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Stacking ensemble learning model 
to predict 6‑month mortality 
in ischemic stroke patients
Lee Hwangbo1,4, Yoon Jung Kang2,4, Hoon Kwon1,4, Jae Il Lee3,4, Han‑Jin Cho2,4, 
Jun‑Kyeung Ko3,4, Sang Min Sung2,4,5 & Tae Hong Lee1,4,5*

Patients with acute ischemic stroke can benefit from reperfusion therapy. Nevertheless, there are 
gray areas where initiation of reperfusion therapy is neither supported nor contraindicated by the 
current practice guidelines. In these situations, a prediction model for mortality can be beneficial in 
decision‑making. This study aimed to develop a mortality prediction model for acute ischemic stroke 
patients not receiving reperfusion therapies using a stacking ensemble learning model. The model 
used an artificial neural network as an ensemble classifier. Seven base classifiers were K‑nearest 
neighbors, support vector machine, extreme gradient boosting, random forest, naive Bayes, artificial 
neural network, and logistic regression algorithms. From the clinical data in the International Stroke 
Trial database, we selected a concise set of variables assessable at the presentation. The primary 
study outcome was all‑cause mortality at 6 months. Our stacking ensemble model predicted 6‑month 
mortality with acceptable performance in ischemic stroke patients not receiving reperfusion therapy. 
The area under the curve of receiver‑operating characteristics, accuracy, sensitivity, and specificity 
of the stacking ensemble classifier on a put‑aside validation set were 0.783 (95% confidence interval 
0.758–0.808), 71.6% (69.3–74.2), 72.3% (69.2–76.4%), and 70.9% (68.9–74.3%), respectively.

Before the introduction of reperfusion therapies, such as intravenous thrombolysis or mechanical thrombec-
tomy, about 14.5% to 20% of patients with acute ischemic stroke (AIS) succumbed to death within 1  month1,2. 
The indications for mechanical thrombectomy in AIS patients have continuously expanded in recent  years3–5. 
Mechanical thrombectomy is, however, not without risk. The numbers needed to treat and harm are 8 and 92, 
 respectively6. Starting mechanical thrombectomy is a difficult decision for a patient if she is not eligible by cur-
rent  indications7. Establishing an individualized mortality prediction model for AIS patients not undergoing 
reperfusion therapy at the time of presentation will be beneficial in aiding clinical decision-making.

There have been several mortality prediction models for AIS patients. While these models reported sufficient 
prediction accuracy, several of them predict the outcome based on variables that can only be assessed later in 
the disease  course8–10. Even though the later-time clinical variables can promote its predicting capability, we 
hypothesized that having an accurate prediction model based exclusively on early clinical data at presentation 
can help decide hyperacute treatments.

Machine learning (ML) algorithms are now prevalent in medical research, including several mortality predic-
tion models for ischemic  stroke9–12. It enables researchers to develop accurate models. Using ML algorithms can 
also be beneficial where data exhibits significant collinearity. Stacking ensemble learning (SEL) is an algorithm 
structure consisting of more than one level of ML algorithms that constitutes the  whole13–15. This type of ML is 
known to produce a more reliable model. To our knowledge, an SEL-based outcome prediction model for AIS 
is lacking.

The first International Stroke Trial (IST-1), published in 1997, compared the effects of aspirin and subcuta-
neous heparin and followed up for 6  months16. The anonymized dataset of this randomized controlled trial is 
made  public17. The IST-1 was a large-scale trial and had a concise set of variables for randomization. During the 
study period in the 1990s, neither thrombectomy nor intravenous thrombolysis was widespread. Therefore, we 
saw IST-1 as an excellent dataset for evaluating 6-month mortality in AIS patients who have foregone reperfu-
sion therapies.
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This study aims to develop a robust model for 6-month mortality prediction in AIS patients who did not 
undergo reperfusion therapy using only a concise set of hyperacute-phase clinical data of the IST-1 with the 
help of stacking ensemble ML.

Methods
Ethical statement. This data-driven study followed regional regulations and ethical guidelines issued by 
the South Korean  government18.

Study design and dataset pre‑processing. We used a publicly available anonymized dataset from the 
IST-116,17.

The feature selection process was done by agreement of the stroke neurologists and neuro-interventionalists 
among the authors, who chose easily assessable variables at the initial workup. The list of all included variables 
is as follows: age, sex, level of consciousness at presentation, presence of wake-up stroke, underlying atrial fibril-
lation, visible infarction on computed tomography, heparinization within 24 h, aspirin administration within 
3 days, systolic blood pressure, presence of deficits (including face, upper and lower extremities, dysphasia, 
hemianopsia, visuospatial disorder, and other neurological deficits), and aspirin or heparin administration at 
presentation. Age and systolic blood pressure were continuous variables; sex and level of consciousness were 
categorical; all other variables were binomial. We selected these 18 variables before any analysis, and its purpose 
was to capture clinically meaningful information while minimizing possible overfitting during the training of 
ML algorithms. The selected variables or features for ML were deemed meaningful in mortality prediction in 
AIS patients.

The application of exclusion criteria established patients for ML analysis. The excluded patients include those 
who received subcutaneous unfractionated heparin 12,500 units twice daily, as this is not a routinely advocated 
treatment by current practice  guidelines7. Since carotid endarterectomy or thrombolysis could potentially con-
found the outcome, those who underwent were ineligible. Patients with missing values in study variables or 
non-ischemic stroke were not included in the analyses to minimize uncertainty during ML training. The previous 
reports described the outcome of the original trial and its  dataset16,17.

Then we divided the prepared data into training and validation sets in a seven-to-three ratio. The validation 
set was used for evaluating constructed ML classifiers at the final stage. This retained group served exclusively 
as an internal validation set and was strictly put aside during model development.

Base algorithm development. Each base algorithm received input values of 18 variables and produced a 
mortality probability value used by an ensemble classifier. Seven base ML algorithms consist of K-nearest neigh-
bor (KNN), extreme gradient boosting (XGB), support vector machine (SVM) with radial basis function kernel, 
Gaussian Naïve Bayes (NB), random forest (RF), artificial neural networks (ANN), and logistic regression (LR) 
classifiers. We aimed to make the final model robust while maximizing potential information gains using diverse 
classifiers. The rationale for base classifier selection was apparent prevalence in the medical literature and ease of 
implementation during model development.

Hyperparameters tend to impact the performance of ML models. Moreover, we searched for their optimal 
values exhaustively within a reasonable range. Theoretically, hyperparameter values have infinite combinations, 
and consequently, heuristic methods were employed. Several small batches of pilot tests revealed the rough 
boundaries for hyperparameter values. Within practical limits, the range of any given hyperparameter was as 
wide as possible, while the testing points were as dense as feasible.

Grid or randomized search of hyperparameters with five-fold cross-validation yielded seven classifiers (Fig. 1). 
The former uses an exhaustive evaluation of all possible combinations of hyperparameters within a given hyper-
space; the latter takes advantage of a randomized search of the hyperspace to minimize training time while 
preserving accuracy. Five-fold cross-validation enabled the training of base ML methods with the put-aside 
validation dataset unused during the process. Grid search identified the best hyperparameters for KNN, NB, and 
LR. Randomized search fine-tuned hyperparameters for the rest. The numbers of iterations for the randomized 
search of hyperparameters in XGB, SVM, RF, and ANN classifiers were 1024, 4096, 2048, and 4096, respectively. 
Small-batch pilot tests produced an approximate time required per iteration of an algorithm, and we used this 
as a guide to determine the numbers.

The hyperparameter space for the KNN model was k value for a k-nearest neighbor of integers 1 through 
500; for XGB consists of learning rate between  10–2 to  10–0.5, maximum depth between 2 and 10, minimum child 
weight of 1 through 300, subsampling rate between 0.2 and 1.0, column sampling rate by the tree from 0.2 to 1.0, 
and the number of estimators between 50 and 1000; for SVM with radial basis function kernel were C value from 
 10–2 to  103, and gamma between  10–4 and  104; for NB was variable smoothing between  10–15 and  101; for RF, the 
presence of bootstrap, maximum depth from 1 to 20, the maximum features be either automatic or square-root 
of the input features, minimum samples leaf between 1 and 10, and the minimum samples split between 1 and 10; 
for ANN was the number of nodes in a single hidden layer between 2 and 20, all available activation functions, 
solver functions, alpha parameter, and learning rate either be constant or adaptive; for LR, all available solver 
functions, and C value of  10–8 to  103.

Stacking ensemble algorithm development. We approached baseline ML algorithms agnostically. 
It was difficult to predict the best performer before validation, which was the main reason for choosing an 
SEL-based model over others. We constructed an ANN with a single hidden layer to accept probability values 
generated by seven individual base algorithms. Since the seven base classifiers would likely have collinearity, we 
assumed an ANN would be more suitable over regression models. Five nodes in a single hidden layer constituted 
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a stacking ensemble classifier. The choice of the number of nodes was arbitrary. An underlying assumption was 
that this single-layer ANN would work as a universal approximating  function19,20. Another conjecture was that 
limiting the number would prevent overfitting. A stratified fivefold cross-validation model evaluated the can-
didate models. This approach was topologically similar to a deep neural network when combined with the base 
ANN classifier.

Algorithm implementation. We developed both base and ensemble ML models using the Scikit-learn 
(version 1.0.1) and XGBoost (version 1.5.0) library on Python (version 3.9.7)21,22.

Evaluation of classifiers. We compared the train and validation sets using Pearson’s χ2 test or Student’s 
t-test for dichotomous and continuous variables. The level of significance, α, was set to 0.05.

The train and test sets were evaluated upon completing the ensemble learning. The evaluation metrics for 
each hyperparameter-tuned classifier and the final ensemble algorithm included an area under the receiver-
operating characteristics (AUROC), accuracy, sensitivity, specificity, positive predictive value (PPV), negative 
predictive value (NPV), positive likelihood ratio (LR+), and negative likelihood ratio (LR−),  F1-score with 95% 
confidence interval (CI). A receiver-operating characteristics (ROC) analysis using the final probability value and 
the actual mortality revealed the threshold value for probability outcome maximizing Youden’s J statistics (sen-
sitivity + specificity − 1) divided by the absolute difference of the sensitivity and specificity plus 0.01 to prevent 
division by zero. We added the divisor term to control the excessive gain of sensitivity or specificity at the expense 
of the other, which was frequently observed during pilot tests using a small number of iterations. Bootstrapping 
10,000 times produced 95% CI for the performance metrics and enabled violin plot of the measured performance 
metrics. The AUROC, accuracy, and population-independent metrics, including sensitivity, specificity, LR+, and 
LR− were plotted for seven base classifiers and the final ensemble learner using a Python library  Matplotlib23.

Results
Baseline analysis of study patients in test and validation sets. Among 19,435 patients in the IST-1 
dataset, excluded from the ML training were 10,648 for the following reason: 4856 for higher dose heparin, 1522 
for non-ischemic stroke as a final diagnosis, 46 for carotid surgery (endarterectomy) or thrombolysis, 4224 for 
missing values in study variables. A seven-to-three ratio split of 8787 study subjects between train and test sets 
resulted in 6150 assigned in the former and 2637 in the latter (Fig. 2). Comparing the study variables of the 
groups revealed a difference in proportion regarding dysphasia (p = 0.0399), while the other variables showed 
similar characteristics (Table 1).

Developed algorithms. Seven base classifiers and the final ensemble model are freely available on an 
online repository (see data availability statement).

Predictive performance of individual and ensemble models. The ROC of seven individual ML algo-
rithms and the ensemble learner on the validation set were plotted for analysis. It showed similar performance 

Figure 1.  Design of stacking ensemble learner. Seven base classifiers are hyperparameter-tuned individually, 
and each produces a prediction value. The seven outcome prediction values are input variables for the stacking 
ensemble learner. KNN: k-nearest neighbours; XGB: extreme gradient boosting; SVM: support vector machine; 
NB: Naïve Bayes; RF: random forests; ANN: artificial neural networks; LR: logistic regression.
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19435 patients assessed 
for eligibility

8787 included

10648 ineligible
4856 used higher dose heparin
1522 diagnosed with nonischaemic stroke
46 underwent carotid surgery or thrombolysis
4224 carried missing values

Train-test set split in a 
seven-to-three ratio

6150 assigned 
train set

2637 assigned test 
set

KNN XGB SVM NB RF ANN LR

Base classifiers

Ensemble classifier (ANN)

training validation

Predicted death
n = 917

Predicted survival
n = 1720

Actual outcome
Death (n=271)
Survival (n=646)

Actual outcome
Death (n=104)
Survival (n=1616)

Figure 2.  Flow of study patients. The confusion matrix of the final stacking ensemble learning produced the 
predicted number. The put-aside validation set evaluated the models after complete training.

Table 1.  Summary of clinical variables of train and validation sets. Tabulated data are number of patients for 
binary variables and mean for continuous variables. The p values are calculated with either Pearson’s χ2 test or 
Student’s t-test.

Train set Validation set P value

Age (SD), years 70.4 (11.5) 70.1 (11.9) 0.2896

Sex (female) 2618 (42.6%) 1177 (44.6%) 0.07716

Altered consciousness (drowsy or sunconscious) 706 (11.1%) 294 (11.4%) 0.6813

Wake-up stroke 1888 (30.7%) 818 (31.0%) 0.7845

Atrial fibrillation 894 (14.5%) 343 (13.0%) 0.0635

Visible infarction on computed tomography 1981 (32.2%) 874 (33.3%) 0.4063

Heparin within 24 h of visit 150 (2.4%) 67 (2.5%) 0.8363

Aspirin within 3 days of visit 1304 (21.2%) 523 (19.8%) 0.1551

Systolic blood pressure (SD), mmHg 160.4 (27.4) 160.7 (28.2) 0.6780

Deficits

Facial 4318 (70.2%) 1848 (70.1%) 0.9217

Upper extremity 5188 (84.4%) 2243 (85.1%) 0.4228

Lower extremity 4478 (72.8%) 1956 (74.1%) 0.1952

Dysphasia 2225 (84.4%) 893 (33.9%) 0.0399

Hemianopsia 1034 (16.8%) 431 (16.3%) 0.6108

Visuospatial disorder 945 (15.4%) 395 (15.0%) 0.6674

Brainstem-cerebellar 746 (12.1%) 333 (12.6%) 0.5377

Other 376 (6.1%) 137 (5.2%) 0.1024

Heparin administered 2058 (33.5%) 887 (33.6%) 0.8941

Aspirin administered 3098 (50.4%) 1294 (49.1%) 0.2729

Death at 6 months 910 (14.8%) 375 (14.2%) 0.5045
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of the XGB, NB, RF, LR, and ANN to the SEL with their respective AUROC of 0.771 (95% confidence inter-
val [CI] 0.744–0.796), 0.778 (0.753–0.803), 0.770 (0.743–0.795), 0.780 (0.752–0.808), and 0.775 (0.749–0.800), 
while the k-nearest neighbors (KNN) and support vector machine (SVM) models performed poorly with 0.715 
(0.686–0.743) and 0.708 (0.678–0.739), respectively (Fig. 3).

The final stacking ensemble model used all seven base ML algorithms. It resulted in AUROC, accuracy, sen-
sitivity, specificity, PPV, and NPV of 0.783 (95% CI 0.758–0.808), 71.6% (69.3–74.2), 72.3% (69.2–76.4), 70.9% 
(68.9–74.3), 29.6 (26.6–33.1), and 94.0 (93.0–95.0), respectively, when tested on the validation set (Table 2). The 
LR+ and LR− were 2.48 (2.29–2.87), and 0.391 (0.330–0.437).

Comparison of individual and ensemble models on bootstrapped metrics. The diagnostic perfor-
mance of individual base learners and ensemble classifiers on train and validation sets showed a slight decrease 
in performance in most models on violin plots of bootstrapped metrics (Fig. 4). The most pronounced decline 
was for the RF model, with its AUROC decreasing from 0.846 (95% CI 0.832–0.860) to 0.770 (0.744–0.795). The 
SEL, LR, ANN, and XGB models fared well on the validation set, with the AUROC values changing from 0.797 
(0.782–0.813), 0.773 0.757–0.790), 0.774 (0.757–0.790), and 0.801 (0.785–0.817) on the training set to 0.783 
(0.758–0.808), 0.780 (0.754–0.805), 0.775 (0.749–0.800), 0.771 (0.744–0.796) on the validation, respectively. It 
was interesting to observe the instability of SVM on the train set when bootstrapped, especially in terms of 
accuracy and specificity, where it shows three peaks of bootstrapped metrics with a wider range of bootstrapped 
distribution, which was not obvious on the validation set. On the other hand, the LR and RF models revealed 
a similar widening of bootstrapped accuracy and specificity on the validation set with two peaks. The final SEL 
model did not show such deviations in metrics. All its metrics on both sets showed a single peak with a stable 
distribution width.

Figure 3.  Receiver operating characteristics curve for seven base and ensemble learners. KNN: k-nearest 
neighbors; XGB: extreme gradient boost; SVM: support vector machine; NB: Naïve Bayes; RF: random forests; 
ANN: artificial neural networks, LR = logistic regression.
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Discussion
This study demonstrated a final ensemble model with an AUROC of 0.783 for a 6-month mortality prediction. 
From a clinical perspective, making this prediction requires only a part of the National Institute of Health Stroke 
Scale (NIHSS) assessment, an electrocardiogram, and a brief review of current medications. This concise set of 
clinical variables alone resulted in sensitivity and specificity of 71.6% and 72.3%. These results are somewhat 
insufficient to decide on reperfusion therapy in AIS patients. However, this model can add information to clinical 
decisions considering LR+ and LR− of 2.48 and 0.391.

When applied to a research setting, it would serve as a classification scheme for AIS patients, especially when 
its primary outcome involves 6-month mortality. We succinctly chose clinical variables, which can benefit retro-
spective studies as these variables are universally assessed in the current practice environment.

Several reports of outcome prediction models for acute ischemic strokes and a few ML-derived models have 
been published  recently8–10,24. Moreover, our model is unique in that the required clinical variables are straight-
forward, and all variables are assessable at the time of presentation. We summarized the hyperacute assessability 
of selected mortality prediction models for AIS patients in Table 3.

Table 2.  Model performance on train and validation set of stacking ensemble machine learning. Proportion or 
ratio (bootstrapped 95% CI).

Train set Validation set

AUROC 0.797 (0.782–0.813) 0.783 (0.758–0.808)

Accuracy 0.728 (0.707–0.742) 0.716 (0.693–0.742)

Sensitivity 0.719 (0.703–0.745) 0.723 (0.692–0.764)

Specificity 0.732 (0.705–0.744) 0.709 (0.689–0.743)

Positive predictive value 0.316 (0.291–0.338) 0.296 (0.266–0.331)

Negative predictive value 0.937 (0.931–0.944) 0.940 (0.930–0.950)

Positive likelihood ratio 2.69 (2.42–2.86) 2.48 (2.29–2.87)

Negative likelihood ratio 0.384 (0.348–0.414) 0.391 (0.330–0.437)

F1 score 0.439 (0.413–0.463) 0.420 (0.387–0.457)

Figure 4.  Violin plots of bootstrapped metrics of AUROC, accuracy, sensitivity, specificity, LR+, and LR−. 
AUROC: area under the receiver operating characteristics curve; LR+: positive likelihood ratio; LR−: negative 
likelihood ratio.
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Saposnik et al. proposed a useful integer scoring system called ‘IScore’ based on multivariate  analysis24. Their 
work reported AUROC of 0.852 and 0.840 for 30-day and one-year mortality prediction on an internal valida-
tion set and 0.790 and 0.782 when externally validated. The input variables for their model were past medical 
history, comorbid conditions, preadmission disability, and serum glucose level. A head-to-head comparison with 
our study is not feasible as the SEL model was tested with internal validation only. However, the SEL model of 
this study is different in the timeframe it aimed to predict, and the variables used. In our SEL model, the input 
variables were those only available within minutes of presentation. This simple set of variables does not include 
any laboratory study. Consequently, it is beneficial when a prompt treatment decision is required. We expect our 
model would complement their scoring system.

Another interesting study by Easton et al. used UK Glucose Insulin in Stroke Trial database and reported an 
internally validated AUROC of 0.807 for 93-day mortality prediction using a Naïve Bayes  classifier10. The study 
variables included laboratory tests such as plasma sodium/potassium concentration, serum urea, and creatinine. 
These laboratory tests typically take more than an hour to complete, and a current clinical guideline state that 
only blood glucose measurement can precede intravenous thrombolysis. The diagnostic performance of our 
model is comparable to this without employing any laboratory test.

An RF-based prediction model by Fernandez-Lozano et al. reported an excellent AUROC of 0.909 for 
3-month mortality prediction for AIS  patients9. Their model incorporated laboratory studies, along with 24-h 
and 48-h NIHSS. This RF-based model could be an important tool to assess AIS patients after 48 h, but this 
model is not feasible in a hyperacute setting.

One study by Abedi et al. examined and compared three ML algorithms, LR, RF, and XGB, and predicted a 
6-month AUROC of 0.80 with the RF algorithm when internally  validated25. This ML study also incorporated 
various laboratory tests as input variables and is likewise less applicable in a hyperacute clinical scenario.

A study with four ML models predicting AIS mortality at 90 days by Lin et al. reported AUROC for RF, SVM, 
ANN, and custom-designed hybrid artificial neural networks of 0.972, 0.971, 0.969, and 0.974,  respectively8. They 
used clinical data for up to 30 days since ictus among 35,798 AIS patients from the Taiwanese Stroke Registry. 
These values are probably the best so far regarding AIS mortality prediction. This study is an excellent example 
that ML algorithms can extract information from data. It also incorporated subacute-phase variables and is not 
built for prediction based on clinical variables at presentation.

Stacking ensemble algorithm is a generic term applied to any machine learning method using more than one 
layer of  classifiers14,15. Stacking can function as an error-correcting and bias-reducing scheme. ANN is known to 
approximate any continuous function. We found several successful examples of stacking ensemble algorithms 
implemented for medical data, such as intensive care unit mortality prediction and classification of Parkinson’s 
 disease26,27. However, our proposed model is the first SEL developed for stroke outcome prediction to our best 
knowledge.

Choosing ANN as an ensemble algorithm can harness its approximating power to fit arbitrary relationships 
between probability values generated by each base classifier. Besides, the seven predicting variables are likely to 
exhibit collinearity. Therefore, we opted for ANN over logistic regression as an ensemble classifier and regarded 
it as a universal approximating  function19,20. Topologically, this resembles deep neural networks as another ANN 
is among the base classifiers.

We chose seven algorithms as individual base classifiers. It is a potential benefit of ensemble learning to 
minimize the case of overfitting during training. This advantage may be cautiously attributable to differences in 
algorithmic mechanisms of each base learner. KNN algorithm predicts mortality based on the distance calculated 
in the hyperspace of clinical  data28. For a patient with an unknown outcome, value k is predefined, and k-closest 
patients’ data with known survival status are used to predict her mortality. XGB is a decision tree algorithm with 

Table 3.  Comparison of selected mortality prediction models for AIS patients. Hyperacute applicability means 
all selected features are assessable at the time of initial presentation.

Algorithms used Validations Hyperacute applicability Predicting outcomes Reported AUROC

Current study SEL Internal validation Yes 6-month mortality 0.783

Saposnik et al. Integer scoring system
Internal and incomplete 
external validations (half 
of the external set used for 
calibration)

Yes 30-day and 1-year mortality
0.790 (30-day)

0.782 (1-year)

Eaton et al. NB Internal validation No 7- and 93-day mortality
0.858 (7-day)

0.807 (93-day)

Fernandez-Lozano et al. RF Internal validation No 3-month morbidity and 
mortality

0.703 (3-month morbidity)

0.899 (3-month mortality)

Abedi et al. LR, RF, XGB Internal validation No 1-, 3-, 6-, 12-, 18-, 24-month 
mortality

0.82 (1-month; RF)

0.80 (6-month; RF)

0.77 (12-month; XGB)

Lin et al. RF, SVM, ANN, hybrid ANN Internal validation No 90-day morbidity

0.972 (RF)

0.971 (SVM)

0.969 (ANN)

0.974 (hybrid ANN)
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gradient  boosting21. The decision trees are sequentially generated for clinical data by minimizing the error of 
mortality prediction of the previous decision tree. During this process, the gradient descent algorithm makes 
this revision effective. XGB further improves this process by adopting several additional techniques. SVM tries 
to delineate a boundary between two groups of patients, either dead or alive, at 6  months28. This boundary is 
set to maximize the distance to the nearest patient data. NB algorithm uses the Bayes’ theorem as if each vari-
able is linearly  independent28. Some variables may be linearly dependent. Nevertheless, this makes prediction 
modeling less complicated and computationally advantageous. RF algorithm is another decision tree algorithm, 
where each tree independently predicts the outcome using a portion of  variables28. These trees form a collective 
decision-making scheme. ANN is a biomimetic machine learning algorithm that resembles a biological neuronal 
 network29. Perceptron, a neuron analog, is gathered and layered to produce predicting algorithm. An LR classifier 
was also in the base learner. We intended to maximize information extraction from the dataset while avoiding 
overfitting or instability of algorithms by this ensemble learning.

The violin plots of bootstrapped performance metrics depicted this theoretical advantage. The final SEL 
model only marginally underperformed on the validation set, even though it has a clinical variable with a sta-
tistically significant difference. Moreover, all the bootstrapped metrics of the SEL revealed a single peak around 
the reported value. We believe this is indirect evidence of the stability of our model.

This study is not without limitations.
First, only a put-aside internal validation set tested the model. We chose an SEL approach to make the model 

as robust as possible, keeping in mind this limitation.
Second, our criteria excluded more than half of the patients from the IST-1 dataset. We saw this exclusion 

as technically necessary to incorporate all seven machine learning models as base learners. At the same time, it 
could have decreased the overall information extracted from the dataset. Even after excluding patient data with 
missing values, all seven base algorithms learned effectively.

Third, newer medications are now widely used, including antidyslipidemic agents, oral hypoglycemic medica-
tions, newer antiplatelet drugs, and direct oral anticoagulants. The differences in medication status may impact 
the overall model performance. Therefore, a direct extrapolation of this model to current AIS patients requires 
caution. However, as large-scale studies afterward included reperfusion treatments, the IST-1 dataset remained 
the only source for our purpose, i.e., predicting mortality when a patient skips systemic or endovascular reperfu-
sion. In the same regard, it is unlikely to see a future prospective study not incorporating reperfusion therapies.

Fourth, the proposed SEL model used in this study itself is not technically new. However, the minimized 
features selected for the training to predict AIS outcomes were rare before our work. Subsequently, our model 
has the strength of clinical applicability at the time of initial presentation.

Despite these limitations, our model resulted in comparable diagnostic performance to the previous reports 
with a more concise set of variables that is obtainable with ease at presentation. To our knowledge, this work is 
the first to report SEL to predict AIS outcomes. We hope this model contributes to a decision process in practice 
and clinical research.

Data availability
The dataset we have used is from an openly available source. The implementation of our algorithms is freely 
available for research on a Github repository (https:// github. com/ lhwan gbo/m- ist).
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