity more
generally [42, 43]. Moreover the advent of sophisticated
geospatial analysis together with some of the formal
techniques of causal inference analysis implies that so-
phisticated and modern analytical procedures could be
brought to bear on these important and increasingly
topical issues. Techniques such as inverse probability
weighting and e-Values are designed to formally investi-
gate causal, as opposed to merely associational,
relationships.
The objective of this study was to determine if the rise

in pediatric cancers across USA paralleled the recent rise
in the use of cannabis when considered formally across
space and time, and if the relationship met the criteria
for causal inference when assessed by strict quantitative
criteria.

Methods
Data
Annual data on age-adjusted rates of pediatric cancer
cases occurring in patients less than 20 years old was
accessed from the publicly available SEER*Explorer web-
site [1]. Data on state-based pediatric cancer rates was
accessed via the SEER*Stat software from the SEER /
NCI database [44]. Drug use data was accessed from the
nationally representative National Survey of Drug Use
and Health (NSDUH) conducted by the Substance
Abuse and Mental Health Services Administration
(SAMHSA) [45]. This survey reports a 74.1% response
rate [46]. Data on the following drug variables was col-
lated: monthly cigarette use; annual alcohol use disorder,
monthly cannabis use, annual analgesic abuse and an-
nual cocaine use. Data on ethnic composition and me-
dian household income by state and year was accessed
via the tidycensus package in R from the US Census
Bureau. The ethnicities for which data was collected
were: Caucasian American, African American, Hispanic
American, Asian American, American Indian / Alaskan
Native American, Native Hawaiian / Pacific Islander
American. Data on national cannabinoid concentrations
for Δ9-tetrahydrocannabinol (THC), cannabinol, canna-
bigerol and cannabichromene was obtained from various
published reports [47–49]. Data on cannabis legal status
was adduced from an internet search [50].

Derived data
Given the clear differences in drug use by ethnicity it
was considered important to formally take ethnic canna-
bis use into account in regression modelling. Data on
the frequency of cannabis use by ethnicity was available
at the national level from the SAMHSA Substance

Abuse and Mental Health Data Archive (SAMHDA) Re-
stricted Use Data Analysis System (RDAS) [45]. For each
ethnicity and for each year the percentage of the ethni-
city using cannabis at the midpoint of the indicated fre-
quency were multiplied together and summed to gain an
ethnic cannabis use index. Hence if fraction x of an eth-
nicity used cannabis from 20 to 30 days per month then
x would be multiplied by 25. This was repeated and
summed across all use frequencies to obtain a specific
ethnic cannabis use index for that year. This index was
multiplied by the state cannabis use rate and the THC
concentration in that year to derive an estimate of the
ethnic exposure to THC in each state. Similarly the con-
centration of selected cannabinoids was multiplied by
the state cannabis use rate to derive a state based expos-
ure to that cannabinoid. Cannabis use quintiles were de-
fined in each year and concatenated to form strata
across all years.

Missing data
The total pediatric cancer rate for Wyoming 2008 was
absent. This was imputed as the mean of its rate in 2007
and 2009. The rate of analgesic use was missing for all
states in 2015. This was imputed as the mean of the
state rates for 2014 and 2016.

Statistics
R version 4.0.2 (2020-06-22) from CRAN was used for
data analysis and accessed via the RStudio 1.2.5042
(2009–2020) GUI. Data analysis was performed in Sep-
tember 2020. Graphs and map-graphs were drawn using
packages ggplot, albersusa and sf. Covariates were log-
transformed to approximate normality based on the
Shapiro-Wilks test. Linear, mixed effects, panel, robust
marginal structural models and spatial models were
studied using packages base, nlme, plm, survey and splm
(spatial panel linear models) respectively [51–53]. In
each case model reduction was performed by the clas-
sical technique of serial deletion of the least significant
term. A variety of modelling procedures was employed
for the following reasons. Mixed effects regression was
useful for state-wise study of data, for inverse probability
weighted corrections, and for generation of standard de-
viations which can be input to eValue calculations. Panel
regression modelling was well suited to the time series
sequential nature of the dataset, can be inverse probabil-
ity weighted and allowed the use of both lagging and in-
strumental variables. Robust regression was conducted
to examine the robust effects after inverse probability
weighting. Spatiotemporal regression was performed as
the data are inherently distributed across space and time
and there was good evidence from the models for both
spatial and temporal autocorrelation (see Results). As
the models also produce a variance estimate their output
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is well suited to the calculation of e-Values. Inverse
probability weighting was conducted with the ipw pack-
age and e-Values for regression models were calculated
with the package EValue. Tests for trend were con-
ducted with the chi squared test in Base. T-tests were
conducted for parametric group comparisons and were
two tailed. P < 0.05 was considered significant
throughout.
Panel analysis utilized the pooling technique, a time ef-

fect, the random method of Swarmy, the instrumental
method of Amemiya and were inverse probability
weighted. Robust structural models were conducted by
state and were inverse probability weighted.

Spatial analysis
Interstate geospatial linkages were made on the “queen”
basis of shared edges or corners and compiled with the
poly2nb function from package spdep. They were edited
as described so that no state, such as Alaska or Hawaii,
was left geospatially isolated (as shown in Results).
Model specification of spatial models was undertaken
from the general full model to the specific [54]. That is
to say the standard spatiotemporal regression model was
conducted using the splm function spreml (spatial panel
random effects maximum likelihood) including spatial
autocorrelation after Kapoor, Kelejian and Prucha [55],
random effects, serial correlation in the residual errors
and spatial autocorrelation, coded as sem2srre in spreml
models [52]. Significance of the final model parameters
phi, psi, rho and lambda which quantify random error,
serial correlation in the residuals, spatial error correl-
ation and spatial autocorrelation respectively, confirmed
that this maximal structure was appropriate (see Results
tables). The spatial error adjustment of Kapoor, Kelejian
and Prucha takes into account spatial correlation in both
the exposure and the outcome and this was considered
to be reflective of the real world situation in this case
[54]. spreml models do allow the use of both spatial and
temporal lagging which has been utilized as described.
At the time of writing splm and spreml spatial models
do not allow the use of instrumental variables or inverse
probability weighting which implies the need for supple-
mentary techniques.

Causal inference
Two techniques of causal inference were employed. In-
verse probability weights were constructed for the ex-
posure of interest, monthly cannabis exposure, as a
function of the other drug variables which were our pri-
mary variables of interest. These weights were used to
weight mixed effects, panel and robust regression
models appropriately. The effect of this procedure is to
equalize exposure across study groups and has also been
validated for continuous exposures as considered here.

Such techniques are said to create pseudo-randomized
groups from which causal inferences can properly be
made. We also calculated e-Values which are a measure
of the association required of any unmeasured potential
confounder variable with both the exposure and the out-
come to discount the reported results. In the literature
minimum (of the two) e-Values above 1.25 are com-
monly considered of relevance [56].

Data availability
All data, including R code, inverse probability weights,
geospatial weights, and source datasets, has been made
publicly available through the Mendeley data base re-
pository and may be accessed at this URL: https://doi.
org/10.17632/cnwv9hdspd.1.

Ethics
The datasets used were all publicly available and de-
identified. No reference has been made at any point to
individually identifiable data. The present work was ap-
proved by the University of Western Australia Human
Research Ethics Committee on June 7th 2019 (No. RA/
4/20/4724).

Results
Inspection of the SEER*Explorer website shows that at
the national level that age-adjusted rates of several can-
cers in the pediatric age group (younger than 20 years)
are rising including all cancer and acute lymphatic leu-
kaemia which is the commonest tumour. The annotation
on the SEER website is made from the JoinPoint pro-
gram which also comes from NCI and CDC. These tu-
mours are listed in Table 1 and illustrated in Fig. 1 using
data based on 9 US cancer registries 1975–2017. Supple-
mentary Figure 1 shows other cancers which are mostly
rising utilizing data from 21 US cancer registries 2000–
2017.
Figure 2 shows national drug exposure data from

NSDUH 2003–2017 and US Census bureau median
household income data. It is important to note that ex-
posure to most classes of drugs is dropping with the not-
able exception of cannabis. Since SAMHSA NSDUH
data could be temporally matched to the CDC SEER
cancer database for the years 2003–2017, this became
the period of analysis.
Figure 3 shows the concentration of various cannabi-

noids found in federal cannabis seizures 1980–2017
[47–49].
Figure 4 shows the age-adjusted state-based TPCIR

plotted as a function of exposure to the various sub-
stances listed. The regression line for cannabis is noted
to be weakly and non-significantly positive.
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Figure 5 shows plots of the TPCIR rate against se-
lected cannabinoids. The regression lines for THC and
cannabigerol appear to be strongly positive.
Figure 6 shows the TPCIR as a function of ethnic can-

nabis exposure. In each case the regression line appears
to be strongly positive and up-sloping.
Table 2 lists applicable results from linear regression

against time, cannabis, THC, various substances, canna-
binoids and ethnicity. Many results are significant with
the notable exception of cannabis.

Figure 7 shows the result of assessing the TPCIR as a
function of cannabis use quintiles both cross-sectionally
(boxplots) and over time (scatterplots). Panel A appears
to show a rising trend with cannabis use quintile. One
notes in particular that the notches of the fourth and
fifth quintiles do not overlap those of Quintiles 1 and 2
which indicates significance. In Panel B the highest two
quintiles seem to be above the lower ones over time.
Panel C and D look at the data dichotomized into the
two highest quintiles compared to the three lower ones.

Table 1 SEER-Nominated Time Trends of Various Pediatric and Adult Cancers

Cancer Observed Trend Delayed Trend

All Pediatric Cancers (< 20 Years) Rising Rising

Pediatric ALL - Acute Lymphatic Leukaemia Rising

Pediatric AML - Acute Myeloid Leukaemia Rising

Pediatric Brain Cancer Stable Rising

Pediatric NHL - Non-Hodgkins Lymphoma Rising Rising

Sarcoma - All Age Stable

Sarcoma < 20 Year - Localized Rising

Sarcoma < 20 Year - Distant Rising

Sarcoma All Age - Localized Rising

Sarcoma All Age - Distant Rising

Sarcoma All Age Rising

Pediatric Testes < 20 Years Stable Stable

Testes < 50 Years Rising Rising

Testes All Age Rising Rising

Fig. 1 Pediatric Cancers 1975–2017, CDC SEER Explorer Dataset, USA National Level, data derived from 9 cancer registries
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Again in Panel C it is clear that the notches of the upper
quintiles do not overlap those of the lower ones. Panel D
shows that this holds true over time. Raw mean quintile
data with standard errors appears in Supplementary
Table 1.

When comparing the highest and lowest quintile of
cannabis use the TPCIR in the highest quintiles is
significantly greater than that in the lowest quintile
(t = 5.038, df = 299.6, P = 8.15 × 10− 7). Comparing the
two dichotomized cannabis quintile groups they are

Fig. 2 Drug use over time. Data from NSDUH 2002–2017, SAMHSA

Fig. 3 Cannabinoid concentrations in Federal Seizures of Cannabis over time, Drug Enforcement Agency data [47–49]

Reece and Hulse BMC Cancer          (2021) 21:197 Page 6 of 33



also significantly different (t = 5.641, df = 673.6, P =
2.4810− 8). The chi squared test for trend across the
quintiles does not reach significance (Chi.Squ. = 465.4,
df = 420, P = 0.0623). When these data are examined
by linear regression the significant results shown in
Table 3 are found.
Table 4 presents results from increasingly complex ro-

bust inverse probability weighted marginal structural
models. Results for additive, interactive with drugs only,

interactive including drugs, race and income and inter-
active including cannabinoids, drugs, race and income
models are shown. It is particularly noteworthy that in a
simple additive robust model (listed first in the table)
cannabis is independently highly significant (β-esti-
mate = 9.55 95%C.I. (3.95, 15.15), P = 0.0016).
Since these robust models are not accompanied by a

model variance it is necessary to also use a mixed effects
model system in order to be able to calculate e-Values

Fig. 4 Total pediatric cancer incidence rate as a function of drug exposure
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subsequently. Mixed effects modelling was also con-
ducted after inverse probability weighting (Table 5).
Again a series of increasingly complex models is shown
progressing through additive, drug-interactive, full
models including drugs, income and ethnicity, and a full
model including the two cannabinoids THC and canna-
bigerol. Importantly in the first three models cannabis is
independently highly statistically significant (from β-
estimate = 79.27 (56.77, 101.78), P = 1.2 × 10− 11).
Since the data are gridded in space and time they

are well suited for panel linear modelling, a tech-
nique which, in addition to inverse probability
weighting, allows the added refinements of instru-
mental variables and temporal lagging. Temporal
lagging is pathophysiologically important in such
studies as it is likely that any procarcinogenic or
environmental exposure takes some time to work
before the clinical and epidemiological impact of
genotoxicity becomes evident. Again a series of in-
creasingly complex models is presented at increas-
ing lags (Table 6). Cannabis is again highly
significant in many terms, including being inde-
pendently significant in additive models (from β-
estimate = 5.31 (1.68, 8.95), P = 0.0042).

Data is also evidently oriented in space and time and
is thus eminently suited for formal spatiotemporal ana-
lysis. Map-graphs of the data over the 16 years 2002–
2017 are shown in Fig. 8. Fig. 9 shows the geospatial re-
lationships between the contiguous American states and
the manner in which links to Hawaii and Alaska have
been edited in to define the final spatial neighbourhood
network based on “queen” (edge and corner) contiguity.
This neighbourhood sparse weights matrix is utilized in
all the spatial regressions which follow.
Table 7 shows the initial results from a series of additive

and increasingly complex unlagged interactive spatiotem-
poral models. The table includes the log of the maximum
likelihood ratio (Log.Lik.) at model optimization, and the
specifically geospatial model coefficients phi, psi, rho and
lambda (see Methods). Since all four of these parameters
are generally highly significant this confirms that the full
model specification (denoted ‘sem2srre’ in splm::spreml) is
appropriate. The Table also lists the standard deviation of
each model which is a required input for E-Value calcula-
tion. Again cannabis is noted to be independently highly
significant in each model.
Table 8 shows the results of models lagged first just

with cannabis and then for all drugs. Interactive terms

Fig. 5 Total pediatric cancer incidence rate as a function of estimated state level cannabinoid exposure
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including cannabis continue to be highly significant.
Interactive terms including cannabis are significant from
β-estimate = 658.72 (396.60, 920.84), P = 8.40 × 10− 7 for
cigarettes: cannabis: alcohol interaction at 2 years of lag.
Table 9 presents results of models lagged in space for

cannabis and in time for the other drugs.
Table 10 presents the results of temporally lagged

interactive space-time models including the two

cannabinoids THC and cannabigerol. Cannabigerol is in-
dependently significant at 2 lags, and the THC:cannabi-
gerol interaction is significant at zero, two and six lags.
As mentioned in Methods, well described ethnic dis-

parities exist for many tumours including total cancer.
However it is important to consider to what extent such
drug use disparities might account for the known epi-
demiology of TPCIR . Table 11 presents an interactive

Fig. 6 Total pediatric cancer incidence rate as a function of estimated ethnic THC exposure
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geospatial regression of the TPCIR against THC expos-
ure of five races as indicated with highly significant
results.
E-Values are an important way of quantitating the

magnitude of co-association required of any unmeasured
confounder with both the exposure and outcome vari-
ables to explain away the observed effects. Table 12 pre-
sents selected E-Value calculations from linear, mixed
effects and geospatial models presented in preceding Ta-
bles. The key variable to observe is the final number at
the right hand side representing the minimum E-Value,
and should be read in the light of the observation by one
of its originators that E-Values in the literature over ap-
proximately 1.25 are considered noteworthy [56]. In gen-
eral terms the E-Values fall in the sequence geospatial
models > mixed effects models > linear models, related
partly to the much smaller model variance of more com-
plex models.
Table 12 lists 56 E-Values related to cannabis or

cannabinoids of which 24 are larger than 1000. Of the
33 E-Values originating from geospatial models, 20 are
larger than 1000. The table lists six minimum e-Values
of infinity, three deriving from mixed effects models and
three from geospatial models.

Given the above compelling data demonstrating a link
between rising rates of cannabis exposure and rising
TPCIR an obvious extension of this study was whether
the increasing use, availability and concentration of can-
nabis associated with more liberal legal paradigms [57]
was associated with elevated TPCIR . One important
caveat on such an investigation is that since the data
only run to 2017 and many populous states had not yet
been affected by the cannabis legalization movement, it
may be considered that the data is premature for a full
determination of this potential effect. Fig. 10a shows the
rate of TPCIR under various legal paradigms. Whilst the
few states involved with full cannabis legalization at that
time were associated with broad confidence interval
bands there is a clear impression in this Figure that the
rate under decriminalization appeared to be at a higher
levels than others. Fig. 10b dichotomizes the data into
liberal paradigms vs. traditional policies of cannabis be-
ing considered illegal. Separation of the two regression
lines towards the right hand side of the graph gives a
clear impression for a significant interaction between
time and dichotomized legal status.
These differences are formally assessed in Table 13 by

linear regression. Decriminalized and legal status are both

Table 2 Linear Models: TPCIR Against Time, Cannabis, Cannabinoids and Ethnicity

Parameter Estimates Model Parameters

Parameter Estimate (C.I.) Pr(>|t|) R-Squared F dF P

lm(Cancer_Rate ~ Time)

Year 0.14 (0.1, 0.17) 3.8E-14 0.0725 59.6 1748 3.80E-14

lm(Cancer_Rate ~ Cannabis)

mrjmon 1.00 (−1.22, 3.22) 0.3800 −0.0003 0.78 1748 0.3770

lm(Cancer_Rate ~ Δ9THC)

Δ9THC 0.33 (0.15, 0.5) 0.0002 0.0169 13.8 1748 0.0002

lm(Cancer_Rate ~ Exposure * Drug)

Drug_Rate: Cannabis 4.63 (2.11, 7.15) 0.0003 0.0207 9.82 93,740 5.39E-15

Drug_Rate: Alcohol −3.22 (−6.21, −0.22) 0.0356

Drug_Rate: Analgesics −6.63 (−10.51, −2.75) 0.0008

Cocaine −1.06 (− 1.63, −0.49) 0.0003

Cannabis −1.32 (− 1.89, −0.74) 0.0000

Drug_Rate −3.63 (−4.86, −2.4) 0.0000

lm(Cancer_Rate ~ Exposure * Cannabinoid)

Cannabinol 6.54 (5.07, 8.01) < 2E-16 0.0402 18.9 72,992 < 2E-16

Cannabigerol 7.65 (5.91, 9.38) < 2E-16

Drug_Rate 2.14 (1.55, 2.73) 0.0000

Cannabichromene 3.86 (0.29, 7.42) 0.0340

Drug_Rate: Cannabichromene −3.02 (−5.4, −0.63) 0.0130

lm(Cancer_Rate ~ Ethnic_THC_Exposure * Ethnicity)

Ethnic_THC_Exposure 0.14 (0.07, 0.21) 0.0001 0.0021 2.57 64,493 0.0174

Asian-Am_THC_Exposure 0.28 (0.02, 0.55) 0.0360
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Fig. 7 Total pediatric cancer incidence rate by cannabis use quintiles. a Boxplot over aggregated time. b Scatterplot over time by cannabis use
quintiles. c Boxplot by dichotomized cannabis use quintiles, highest two quintiles vs. the lowest three. Note non-over-lapping notches indicating
significant differences. d Scatterplot over time of total pediatric cancer incidence rate by dichotomized cannabis use quintiles

Table 3 Linear Regressions on Quintiles

Parameter Estimates Model Parameters

Parameter Estimate (C.I.) P-Value R-Squared F dF P-Value

Quintiles

lm(Cancer_Rate ~ Quintile)

Quintile 2 0.2 (−0.29, 0.69) 0.4242 0.04527 9.34 4745 2.27E-07

Quintile 3 0.14 (−0.35, 0.63) 0.5655

Quintile 4 0.72 (0.23, 1.2) 0.0042

Quintile 5 1.31 (0.82, 1.8) 1.8E-07

Dichotomized Quintiles

lm(Cancer_Rate ~ Dichotomized_Quintiles)

Upper_2_Quintiles 0.9 (0.58, 1.22) 3.9E-08 0.0383 30.9 1748 3.86E-08

Dichotomized Quintiles Over Time

lm(Cancer_Rate ~ Year + Dichotomized_Quintiles)

Upper_2_Quintiles 0.9 (0.59, 1.2) 1.1E-08 0.111 47.8 2747 < 2E-16

lm(Cancer_Rate ~ Year: Dichotomized_Quintiles)

Lower_3_Quintiles 0.139 (0.1, 0.17) 1.2E-14 0.111 47.7 2747 < 2E-16

Upper_2_Quintiles 0.1395 (0.1, 0.17) 1.0E-14
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confirmed to be significant on their own (upper table seg-
ment). In interaction with time decriminalized status is
significant (middle table segment). Dichotomized legal sta-
tus is also found to be significant in interaction with time
(lower table segment, β-estimate = 1.87 × 10− 4, (2.9 ×

10− 5, 2.45 × 10− 4), P = 0.0208). Table 12 lists the mini-
mum E-Values associated with these changes as 1.60 and
1.98 for cannabis decriminalization and full cannabis
legalization respectively (at the bottom of the Linear Re-
gression part of Table 12).

Table 4 Robust Generalized Linear Regression Models

Parameter Estimate (C.I.) P-Value

Additive Model

svyglm(Cancer_Rate ~ Cigarettes + Cannabis + Analgesics + Alcohol + Cocaine)

Cannabis 9.55 (3.95, 15.15) 0.0016

Alcohol −19.69 (−27.68, − 11.7) 1.5E-05

Interactive Model

svyglm(Cancer_Rate ~ Cigarettes * Cannabis * Analgesics * Alcohol + Cocaine)

Cigarettes: Cannabis: Analgesics 268.42 (91.87, 444.96) 0.0046

Cigarettes: Analgesics −59.54 (−92.24, −26.84) 0.0009

Full Interactive Model

svyglm(Cancer_Rate ~ Cigarettes * Cannabis * Analgesics * Alcohol + Cocaine + 6_Races + Income)

White 8.1 (6.04, 10.17) 4.2E-09

Hispanic 0.74 (0.37, 1.11) 0.0004

Asian 0.77 (0.38, 1.16) 0.0004

Cigarettes: Alcohol: Analgesics 331.59 (121.58, 541.61) 0.0038

Cigarettes: Cannabis: Analgesics 2537.45 (833.94, 4240.95) 0.0060

Cigarettes 52.94 (15.62, 90.27) 0.0086

Alcohol: Analgesics 871 (196.96, 1545.04) 0.0158

Cannabis: Alcohol 543.49 (110.37, 976.6) 0.0189

Cigarettes: Cannabis −268.79 (− 471.82, −65.76) 0.0136

Alcohol − 119.12 (−207.37, −30.87) 0.0120

Cannabis: Alcohol: Analgesics − 4989.69 (− 8616.76, − 1362.61) 0.0106

AIAN −6.66 (− 11.36, − 1.95) 0.0087

Cigarettes: Analgesics −500.17 (− 808.72, − 191.63) 0.0030

Full Interactive Model with Cannabinoids

svyglm(Cancer_Rate ~ Cigarettes * Δ9THC * Cannabigerol * Alcohol + Analgesics + Cocaine + 6_Races + Income)

White 7.87 (5.73, 10.02) 1.9E-08

Cocaine 25.98 (12.75, 39.21) 0.0005

Asian 0.68 (0.31, 1.06) 0.0010

Hispanic 0.59 (0.23, 0.94) 0.0026

Cigarettes: Δ9THC: Analgesics 34.32 (13.53, 55.11) 0.0026

Cigarettes: Cannabigerol 270.35 (104.12, 436.59) 0.0030

Cigarettes: Δ9THC 2.93 (0.58, 5.28) 0.0195

Δ9THC: Cannabigerol 29.24 (4.95, 53.53) 0.0239

AIAN −5.96 (−11.16, −0.75) 0.0311

Cigarettes: Δ9THC: Alcohol −13.34 (− 24.92, − 1.77) 0.0300

Cigarettes: Δ9THC: Cannabigerol − 103.55 (− 181.75, − 25.34) 0.0136

Cannabigerol − 115.2 (− 189.34, −41.06) 0.0043

Cigarettes: Analgesics −87.59 (− 127.51, − 47.66) 1.2E-04
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Table 5 Mixed Effects Regression Models

Parameters Model Parameters

Parameter Estimate (C.I.) P-Value SD AIC BIC logLik

Additive Model

lme(Cancer_Rate ~ Cigarettes + Cannabis + Analgesics + Alcohol + Cocaine)

Cannabis 5.34 (0.07, 10.6) 0.0472 3.43138 3884.77 3912.46 − 1936.39

Analgesics −11.02 (− 18.65, −3.39) 0.0048

Interactive Model

lme(Cancer_Rate ~ Cigarettes * Cannabis * Analgesics * Alcohol + Cocaine)

Cannabis 72.88 (49.6, 96.15) 1.4E-09 3.31033 3781.12 3836.4 − 1878.56

Cigarettes 43.36 (27.68, 59.04) 8.2E-08

Alcohol: Analgesics 1523.99 (970.61, 2077.38) 9.3E-08

Cigarettes: Cannabis: Analgesics 2788.19 (1676.17, 3900.2) 1.1E-06

Cannabis: Alcohol: Analgesics − 4554.93 (− 6709.17, − 2400.69) 3.8E-05

Cigarettes: Analgesics −539.08 (− 790.18, − 287.99) 2.9E-05

Analgesics −87.43 (−121.63, −53.23) 6.9E-07

Alcohol − 82.06 (− 113.58, −50.54) 4.3E-07

Cigarettes: Cannabis −284.5 (−376.55, − 192.45) 2.3E-09

Full Interactive Model

lme(Cancer_Rate ~ Cigarettes * Cannabis * Analgesics * Alcohol + Cocaine + 6 Races + Income)

White 11.8 (8.45, 15.14) 1.1E-11 3.18221 3715.57 3784.61 − 1842.79

Cannabis 79.27 (56.77, 101.78) 1.2E-11

Asian 2.54 (1.8, 3.27) 2.6E-11

Cigarettes: Alcohol: Analgesics 1636.35 (1108.24, 2164.46) 2.1E-09

Cigarettes 45.74 (30.44, 61.04) 7.2E-09

Cigarettes: Cannabis: Analgesics 2525.7 (1488.65, 3562.75) 2.2E-06

Alcohol: Analgesics 959.4 (425.8, 1493) 4.5E-04

Cannabis: Alcohol: Analgesics − 4264.85 (− 6314.08, − 2215.61) 5.1E-05

Alcohol −93.44 (− 124.44, −62.43) 5.5E-09

Cigarettes: Analgesics −766.56 (− 1011.12, −521.99) 1.4E-09

Cigarettes: Cannabis −290.63 (− 373.83, −207.42) 1.7E-11

Income −9.44 (−12.02, −6.87) 1.7E-12

Full Interactive Model with Cannabinoids

lme(Cancer_Rate ~ Cigarettes * Δ9THC * Cannabigerol * Alcohol + Analgesics + Cocaine + 6 Races + Income)

White 15.39 (11.82, 18.96) 1.8E-16 3.16296 3743.28 3798.56 − 1859.64

Asian 2.46 (1.76, 3.16) 1.2E-11

Cigarettes: Cannabigerol: Alcohol 4741.19 (3077.86, 6404.51) 3.3E-08

Cigarettes: Δ9THC 26.57 (15.54, 37.6) 2.8E-06

Δ9THC: Alcohol 14.95 (7.74, 22.16) 5.4E-05

Hispanic 0.7 (0.14, 1.26) 1.4E-02

Cigarettes: Cannabigerol − 663.69 (− 971.24, −356.13) 2.7E-05

Income −7.76 (−10.11, −5.41) 1.9E-10

Cigarettes: Δ9THC: Alcohol −240.65 (− 304.57, − 176.72) 4.6E-13
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Fig. 9 Geospatial linkages used for geospatiotemporal regression analyses. Note Alaska and Hawaii elided arithmetically onto continental USA. a
Edited spatial links. b Final links

Fig. 8 Map graph of total pediatric cancer incidence rate by state over time sequence, by year

Reece and Hulse BMC Cancer          (2021) 21:197 Page 17 of 33



Table 7 Introductory Spatiotemporal Models

Parameter Model

Parameter Estimate (C.I.) P-Value LogLik S.D. Model
Parameter

Estimate P-Value

Additive Model

spreml(Cancer_Rate ~ Cigarettes + Cannabis + Alcohol + Analgesics + Cocaine)

Cannabis 5.16 (2.26, 8.06) 0.0005 −
1541.00

1.9451 phi 0.3170 0.0002

Analgesics − 4.6 (−9.18, − 0.02) 0.0490 psi 0.1480 0.0007

Cigarettes −2.72 (−4.85, −0.59) 0.0124 rho −0.4959 2.2E-05

lambda 0.4598 8.2E-08

3-Way Interactive model

spreml(Cancer_Rate ~ Cigarettes * Cannabis * Alcohol + Analgesics + Cocaine)

Cannabis 20.68 (7.02, 34.33) 0.0030 −1541.24 1.9495 phi 0.3466 0.0002

Cigarettes: Alcohol 48.6 (2.75, 94.46) 0.0378 psi 0.1488 0.0006

Cigarettes: Cannabis −46.18 (−84.76, −7.6) 0.0190 rho −0.5248 2.4E-06

Alcohol −25.69 (−44.01,
−7.37)

0.0060 lambda 0.4837 1.3E-09

4-Way Interactive model

spreml(Cancer_Rate ~ Cigarettes * Cannabis * Alcohol *
Analgesics + Cocaine)

phi 0.3169 0.0002

Cannabis 5.42 (2.34, 8.5) 0.0006 −
1540.34

1.9470 psi 0.1479 0.0007

Alcohol −8.18 (−14.61, −1.74) 0.0128 rho −0.4896 3.1E-05

Cigarettes: Analgesics −31.81 (−56.07,
−7.54)

0.0102 lambda 0.4514 2.1E-07

Interactive Full Model - 0 Lags

spreml(Cancer_Rate ~ Cigarettes * Cannabis * Alcohol * Analgesics + Cocaine + 6_Races + Income)

Cigarettes 28.41 (12.48, 44.34) 0.0005 −
1520.55

1.8458 phi 0.1709 0.0017

Cannabis 45.67 (18.77, 72.56) 0.0009 psi 0.1079 0.0138

White 5.24 (3.38, 7.1) 0.0000 rho −0.4106 0.0029

Cigarettes: Cannabis: Alcohol 840.86 (416.29,
1265.44)

0.0001 lambda 0.3643 0.0006

Alcohol: Analgesics 638.1 (283.09, 993.12) 0.0004

Asian-American 0.6 (0.23, 0.97) 0.0015

Hispanic-American 0.45 (0.11, 0.79) 0.0089

Cigarettes: Cannabis: Analgesics 966.38 (184.69,
1748.06)

0.0154

AIAN-American −8.3 (−15.42, −1.18) 0.0224

Cigarettes: Analgesics −240.1 (−391.42, −
88.77)

0.0019

Cannabis: Alcohol: Analgesics − 2613.19 (− 4248.03,
− 978.35)

0.0017

Cigarettes: Cannabis − 235.06 (− 381.19,
−88.92)

0.0016

Alcohol −79.04 (− 114.93, −
43.14)

1.6E-05

Reece and Hulse BMC Cancer          (2021) 21:197 Page 18 of 33



Table 8 Time-Lagged Spatiotemporal Models

Lagged
Variables

Parameter Model

Parameter Estimate (C.I.) P-Value LogLik S.D. Model
Parameter

Estimate P-Value

Cannabis, 2 Full model - 2 Lags - Just Lagging Cannabis

spreml(Cancer_Rate ~ Cigarettes * Cannabis * Alcohol * Analgesics + Cocaine + 6_Races + Income)

Caucasian-American 5.3 (3.63, 6.97) 5.3E-10 − 1329.42 1.8583 phi 0.1690 0.0037

Asian-American 0.63 (0.31, 0.95) 1.3E-04 psi 0.1476 0.0018

Hispanic-American 0.54 (0.21, 0.86) 0.0013 rho −0.4435 8.3E-04

AIAN-American −11.33 (−18.34, −4.32) 0.0015 lambda 0.4234 9.1E-06

Cannabis, 4 Full model - 4 Lags - Just Lagging Cannabis

spreml(Cancer_Rate ~ Cigarettes * Cannabis * Alcohol * Analgesics + Cocaine + 6_Races + Income)

Caucasian-American 4.81 (2.92, 6.7) 6.1E-07 − 1130.71 1.8616 phi 0.2095 0.0031

Asian-American 0.67 (0.31, 1.03) 0.0003 psi 0.1134 0.0356

Hispanic-American 0.55 (0.18, 0.92) 0.0037 rho −0.5410 3.0E-05

Cigarettes: Cannabis: Analgesics 261.1 (19.06, 503.15) 0.0345 lambda 0.4597 9.1E-07

Cannabis: Analgesics −107.34 (−193.09, −21.6) 0.0141

AIAN-American −12.1 (− 19.56, −4.64) 0.0015

Cannabis, 6 Full model - 6 Lags - Just Lagging Cannabis

spreml(Cancer_Rate ~ Cigarettes * Cannabis * Alcohol * Analgesics + Cocaine + 6_Races + Income)

Caucasian-American 7.54 (3.96, 11.12) 3.6E-05 −936.96 1.9697 phi 0.2705 0.0022

Asian-American 0.95 (0.34, 1.54) 0.0020 psi 0.0992 0.1012

Cannabis 8.49 (1.47, 15.5) 0.0177 rho 0.4222 0.0006

Hispanic-American 0.7 (0.11, 1.29) 0.0202 lambda −0.4083 0.0059

Cannabis: Analgesics −47.05 (−79.05, −15.03) 0.0040

Full Model - 1 Temporal Lag

spreml(Cancer_Rate ~ Cigarettes * Cannabis * Alcohol * Analgesics + Cocaine + 6_Races + Income)

Cigarettes,
1

Caucasian-American 5.42 (3.72, 7.12) 4.6E-10 − 1426.33 1.8466 phi 0.1684 0.0027

Alcohol, 1 Asian-American 0.67 (0.33, 1) 0.0001 psi 0.1408 0.0016

Cannabis, 1 Hispanic-American 0.56 (0.22, 0.9) 0.0014 rho −0.4380 0.0009

Analgesics,
1

Cannabis 7.88 (1.7, 14.06) 0.0125 lambda 0.4226 1.2E-05

Cocaine, 1 Cigarettes: Cannabis: Alcohol 182.23 (29.55, 334.9) 0.0193

AIAN-American −9.03 (−16.1, −1.96) 0.0123

Cannabis: Alcohol − 114.28 (− 198.3, −30.27) 0.0077

Full Model - 2 Temporal Lags

spreml(Cancer_Rate ~ Cigarettes * Cannabis * Alcohol * Analgesics + Cocaine + 6_Races + Income)

Cigarettes,
2

Caucasian-American 9.62 (6.82, 12.43) 1.7E-11 − 1317.36 1.8519 phi 0.1408 0.0083

Alcohol, 2 Cigarettes: Cannabis: Alcohol 658.72 (396.6, 920.84) 8.4E-07 psi 0.1469 0.0018

Cannabis, 2 Asian-American 1.32 (0.75, 1.89) 6.4E-06 rho 0.3276 0.0126

Analgesics,
2

Alcohol: Analgesics 306.67 (143.27, 470.07) 0.0002 lambda −0.2888 0.0462

Cocaine, 2 Hispanic-American 0.69 (0.26, 1.12) 0.0016

Income −2.15 (−4.22, −0.08) 0.0415

Cannabis: Alcohol: Analgesics − 1810.02 (− 2618.86, −
1001.18)

1.2E-05
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Discussion
Main results
The main results of this study confirmed that total
Pediatric cancer rates have risen significantly nationally
across USA and this trend holds for the commonest
pediatric malignancies the leukaemias, Non-Hodgkins
lymphoma, localized and distant sarcoma and testicular
cancer. It was important to note across this period that
the use of tobacco, alcohol use disorders, cocaine and
analgesic abuse declined as measured in major national
surveys whilst cannabis use alone was rising. The
level of cannabinoids identified in Federal seizure data
also rose for most cannabinoid analytes. TPCIR rose
strongly and significantly as a function of cannabinoid
exposure, but only weakly and non-significantly in bi-
variate analysis in relation to cannabis itself. TPCIR
was significantly higher in the two highest cannabis
use quintiles both overall and across time. Inverse
probability weighting was used to equilibrate cannabis
exposure across the cohort. Indices of ethnic canna-
binoid exposure and seizure cannabinoid concentra-
tions were variously used as instrumental variables to
adjust panel models.
Cannabis use was independently associated with TPCI

R in additive robust marginal structural, mixed effects,
panel and geospatiotemporal models. Cannabis use was

independently associated with TPCIR in interactive
mixed effects and geospatial models. Cannabis use was
linked with TPCIR in various interactions in linear
models, robust marginal, mixed effects, panel and geo-
spatial models. Cannabis was independently linked with
TPCIR in geospatial models lagged to zero, 1 and 6 years
and featured in interactions lagged to 1,2,4 and 6 years.
When the cannabinoids THC and cannabigerol were
studied they were also linked with TPCIR at high levels
of statistical significance at zero, 2, 4 and 6 years of lag.
On sensitivity analysis 49 of 56 minimum e-Values

were above 1.25 which is a quoted threshold for likely
causal relationships. Similarly 31 of 33 geospatial e-
Values were above this threshold. The highest finite
minimum e-Value was 4.14 × 1089. Six minimum e-
Values were infinity.
The recent trend to cannabis liberalization was associ-

ated with elevated TPCIR both as a group and as an
acceleration of the time-dependent trend in cannabis-
liberal states.
Our interpretation of these highly consistent and

concordant findings obtained by several methodologies
with instrumental variables, controlling for ethnic canna-
binoid exposure, utilizing robust regression techniques,
inverse probability weighting with high levels of associ-
ation across both space and time together with very high

Table 8 Time-Lagged Spatiotemporal Models (Continued)

Lagged
Variables

Parameter Model

Parameter Estimate (C.I.) P-Value LogLik S.D. Model
Parameter

Estimate P-Value

Cigarettes: Alcohol − 133.02 (−184.5, −81.54) 4.1E-07

Full Model - 4 Temporal Lags

spreml(Cancer_Rate ~ Cigarettes * Cannabis * Alcohol * Analgesics + Cocaine + 6_Races + Income)

Cigarettes,
4

Caucasian-American 5.25 (3.17, 7.33) 7.6E-07 − 1129.73 1.8795 phi 0.1863 0.0058

Alcohol, 4 Cigarettes: Cannabis: Alcohol 472.69 (145.49, 799.88) 0.0046 psi 0.1341 0.0127

Cannabis, 4 Asian-American 0.56 (0.16, 0.95) 0.0055 rho −0.4598 0.0040

Analgesics,
4

Hispanic-American 0.5 (0.13, 0.87) 0.0085 lambda 0.4021 8.6E-04

Cocaine, 4 Cigarettes: Alcohol: Analgesics 603.85 (143.88, 1063.82) 0.0101

Cigarettes: Alcohol −80.89 (−138.89, −22.89) 0.0063

AIAN-American − 10.99 (− 18.8, −3.18) 0.0058

Cigarettes: Cannabis: Alcohol:
Analgesics

− 3668.28 (− 6170.15, −
1166.42)

0.0041

Cigarettes,
6

Full Model - 6 Temporal Lags

spreml(Cancer_Rate ~ Cigarettes * Cannabis * Alcohol * Analgesics + Cocaine + 6_Races + Income)

Alcohol, 6 Caucasian-American 4.28 (2.17, 6.4) 7.4E-05 − 938.093 1.9015 phi 0.2238 0.0053

Cannabis, 6 Asian-American 0.5 (0.13, 0.87) 0.0089 psi 0.1218 0.0448

Analgesics,
6

Hispanic-American 0.51 (0.12, 0.91) 0.0115 rho − 0.5495 7.7E-05

Cocaine, 6 AIAN-American −11.64 (−19.61, −3.66) 0.0042 lambda 0.5042 1.8E-07
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e-Values is that the relationship of cannabinoid exposure
to total pediatric cancer incidence fulfills the criteria of
causality and explains the increasing rates of pediatric
cancer under cannabis-liberal legislative paradigms, and
that this statement is especially true for THC and canna-
bigerol the two cannabinoids which show the most con-
sistent rises over time.
Hence our study is closely concordant with other pub-

lished series on the link between pediatric cancer and
cannabis use [7–11].

Statistical comments and causal assignment
It is worth considering briefly the incisive logical
power of space-time regression and commenting con-
cisely on the theoretical underpinning of formal
causal inferential techniques. To say that two vari-
ables are statistically associated carries a certain
weight. To say that two variables are closely associ-
ated when their distribution is considered across both
space and time simultaneously is strongly suggestive
of a presumptively causal relationship.

Table 9 Spatially- and Temporally- Lagged Spatiotemporal Models

Lagged
Variables

Parameter Model

Parameter Estimate (C.I.) P-Value LogLik S.D. Model
Parameter

Estimate P-Value

Full Model - 1 Spatial & 1 Temporal Lag

spreml(Cancer_Rate ~ Cigarettes * Cannabis * Alcohol * Analgesics + Cocaine + 6_Races +
Income)

Cigarettes, 1 Caucasian-American 4.49 (2.56, 6.41) 4.9E-06 − 1422.64 1.8639 phi 0.1534 0.0041

Alcohol, 1 Hispanic-American 0.61 (0.26, 0.96) 0.0006 psi 0.1284 0.0043

Cannabis,
Sp1

Cannabis: Analgesics 110.36 (37.53, 183.19) 0.0030 rho −0.3379 0.0408

Analgesics, 1 Cigarettes: Cannabis: Alcohol 1688.83 (336.9, 3040.77) 0.0143 lambda 0.3229 0.0134

Cocaine, 1 Asian-American 0.46 (0.09, 0.83) 0.0146

Cannabis: Alcohol: Analgesics − 885.51 (− 1625.8, −
145.21)

0.0191

AIAN-American −10.01 (−17.08, −2.94) 0.0055

Analgesics −18.96 (−29.31, − 8.61) 0.0003

Full Model - 2 Spatial & 2 Temporal Lags

spreml(Cancer_Rate ~ Cigarettes * Cannabis * Alcohol * Analgesics + Cocaine + 6_Races + Income)

Cigarettes, 2 Caucasian-American 8.03 (5.67, 10.39) 2.6E-11 − 1319.97 1.8579 phi 0.0990 0.0324

Alcohol, 2 Asian-American 1.02 (0.53, 1.51) 5.2E-05 psi 0.1426 0.0032

Cannabis,
Sp2

Hispanic-American 0.66 (0.33, 0.99) 9.0E-05 rho −0.2287 0.3086

Analgesics, 2 Analgesics 55.5 (26.18, 84.81) 0.0002 lambda 0.2307 0.2080

Cocaine, 2 Cigarettes: Cannabis: Alcohol:
Analgesics

3954.04 (1565.01, 6343.08) 0.0012

Cocaine 15.51 (1.58, 29.44) 0.0291

Cigarettes: Cannabis: Analgesics − 749.24 (− 1219.42, −
279.07)

0.0018

Alcohol: Analgesics −377.69 (−553.03, −
202.35)

2.4E-05

Full Model - 4 Spatial & Temporal Lags

spreml(Cancer_Rate ~ Cigarettes * Cannabis * Alcohol * Analgesics + Cocaine + 6_Races + Income)

Cigarettes, 4 Caucasian-American 5.18 (3.29, 7.07) 7.7E-08 − 1133.35 1.8790 phi 0.1850 0.0049

Alcohol, 4 Asian-American 0.59 (0.25, 0.93) 0.0008 psi 0.1286 0.0176

Cannabis,
Sp4

Hispanic-American 0.52 (0.16, 0.87) 0.0045 rho −0.4868 0.0004

Analgesics, 4 Alcohol: Analgesics −27.25 (−54.07, − 0.43) 0.0464 lambda 0.4290 2.5E-05

Cocaine, 4 AIAN-American −10.96 (−18.4, −3.51) 0.0039
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Table 10 Spatially- and Temporally- Lagged Spatiotemporal Models

Lagged
Variables

Parameter Model

Parameter Estimate (C.I.) P-Value LogLik S.D. Model
Parameter

Estimate P-Value

Cannabinoids

Cannabinoids as Main Effects

spreml(Cancer_Rate ~ Cigarettes * THC * Cannabigerol * Alcohol + Analgesics + Cocaine)

Caucasian-American 4.83 (2.77, 6.89) 4.5E-06 −
1511.96

1.8350 phi 0.2050 0.0009

Cigarettes: Alcohol 334 (171.12, 496.88) 0.0001 psi 0.0889 0.0450

Alcohol: Analgesics 312 (149.91, 474.09) 0.0002 rho −0.4495 0.0003

Cigarettes: Δ9THC: Analgesics 391 (181.28, 600.72) 0.0003 lambda 0.3639 0.0001

Δ9THC: Alcohol 116 (51.71, 180.29) 0.0004

Cigarettes: Δ9THC: Cannabigerol: Alcohol 4810 (2124.8, 7495.2) 0.0004

Δ9THC: Cannabigerol 109 (41.58, 176.42) 0.0016

Analgesics 96.5 (35.74, 157.26) 0.0018

Asian-American 0.57 (0.19, 0.94) 0.0029

Δ9THC: Cannabigerol: Alcohol: Analgesics 5640 (1680.8, 9599.2) 0.0052

Hispanic-American 0.41 (0.07, 0.76) 0.0193

Cigarettes: Δ9THC 9.01 (0.6, 17.42) 0.0359

AIAN-American −8.84 (−16.13, −1.55) 0.0175

Cigarettes: Δ9THC: Cannabigerol: Alcohol:
Analgesics

−18,100 (−29,977.6, −
6222.4)

0.0028

Cigarettes: Δ9THC: Cannabigerol − 385 (−612.36, −
157.64)

0.0009

Δ9THC: Cannabigerol: Alcohol −1480 (− 2346.32,
−613.68)

0.0008

Δ9THC: Analgesics −130 (− 199.78,
−60.22)

0.0003

Cigarettes: Δ9THC: Alcohol − 384 (−583.92,
−184.08)

0.0002

Cigarettes: Analgesics −383 (− 563.32,
−202.68)

3.2E-05

Alcohol − 137 (−197.96,
−76.04)

1.1E-05

Cannabinoids as Main Effects - 2 Lags

spreml(Cancer_Rate ~ Cigarettes * THC * Cannabigerol * Alcohol + Analgesics + Cocaine)

THC, 2 Caucasian-American 4.63 (2.53, 6.72) 1.5E-05 −
1320.47

1.8880 phi 0.1976 0.0021

Cannabigerol,
2

Cannabigerol 21.6 (9.29, 33.9) 0.0006 psi 0.1322 0.0052

THC: Alcohol 10.25 (4.12, 16.37) 0.0010 rho −0.3332 0.0881

Asian-American 0.56 (0.17, 0.95) 0.0053 lambda 0.3037 0.0500

Cannabigerol: Alcohol: Analgesics 1176.24 (308.66,
2043.82)

0.0079

Hispanic-American 0.47 (0.1, 0.84) 0.0117

AIAN-American −10.84 (−18.51, −3.17) 0.0056

Cannabigerol: Alcohol −288.07 (−474.04, −
102.11)

0.0024

THC: Cannabigerol: Analgesics 92.38 (39.25, 145.5) 0.0007

Cannabinoids as Main Effects - 4 Lags

Reece and Hulse BMC Cancer          (2021) 21:197 Page 22 of 33



Table 10 Spatially- and Temporally- Lagged Spatiotemporal Models (Continued)

Lagged
Variables

Parameter Model

Parameter Estimate (C.I.) P-Value LogLik S.D. Model
Parameter

Estimate P-Value

spreml(Cancer_Rate ~ Cigarettes * THC * Cannabigerol * Alcohol + Analgesics + Cocaine)

THC, 4 Caucasian-American 4.31 (2.26, 6.36) 3.9E-05 −
1126.72

1.8642 phi 0.1876 0.0047

Cannabigerol,
4

Cigarettes: THC 2.87 (1.47, 4.27) 5.9E-05 psi 0.1223 0.0246

Asian-American 0.64 (0.26, 1.03) 0.0010 rho −0.4917 0.0007

Hispanic-American 0.58 (0.21, 0.95) 0.0021 lambda 0.3940 0.0004

Cigarettes: Cannabigerol: Alcohol 668.38 (191.09,
1145.67)

0.0061

Cigarettes −3.45 (−5.85, −1.04) 0.0050

AIAN-American −11.66 (−19.15, −4.17) 0.0023

Cannabigerol: Alcohol −329.3 (−523.66,
−134.95)

0.0009

Cannabinoids as Main Effects - 6 Lags

spreml(Cancer_Rate ~ Cigarettes * THC * Cannabigerol * Alcohol + Analgesics + Cocaine)

THC, 6 Cigarettes: THC 28.16 (18.61, 37.71) 7.6E-09 −
918.382

1.8922 phi 0.2868 0.0023

Cannabigerol,
6

THC: Cannabigerol 46.22 (30.06, 62.38) 2.1E-08 psi 0.1197 0.0495

Asian-American 0.67 (0.21, 1.12) 0.0039 rho −0.5066 0.0004

Caucasian-American 3.19 (1.01, 5.38) 0.0042 lambda 0.3707 0.0007

Cocaine 18.22 (3.99, 32.46) 0.0121

Cigarettes: Cannabigerol: Alcohol 724.22 (143.74,
1304.71)

0.0145

AIAN-American −10.25 (−18.78, −1.73) 0.0184

Cannabigerol: Alcohol −329.39 (− 580.71,
−78.07)

0.0102

Cigarettes: THC: Cannabigerol −177.1897 (−248.1, −
106.28)

9.7E-07

THC −7.21 (−9.86, −4.55) 1.1E-07

Cigarettes −29.01 (−39.21,
−18.82)

2.4E-08

Table 11 Spatially- and Temporally- Lagged Spatiotemporal Models
Parameter Model

Parameter Estimate (C.I.) P-
Value

LogLik S.D. Model
Parameter

Estimate P-
Value

Cancer Incidence as a Function of Racial Cannabis Exposure

spreml(Cancer_Rate ~ NHWhite_THC_Exp + NHBlack_THC_Exp * Hispanic_THC_Exp *Asian_THC_Exp * AIAN_THC_Exp)

Afric-Am._THC_Exp: Hispan.Am_THC_Exp 1.74 (1.18, 2.29) 1.1E-09 − 1532.27 1.9803 phi 0.3887 0.0001

Afric-Am._THC_Exp: Hispan.Am_THC_Exp: Asian-Am._THC_Exp: AIAN-Am._
THC_Exp

0.15 (0.09, 0.21) 1.9E-06 psi 0.1542 0.0005

Asian-Am._THC_Exp: AIAN-Am._THC_Exp 0.89 (0.37, 1.41) 0.0008 rho −0.4676 0.0002

Afric-Am._THC_Exp: Hispan.Am_THC_Exp: Asian-Am._THC_Exp −1.11 (−1.55, −
0.67)

8.8E-07 lambda 0.4215 8.1E-06

Afric-Am._THC_Exp: Hispan.Am_THC_Exp: AIAN-Am._THC_Exp −0.2 (− 0.28, −
0.13)

4.8E-08

Caucasian-American_THC_Exposure −1.27 (−1.65,
−0.89)

5.0E-11
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Table 12 Spatially- and Temporally- Lagged Spatiotemporal Models

Parameter Estimate (C.I.) R.R. (C.I.) E-Values

LINEAR REGRESSION

Cancer Rate Over Time

Year 0.14 (0.1, 0.17) 1.06 (1.04, 1.08) 1.31, 1.27

Cancer Rate by Δ9THC

Δ9THC 0.33 (0.15, 0.5) 1.15 (1.07, 1.23) 1.55, 1.33

Cancer Rate by Drug Rate

Drug_Rate: Cannabis 4.63 (2.11, 7.15) 6.83 (2.41, 19.41) 13.15, 4.25

Cancer Rate by Cannabinoid Over Time

Cannabinol 6.54 (5.07, 8.01) 15.54 (8.39, 28.78) 30.58, 16.27

Cannabigerol 7.65 (5.91, 9.38) 24.71 (11.96, 51.02) 48.91, 23.41

Drug_Rate 2.14 (1.55, 2.73) 2.45 (1.91, 3.14) 4.34, 3.24

Cannabichromene 3.86 (0.29, 7.42) 5.04 (1.14, 22.44) 9.54, 1.51

Cancer Rate by Ethnic Cannabis Exposure

Ethnic_THC_Exposure 0.14 (0.07, 0.21) 1.06 (1.03, 1.09) 1.31, 1.20

Asian-Am_THC_Exposure 0.28 (0.02, 0.55) 1.12 (1.01, 1.26) 1.50, 1.10

Legal Status

Decriminalized 0.85 (0.44, 1.26) 1.42 (1.20, 1.69) 2..20, 1.69

Liberal 0.663 (0.35, 0.98) 1.32 (1.15, 1.50) 1.96, 1.58

Legal 1.3286 (0.47, 2.19) 1.73 (1.21, 2.45) 2.86, 1.72

Cancer by Legal Status

Decriminalized 0.78 (0.37, 1.19) 1.38 (1.16, 1.64) 2.11, 1.60

Legal 1.51 (0.68, 2.35) 1.87 (1.33, 2.66) 3.16, 1.98

Cancer by Year * Status

Year: Decriminalized 0.0003 (0.0001, 0.0005) 1.00013 (1.00004, 1.00021) 1.011, 1.006

Cancer by Year * Dichotomized_Status

Year: Liberal 0.0002 (0, 0.0004) 1.00008 (1.00001, 1.00015) 1.0090, 1.0035

MIXED EFFECTS REGRESSION

Additive Model

Cannabis 5.34 (0.07, 10.6) 4.11 (1.02, 16.59) 7.70, 1.18

Interactive Drugs Model

Cannabis 72.88 (49.6, 96.15) 5.02E+ 08 (8.45E+ 05, 2.97E+ 11) 1.01E+ 09, 1.69E+ 06

Cigarettes: Cannabis: Analgesics 2788.19 (1676.17, 3900.2) Infinity (2.40E+ 200, Infinity) Infinity, Infinity

Full Interactive Model

Cannabis 79.27 (56.77, 101.78) 7.00E+ 09 (1.14E+ 07, 4.31E+ 12) 1.40E+ 09, 2.27E+ 07

Cigarettes: Cannabis: Analgesics 2525.7 (1488.65, 3562.75) Infinity (1.38E+ 185, Infinity) Infinity, Infinity

Full Interactive Model with Cannabinoids

Cigarettes: Cannabigerol: Alcohol 4741.19 (3077.86, 6404.51) Infinity (Infinity, Infinity) Infinity, Infinity

Δ9THC: Alcohol 14.95 (7.74, 22.16) 73.78 (9.31, 584.34) 147.07, 18.12

Cigarettes: Δ9THC 26.57 (15.54, 37.6) 2.09E+ 03 (87.97, 4.95E+ 04) 4.18E+ 03, 175.45

GEOSPATIAL REGRESSION

Additive Model

Cannabis 5.16 (2.26, 8.06) 11.18 (2.89, 43.30) 21.84,. 5.22

3-Way Interactive model

Cannabis 20.68 (7.02, 34.33) 1.55E+ 04 (26.85, 9.01E+ 06) 3.11E+ 04, 53.19
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Table 12 Spatially- and Temporally- Lagged Spatiotemporal Models (Continued)

Parameter Estimate (C.I.) R.R. (C.I.) E-Values

4-Way Interactive model

Cannabis 5.42 (2.34, 8.5) 12.61 (2.99, 53.07) 24.71, 5.45

Interactive Full Model - 0 Lags

Cannabis 45.67 (18.77, 72.56) 6.00E+ 10 (1.07E+ 04, 3.45E+ 15) 1.20E+ 120, 5.15E+ 04

Cigarettes: Cannabis: Alcohol 840.86 (416.29, 1265.44) 1.09E+ 180 (2.07E+ 89, 5.78E+ 270) Infinity, 4.14E+ 89

Cigarettes: Cannabis: Analgesics 966.38 (184.69, 1748.06) 8.18E+ 206 (7.64E+ 39, Infinity) Infinity, 1.52E+ 40

Time Lagged Models

Full model - 4 Lags - Just Lagging Cannabis

Cigarettes: Cannabis: Analgesics 261.1 (19.06, 503.15) 8.26E+ 39 (0.07, 9.56E+ 80) 1.65E+ 40, 1.00

Full model - 6 Lags - Just Lagging Cannabis

Cannabis 8.49 (1.47, 15.5) 50.45 (1.98, 1.28E+ 03) 100.41, 3.39

Full Model - 1 Temporal Lag

Cannabis 7.88 (1.7, 14.06) 48.60 (2.32, 1.016E+ 03) 96.68, 4.07

Cigarettes: Cannabis: Alcohol 182.23 (29.55, 334.9) 1..00E+ 39 (2.45E+ 06, 4.07E+ 71) 1.99E+ 39, 4.91E+ 06

Full Model - 2 Temporal Lags

Cigarettes: Cannabis: Alcohol 658.72 (396.6, 920.84) 3.76E+ 140 (5.65E+ 84, 2.53E+ 196) 7.58E+ 140, 1.13E+ 85

Full Model - 4 Temporal Lags

Cigarettes: Cannabis: Alcohol 472.69 (145.49, 799.88) 9.42E+ 126 (2.81E+ 30, 3.15E+ 223) 1.88E+ 127, 5.62E+ 30

Space-Time Lagged Models

Full Model - 1 Spatial & 1 Temporal Lag

Cannabis: Analgesics 110.36 (37.53, 183.19) 2.51E+ 23 (9.78E+ 07, 6.48E+ 38) 5.03E+ 23, 1.95E+ 08

Cigarettes: Cannabis: Alcohol 1688.83 (336.9, 3040.77) Infinity (1.033E+ 72, Infinity) Infinity, 2.07E+ 72

Full Model - 2 Spatial & 2 Temporal Lags

Cigarettes: Cannabis: Alcohol: Analgesics 3954.04 (1565.01, 6343.08) Infinity (Infinity, Infinity) Infinity, Infinity

Cannabinoid Models

Cannabinoids as Main Effects

Cigarettes: Δ9THC: Analgesics 391 (181.28, 600.72) 1.62E+ 84 (1.65E+ 39, 1.59E+ 129) 3.24E+ 84, 3.30E+ 39

Δ9THC: Alcohol 116 (51.71, 180.29) 1.11E+ 25 (1.68E+ 11, 7.41E+ 38) 2.23E+ 25, 3.36E+ 11

Cigarettes: Δ9THC: Cannabigerol: Alcohol 4810 (2124.8, 7495.2) Infinity (Infinity, Infinity) Infinity, Infinity

Δ9THC: Cannabigerol 109 (41.58, 176.42) 2.45E+ 23 (7.67E+ 08, 7.83E+ 37) 4.90E+ 23, 1.54E+ 09

Δ9THC: Cannabigerol: Alcohol: Analgesics 5640 (1680.8, 9599.2) Infinity (Infinity, Infinity) Infinity, Infinity

Cigarettes: Δ9THC 9.01 (0.6, 17.42) 87.15 (1.35, 5.61E+ 03) 173.80, 2.04

Cannabinoids as Main Effects - 2 Lags

Cannabigerol 21.6 (9.29, 33.9) 3.32E+ 04 (89.18, 1.23E+ 07) 6.64E+ 04, 177.84

THC: Alcohol 10.25 (4.12, 16.37) 139.58 (7.34, 2.65E+ 03) 278.66, 14.15

Cannabigerol: Alcohol: Analgesics 1176.24 (308.66, 2043.82) 1.66E+ 246 (9.51E+ 64, Infinity) Infinity, 1.91E+ 65

Cannabinoids as Main Effects - 4 Lags

Cigarettes: THC 2.87 (1.47, 4.27) 4.06 (2.06, 8.04) 7.58, 3.52

Cigarettes: Cannabigerol: Alcohol 668.38 (191.09, 1145.67) 5.01E+ 141 (5.21E+ 40, 4.82E+ 242) 1.00E+ 142, 1.04E+ 41

Cannabinoids as Main Effects - 6 Lags

Cigarettes: THC 28.16 (18.61, 37.71) 7.61E+ 05 (7.76E+ 03, 7.46E+ 07) 1.52E+ 06, 1.55E+ 04

THC: Cannabigerol 46.22 (30.06, 62.38) 4.50E+ 09 (1.92E+ 06, 1.06E+ 13) 9.01E+ 09, 3.84E+ 06

Cigarettes: Cannabigerol: Alcohol 724.22 (143.74, 1304.71) 1.82E+ 151 (1.84E+ 30, 1.80E+ 272) 3.64E+ 151, 3.68E+ 30

Ethnicity Models
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Nineteen spatiotemporal models were presented. In
seventeen the spatial error coefficient rho was signifi-
cant. In eighteen the spatial error autocorrelation coeffi-
cient lambda was significant. And spatial errors adjusted
in the manner of Kapoor, Kelejian and Prucha consist-
ently had higher precision than those adjusted by the al-
gorithm of Baltagi. The Kapoor, Kelejian and Prucha
adjustment accounts for correlation between spatially
correlated outcomes in addition to spatially correlated
exposures. The presence of clear evidence for spatiotem-
poral progression of the risk factors (cannabis exposure)
together with the many associations shared by the four
US regions make spatiotemporal autocorrelation in both
the exposure and the outcome a reasonable analytical
presumption. Together this is indisputable evidence of
effects operating in a spatially distributed manner, and
represents in the data analytical environment a reflection
of the orchestrated campaign across USA to legalize can-
nabis which operated in a coordinated manner from the
west coast eastwards.
Some comments in relation to casual inference and

causal assignment are pertinent. Inverse probability
weighting is a method which is well established to cor-
rect for inconsistent exposures amongst groups. It is
enjoys a strong theoretical and epidemiological evidence

base [58]. One of the most serious and common limita-
tions of observational studies is where differential expos-
ure to the risk factor occurs differs across experimental
groups. In the typical experimental scenario if the expos-
ure of interest occurs differently between the control
and treatment groups then the effect of treatment is ne-
cessarily confounded by the non-random risk exposure.
The established technique of inverse probability weight-
ing overcomes this major obstacle by having the effect of
evening out the exposure of interest across all the
groups therefore transforming a merely observational
and potentially biased study into a pseudo-randomized
trial design where causal inferences can more properly
be drawn from group comparisons. The techniques of
inverse probability weighting can also be extended to
studies where the exposure occurs along a continuum as
in the present study. One notes that all of our mixed ef-
fects, robust regression and panel models were inverse
probability weighted so that they all enjoyed the advan-
tage of this powerful modern innovation. Analysis of
such models therefore allows truly causal conclusions to
properly be drawn.
Similarly E-Values were recently introduced in a for-

mal way to quantitate extraneous uncontrolled con-
founding from unmeasured covariates and provides a

Table 12 Spatially- and Temporally- Lagged Spatiotemporal Models (Continued)

Parameter Estimate (C.I.) R.R. (C.I.) E-Values

Cancer Incidence as a Function of Racial Cannabis Exposure

Afric-Am._THC_Exp: Hispan.Am_THC_Exp 1.74 (1.18, 2.29) 2.22 (1.72, 2.86) 3.86, 2.86

Afric-Am._THC_Exp: Hispan.Am_THC_Exp:
Asian-Am._THC_Exp: AIAN-Am._THC_Exp

0.15 (0.09, 0.21) 1.51 (1.18, 1.91) 2.38, 1.66

Asian-Am._THC_Exp: AIAN-Am._THC_Exp 0.89 (0.37, 1.41) 1.06 (1.04, 1.10) 1.34, 1.24

Fig. 10 Effect of Cannabis Legal Status on total pediatric cancer incidence rate. a Scatterplot of legal statuses over time. b Scatterplot of legal
status over time dichotomized as illegal status vs. liberal regimes
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quantitative magnitude to the level of association re-
quired of unknown factors with both the exposure and
the outcome to remove the impact of any described as-
sociation [59]. The E-Value is expressed on the risk ratio
scale. It is a classical criticism of multivariable studies
that potentially the inclusion of other covariates beyond
those which were measured might account for the ob-
served effect. By quantitating the magnitude of the asso-
ciation required with both the exposure of interest and
the outcome observed E-Values provide a quantitative
measure of the magnitude of the effect which would be
required. Very large E-Values necessarily imply that in
the absence of some known major confounder uncon-
trolled confounding becomes exceedingly unlikely and
the reported effect becomes more likely to be truly
causal in nature. That is large E-Values are associated
with truly causal effects [56, 59].
The published literature on E-Values reports that

levels in excess of 1.25 are generally taken in the litera-
ture as implying causal relationships [56]. By comparison
the E-value for the relationship between tobacco smok-
ing and lung cancer is 9.0 [60]. This is considered a very
large effect [56, 59]. Hence in our study where 49/53 E-
Values were > 1.25, 33 were > 5 and six were infinite dis-
cussion of truly causal effects is also entirely appropriate.
One notes further that data on some covariates, such as
environmental pollution, dietary habits, education, par-
ental age and prematurity rates was not available to the
present analytical team. However in view of the very
large size of the E-values presently reported it is felt to
be highly unlikely that inclusion of further covariates
would substantially alter the major conclusions of the
present investigation. Naturally we would however be
keen to see our studies extended by other groups who

have access to more comprehensive datasets defined
across space and time.
Our argument for causality relies not just upon the

strength of the individual components of the cumulative
case but upon their synergistic and syllogistic supporting
and reinforcing relationship with each other.

Pathways and mechanisms
Of pivotal importance in linking associational findings
with causal pathways is the issue of biological plausibility
and the cellular and molecular pathways which might
connect the exposure of interest with the outcome of
concern. The subject of the pro-oncogenic activities and
potential of cannabis, cannabis smoke and cannabinoids
is complex major papers have addressed this issue [14,
26, 28, 32, 34–36, 42, 61–67]. In this paper we will pro-
vide a brief and concise overview of what presently seem
to be some of the most important pathways which are
likely to be implicated. They will be described under
nine headings of: gametotoxicity, genotoxicity,
epigenotoxicity, mitochondriopathy, immunomodula-
tion, pro-aging, endovascular ischaemia – hypoxia, sym-
pathetically mediated effects on stem cell niches and
non-linearity of the dose-response genotoxic effect
curve. These domains are not independent but are
themselves interdependent and intricately intertwined.
Whilst most of the following observations have been ex-
perimentally defined the logical sequence has been filled
out where this seems reasonable and concordant with
the evidence base.
Cannabinoids have been detected in seminal fluid and

have been linked with DNA nicking and fragmentation,
abnormal sperm nuclear size, gross abnormalities of
sperm morphology including sperm fragmentation,

Table 13 Linear Regressions for Legal Status

Parameter Estimates Model Parameters

Parameter Estimate (C.I.) P-Value R-Squared F dF P-Value

Cancer by Status

lm(Cancer_Rate ~ Legal_Status)

Decriminalized 0.78 (0.37, 1.19) 2.0E-04 0.0268 7.88 3746 3.49E-05

Legal 1.51 (0.68, 2.35) 4.0E-04

Cancer by Year * Status

lm(Cancer_Rate ~ Year * Legal_Status)

Year 0.13 (0.09, 0.16) 4.3E-11 0.0809 17.5 4745 1.01E-13

Year: Decriminalized 0.0003 (0.0001, 0.0005) 4.4E-03

Cancer by Year * Dichotomized_Status

lm(Cancer_Rate ~ Year * Dichotomized_Status)

Year 0.128 (0.09, 0.16) 9.8E-12 0.0778 32.6358 2747 2.58E-14

Year: Liberal 0.0002 (0, 0.0004) 2.1E-02
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disordered DNA packing and re-packing, disorders of
protamine synthesis, histone-protamine substitution and
major disruption of sperm DNA methylation [15–17, 31,
37, 62, 68, 69]. Cannabinoids have been found in Graa-
fian follicle and oviduct fluid and have been linked with
oocyte nuclear blebbing, nuclear bridging, chromosomal
fragmentation and large scale oocyte loss after the sec-
ond meiotic cell division [14, 15, 17]. Cannabis smoke is
known to contain all of the carcinogens of tobacco
smoke including many tars and carcinogens including
aromatic amines, polycyclic hydrocarbons, and tars [70].
Cannabinoid exposure has been linked with nuclear bleb
and chromosomal bridge formation, chromosomal mis-
segregation at the anaphase separation, micronucleus
formation [71], transposon activation and chain and ring
chromosome formation [14, 32, 34]. Cannabidiol, Can-
nabinol and THC have been implicated in in chromo-
somal translocation formation to the same level seen
with cytotoxic drugs [13]. Cannabidiol and cannabidi-
varin have been shown to cause double stranded DNA
breaks, micronucleus formation and nuclear buds and
bridges in human cells which is worse under oxidative
stress [67]. Cannabinoid-induced micronucleus forma-
tion is very important as it has been identified as a major
engine of catastrophic damage to the genetic material
and one-step chromothripsis, chromoanagensis and
oncogenic transformation [61, 72, 73]. Cannabinoid ex-
posure has been linked with large scale perturbation of
DNA methylation, gross defects in histone synthesis –
which necessarily leave DNA more open and available
for transcription which is a pro-oncogenic state – al-
tered histone signalling, and an inhibition of ATP supply
to genetic and epigenetic processes – most of which are
energy dependent – and an inhibition of epigenetic sub-
strate supply [31, 33, 35, 37, 62, 74]. Together these
changes may be expected to advance the “epigenetic
clock” which is believed to be one of the key determi-
nants of cellular aging [75, 76]. The profound impli-
cations of major epigenetic reprogramming were
highlighted by a recent paper noting that despite the
short half life of immune cells in the circulation –
just a few days - the cellular basis for long lasting im-
munity is actually epigenetic changes in long lived
myeloid precursor cells which record metabolic and
immune activation responses in the coordinated pat-
terns of their enhancers, promoters, long non-coding
RNA’s, DNA methylation and histone codes which
determine chromatin conformation and the assembly
of topologically transcriptionally active domains which
functionally facilitate secondary responses to infection
and vaccines [77, 78].
The outer mitochondrial membrane not only possess

CB1R’s, but indeed the whole of the cannabinoid signal-
ling transduction machinery found in the plasmalemma

also resides in the inner and outer mitochondrial mem-
brane and within the intermembrane space so that can-
nabinoids are an important direct modulator of
metabolic state [79–83]. Several adverse mitochondrial
processes are well described including a reduction in the
transmembrane potential across the inner mitochondrial
membrane, a reduced synthesis of key oxidative phos-
phorylation substrates including the F1-ATPase, in-
creased electron shunting via uncoupling protein 2
activation, gross mitochondrial damage and swelling and
impairment of mitonuclear cross-talk and mitonuclear
genomic coordination [17, 84–88].
There is a rich literature describing both the pro- and

anti- inflammatory actions of cannabinoids. In this con-
text the proinflammatory CB1R-mediated activities seem
to be especially important [89] as chronic inflammation
is a well established cause of cancers in many tissue beds
and occurs by many mechanisms. One pathway of par-
ticular interest is that cytoplasmic inflammation stimu-
lates the transposons or “jumping genes” of the genome,
to start “jumping” mobile segments and creating gen-
omic havoc. Micronucleus disruption releases double
stranded DNA into the cytoplasm where it potently
stimulates the cytoplasmic GMP-AMP – STimulator of
INterferon Gamma (cGAS-STING) pathway which fur-
ther intracytoplasmically stimulates inflammation via
interferon-γ and innate immune signalling and destabi-
lizes the genome [90–92]. The immunosuppressive ac-
tivities of cannabinoids may depress the immune
response to the developing field change and nascent tu-
mours. This cycle could potentially explain the many
case reports of cancers occurring in adults at a younger
age than usual and with increased aggressiveness in
heavily cannabis exposed patients [93–96].
Cannabis exposure has been found to accelerate or-

ganismal cardiovascular aging clinically [97]. Cannabi-
noids are known to inhibit stem cell division [34, 98].
This combination of impaired stem cell activity, reduc-
tion of mitochondrial energy generation and a pro-
inflammatory milieu are all hallmarks of cellular ageing
and the senescence-associated secretory phenotype [99–
101] of growth factors and cytokines which is presum-
ably stimulated and a key hallmark of aging. Aging of
course is the leading risk factor for most adult tumours.
In the light of the foregoing cellular changes it would
seem that the quality of cannabinoid-exposed gametes
may be broadly seen as defective and they may thus be
said in general terms to likely be “aged” in metabolic,
epigenetic and genetic terms. Cannabinoids are known
to have important effects on the microvasculature and
can induce tissue ischaemia [102–105] which is an im-
portant determinant of the hypoxic microenvironment
which stimulates genomic instability and oncogenesis
and promotes nascent and mature tumour growth.
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Cannabis addiction is known to feature periods of can-
nabinoid withdrawal marked by agitation and manifest
sympathetic hyperstimulation [106]. Sympathetic stimu-
lation has been shown to have direct adverse activities
on the stem cell niche of the hair follicle [107] and likely
acts similarly in other stem cell niches.
Arguably the most concerning feature of this literature

is the apparent threshold effect beyond which genotoxic
and mitochondriopathic changes emerge relatively
abruptly. This implies that the exponential dose-effect
curve seen in many genotoxic assays for cannabinoids [35,
63, 108, 109] can appear to be functionally an abrupt dis-
continuity in the dose-response curve at the epidemio-
logical level. At the community level this implies that a
doubling of daily cannabis use, as has been documented in
USA in recent years [110], might reasonably be linked
with a disproportionate response in genotoxic down-
stream sequaelae such as congenital anomalies including
transgenerationally transmissible carcinogenesis.
From this brief overview it is apparent that a plethora

of cellular oncogenic mechanisms exist linking exposure
to cannabis smoke, cannabis and cannabinoids to the
processes of carcinogenesis.
In 1965 Hill described nine criteria as being required

of any association in order to assign causality to the rela-
tionship. Strength of association, consistency amongst
studies, specificity, temporal sequence, coherence with
known data, biological plausibility a biological response
or dose-response curve, analogy with similar situations
elsewhere and experimental confirmation were key
features [111]. It will be noted that the above analysis,
including the published literature and the cited experi-
mentally demonstrated mechanistic links, fulfill all of
these criteria for the relationship between cannabis
exposure and TPCIR .

Generalizability
Our data are population level data derived from publicly
available datasets from one of the world’s most techno-
logically advanced nations. The underlying population is
also substantial. Given that our findings are robust to
various different methods, fulfill criteria for causality and
are consistent with the majority of the published work in
the area we believe that our findings are robust and
widely generalizable. However as it is clear that cannabis
use is in a state of flux worldwide at the present with
rises in the prevalence of use, intensity of use, and con-
centration of product we feel that it is important that
on-going studies be conducted in this area to monitor
the situation at higher levels of geospatial resolution.

Future directions
Further extensions of this work might include detailed
dissection of the molecular and cellular level of the

pathways mentioned particularly relating to mitochon-
drial cannabinoid signalling, mitochondrial electron
leaks and shunts, free oxyradical flux, perturbation of
mitonuclear cross-talk, cannabinoid induced disruption
of metabolic supply of epigenetic substrates,
cannabinoid-related disruption of histone synthesis and
signalling and the histone code generally, cannabinoid
epigenotoxicity generally and heritable and transgenera-
tional epigenotoxicity specifically, proinflammatory can-
nabinoid actions, microvascular-disrupting and hypoxia-
inducing actions, chromosomal mis-segregation and
anaphase disruption and the interaction of cannabinoids
with the cGAS-STING cytoplasmic signalling pathway.
Research into cannabinoid interactions with the germ
cells, oocytes and sperm, is clearly of primary and foun-
dational importance to these concerns and should be
up-prioritized on research agendas. Analytically higher
resolution space-time modelling based on more detailed
datasets from CDC and SAMHSA is an obvious task for
the near future. The incorporation of instrumental vari-
ables and inverse probability weights into the space-time
and spatiotemporally lagged models of plm, splm and
similar software would allow all the questions of interest
to be addressed in a single modelling framework without
the need for multiple model types as was necessitated in
the present report and would likely only require minimal
resources to enable the required programming code to
be written for this very impressive, sophisticated and
highly flexible software to be further optimized.

Strengths and limitations
Our study has several strengths including using data
from a very populous nation, the use of publicly avail-
able datasets, the use of different statistical techniques,
the application of inverse probability weighting and e-
Values, two mechanisms well established in the causal
epidemiological literature, the use of geospatiotemporal
regression techniques with complex random error struc-
tures, the use of models lagged both spatially and tem-
porally, the use of a variety of covariates, consideration
of substance-exposure indices which is often absent
from many studies, the use of various instrumental vari-
ables, the availability of a relatively lengthy panel data
series for 15 years, and correction for ethnic cannabis ex-
posure as a major underlying confounding factor. The
absence of geospatial techniques from much of cancer
epidemiology appears to be a major knowledge gap
which the present study begins to redress. It may also be
argued that for research enterprises to consume signifi-
cant public resources but never be able to provide actual
causal advice to their host community at once stretches
public credulity and tests their patience, particularly
when well established methodologies are available which
can be used to fill this major knowledge gap. The
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deliberate application of the techniques of formal causal
inference in this study thus comprises a major strength.
The study’s major limitation relates to the unavailability
of individual patient-level data which is a common limi-
tation amongst epidemiological studies. Due to the com-
plexity of the present analysis we have not considered
further subgroup analyses, either of individual tumours,
or by fascinating sex or ethnic incidence differences. All
of this remains to be done at higher geospatial resolution
by subsequent investigators. Data relating to other co-
variates such as levels of environmental pollutants, par-
ental age at childrens’ birth, dietary changes and
prematurity rates was not available to the present study.
These areas remain to be addressed by subsequent re-
searchers. On a methodological note one notes that
since cannabis use an effect both educational attainment
and occupational achievement one must be careful to
avoid over-controlling or the use of “collider variables”
in such future regression studies [60, 112].

Conclusion
In summary our study confirms previous reports in the
literature linking cannabis exposure with pediatric and
testicular cancer [7–11, 18–22] and answers both our
opening hypotheses affirmatively. We extend and amp-
lify earlier reports in many ways including with the use
of national cancer census data and widely cited nation-
ally representative drug use surveys, the application of
geospatial techniques and the formal techniques of
causal inference to the data series and various technical
refinements including the use of several sets of instru-
mental variables and various forms of inverse
probability-weighted and spatially weighted regression
matrices and robust, panel and linear multivariable tech-
niques. After including socioeconomic, ethnic and drug
use variables we find robust associations across space
and time for cannabis use and TPCIR and that cannabis,
and particularly the cannabinoids THC and cannabi-
gerol, are independently and interactively associated with
TPCIR both in de novo space-time grids and in spatially
and temporally lagged models. Moreover very high e-
Values clearly indicate that the relationship cannot be
explained away by unmeasured, unknown or hypothet-
ical confounding variables. This analysis is consistent
with five previously reported series comprising the ma-
jority of the published literature in the field [7–11],
dozens of potential experimentally described mechanis-
tic pathways and fulfill the paradigmatic Hill criteria of
causality [111]. Findings are also consistent with reports
of elevated rates of congenital anomalies following pre-
natal cannabis exposure [25–28, 42, 43] and thus are
broadly concordant conceptually with wide ranging and
far reaching heritable cannabinoid-related genotoxicity.
Our analysis also begins to provide insights into the

previously mysterious major differences in cancer inci-
dence between various ethnicities by indicating that
varying ethnic exposures to cannabinoids are of particu-
lar concern. It is important that this thread be further
explored in the future. Such formal demonstration of
strong evidence of a presumptively genotoxic cannabis-
cancer causal link is highly relevant for the ongoing and
currently controversial story of the relationship of can-
nabis use with malignant tumourigenesis in adults.
Strong evidence of a robust causal relationship of canna-
bis exposure to pediatric and thus transgenerational in-
heritable genotoxicity carries far reaching implications
for the ongoing public debate relating to the most ap-
propriate forms of regulation of cannabis and cannabi-
noids. Moreover the present analysis powerfully informs
the broader discussion regarding cannabis-related geno-
toxicity as it relates to adult tumourigenesis and many
congenital anomalies encountered at birth [25–28, 42,
61, 62].
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