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Abstract

Immunity to Plasmodium falciparum is non-sterilising, thus individuals residing in malaria-

endemic areas are at risk of infection throughout their lifetime. Here we seek to find a genomic 

epidemiological explanation for why residents of all ages harbour blood stage infections despite 

lifelong exposure to P. falciparum in areas of high transmission. We do this by exploring, for 

the first known time, the age-specific patterns of diversity of variant antigen encoding (var) 
genes in the reservoir of infection. Microscopic and submicroscopic P. falciparum infections were 

analysed at the end of the wet and dry seasons in 2012–2013 for a cohort of 1541 residents 

aged from 1 to 91 years in an area characterised by high seasonal malaria transmission in 

Ghana. By sequencing the near ubiquitous Duffy-binding-like alpha domain (DBLα) that encodes 

immunogenic domains, we defined var gene diversity in an estimated 1096 genomes detected 

in sequential wet and dry season sampling of this cohort. Unprecedented var (DBLα) diversity 
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was observed in all ages with 42,399 unique var types detected. There was a high degree of 

maintenance of types between seasons (>40% seen more than once), with many of the same 

types, especially upsA, appearing multiple times in isolates from different individuals. Children 

and adolescents were found to be significant reservoirs of var DBLα diversity compared with 

adults. Var repertoires within individuals were highly variable, with children having more related 

var repertoires compared to adolescents and adults. Individuals of all ages harboured multiple 

genomes with var repertoires unrelated to those infecting other hosts. High turnover of parasites 

with diverse isolate var repertoires was also observed in all ages. These age-specific patterns are 

best explained by variant-specific immune selection. The observed level of var diversity for the 

population was then used to simulate the development of variant-specific immunity to the diverse 

var types under conservative assumptions. Simulations showed that the extent of observed var 
diversity with limited repertoire relatedness was sufficient to explain why adolescents and adults in 

this community remain susceptible to blood stage infection, even with multiple genomes.

Keywords

Plasmodium falciparum ; Genomic epidemiology; Parasite diversity; Malaria; Variant-specific 
immunity; Asymptomatic infection; var genes; PfEMP1

1. Introduction

Unlike measles where a single infection leads to sterilising immunity, individuals of all 

ages continue to be infected with Plasmodium falciparum. This is particularly apparent 

in high-transmission settings in Africa where individuals develop immunity that protects 

against clinical disease during childhood but remain susceptible to sporozoite and blood 

stage infections throughout life (Marsh, 1992; Owusu-Agyei et al., 2001; Tran et al., 2013). 

Antigenic diversity has been the accepted explanation for why immunity does not protect 

against infection by the blood stages of P. falciparum. A contemporary understanding of P. 
falciparum genomics has identified both diverse single copy antigen encoding genes as well 

as multigene families that contribute to immune evasion of these life cycle stages.

The major surface antigen of the blood stages, known as P. falciparum Erythrocyte 

Membrane Protein 1 (PfEMP1), is encoded by the variant antigen encoding (var) multigene 

family and is the major target of naturally acquired immunity (Chan et al., 2012). Clonal 

antigenic variation involving differential expression of up to 60 var genes per genome 

enables chronic infection and facilitates transmission to mosquitoes (Biggs et al., 1991). 

Variation in PfEMP1 is considered a key driver of transmission dynamics within and 

between hosts due to immune evasion (Gupta and Day, 1994). Expression of different 

groups of var genes identified by chromosomal locations has also been associated with 

virulence in case-control studies and transcriptomic analyses, with a conserved subset of 

PfEMP1 associated with severe disease (Lavstsen et al., 2012; Bengtsson et al., 2013; Rorick 

et al., 2013; Lau et al., 2015; Bernabeu et al., 2016; Jespersen et al., 2016; Magallón-Tejada 

et al., 2016; Lennartz et al., 2017; Tonkin-Hill et al., 2018). Our previous work has explored 

var gene diversity in infected children by focusing on the near ubiquitous Duffy-binding-like 

alpha domain (DBLα) region of var genes as a population genetic marker (Chen et al., 2011; 
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Day et al., 2017; Ruybal-Pesántez et al., 2017). The DBLα domain encodes the N-terminal 

surface exposed antigenic region of PfEMP1, which is immunogenic (Barry et al., 2011; 

Tessema et al., 2019), and acquired immunity to this domain is age-dependent (Barry et al., 

2011). This work showed that var genes are highly diverse in children, but to date we have 

no understanding of var diversity and population structure in adults compared with children.

Previously, we defined a non-random population structure of non-overlapping var DBLα 
repertoires in children in several African sites characterised by high transmission and 

sexual recombination (Chen et al., 2011; Day et al., 2017; Ruybal-Pesántez et al., 2017). 

This result, revealing an absence of recombinant repertoires (i.e., limited relatedness) in 

a sexually reproducing organism such as P. falciparum, was striking. Network analyses 

and stochastic simulations that consider both epidemiological and evolutionary processes 

confirmed that frequency-dependent variant-specific immune selection rather than exposure-

dependent generalised immunity can structure parasite var DBLα repertoires to be non-

overlapping to maximise immune evasion potential (He et al., 2018). Given variant-specific 

immunity, rather than generalised immunity to single copy antigen genes, is shown to be 

the dominant force structuring the parasite population in the blood stages, this leads us 

to propose that there must be an extraordinary number of PfEMP1 variants circulating 

locally to sustain infection in all ages and that age-specific signatures of var diversity and 

population structure could be detected.

Here we test these two hypotheses by describing var DBLα diversity and structure after deep 

sampling of P. falciparum infections in an age-stratified cohort of 1541 individuals (aged 1–

91 years) experiencing intense, seasonal malaria transmission in Ghana, ranked the seventh 

high-burden country globally by the World Health Organization (WHO, 2019). Sequential 

wet and dry season patterns of var DBLα diversity in both microscopy-positive, as well as 

submicroscopic infections, were analysed by age to measure the size of the var reservoir 

of diversity in infections from children, adolescents and adults to look for signatures of 

selection by variant-specific immunity. Distinct age-specific patterns of diversity revealed 

children and adolescents having parasites with the most var diversity compared with those 

of adults. Significant differences in var DBLα population structure were also detected in 

parasites from children compared with those found in adolescents and adults. The total 

measure of the reservoir of var DBLα diversity in all ages was then used in a simulation to 

model the lifetime acquisition of variant-specific immunity to all observed variants. These 

simulations, based on conservative assumptions, showed that both the size and structure 

of the reservoir of var DBLα diversity is sufficient to explain why residents of high 

transmission areas remain susceptible to blood stage infection, even after a lifetime of 

exposure to P. falciparum.

2. Materials and methods

2.1. Human subjects and ethical approval

This study was reviewed and approved by the ethics committees at the Navrongo Health 

Research Centre (Navrongo, Ghana), Noguchi Memorial Institute for Medical Research 

(Legon, Ghana), New York University (New York, USA), The University of Melbourne 

(Melbourne, Australia), and University of Chicago (Chicago, USA). Study details and 
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procedures were explained to participants in their local language and witnessed informed 

consent (and assent where applicable) was obtained from each individual. For those under 

the age of 18 years, witnessed informed consent was obtained from a parent or guardian, 

with all children between the ages of 12–17 years also providing assent. Individuals who 

did not meet the inclusion criteria were excluded from the study; this included if they 

were pregnant, had a disability, or presented with a serious or acute disease (including 

symptomatic malaria as defined by a temperature ≥37.5 °C and a positive rapid diagnostic 

test). Individuals requiring treatment for malaria were referred to their respective local health 

centre (Vea Health Centre, Soe Health Centre or Bongo District Hospital) for appropriate 

care.

2.2. Study design

This study was designed to evaluate the seasonal and age-specific diversity patterns in 

the P. falciparum reservoir in Bongo District, located in the Upper East Region of Ghana 

where malaria transmission is high and seasonal. The age-stratified serial cross-sectional 

surveys were conducted over consecutive wet and dry seasons with each survey lasting 

approximately 4 weeks. The first survey was conducted at the end of the wet season (EWS) 

during October 2012, after the highest point of malaria transmission during the year. The 

second survey was conducted at the end of the dry season (EDS) during mid-May to June 

2013, with an 83% retention rate of the same participants enrolled during October 2012. 

A detailed description of the study area and study design has been published elsewhere 

(Tiedje et al., 2017). Briefly, a total of 1900 and 1868 healthy participants between the ages 

of 1–92 years were surveyed at the EWS and EDS, respectively. Blood samples (thick/thin 

blood films, rapid diagnostic tests, and dried blood spots) as well as demographic and 

malaria-related questionnaires were collected after obtaining informed consent. Here we 

focus on the 83% of participants who were retained in the second survey, totaling 1541 

individuals surveyed at both time points.

2.3. Parasitological measurements

Parasitological measurements were previously published in Tiedje et al. (2017). Briefly, 

parasite densities were counted per 200 white blood cells (WBCs) on 10% Giemsa-stained 

thick film blood smears and examined under oil immersion of 100-fold magnification. 

Parasite densities were calculated by averaging two independent readings completed by two 

experienced technicians and recorded as parasites per μL of blood, assuming the average 

WBC count was 8000 per μL of blood. Parasite species were also identified using a 100-fold 

magnification of the thin film smears and categorized based on morphology.

2.4. DNA extraction

Peripheral blood from survey participants was blotted onto 3MM Whatman filter paper and 

dried at room temperature. Two 5 mm × 5 mm sections were cut from each dried blood spot 

(DBS) and placed in a 1.5 mL centrifuge tube. Genomic DNA was extracted from the DBS 

for all participants surveyed as per the manufacturer’s instructions using a Qiagen DNA 

Mini kit (QIAGEN, California, USA), with one modification in the final step where isolates 

were eluted in 50 μL of AE buffer instead of 150 μL. The extracted genomic DNA from each 

isolate was stored at −20 °C prior to PCR analysis, and at −80 °C for long-term storage.
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2.5. 18S rRNA genotyping

A species-specific nested PCR targeting the 18S rRNA gene was performed previously by 

our group on all participant samples that were negative for P. falciparum by microscopy 

in order to detect the presence of submicroscopic P. falciparum infections (Tiedje et al., 

2017). The PCR methodology is described in detail in Tiedje et al. (2017). Note that all 

participants who were positive for P. falciparum (microscopic or submicroscopic), were 

afebrile (temperature <37.5 °C) on the day the survey was conducted and did not report 

a history of fever in the 24 h prior to being surveyed, thus were defined as having an 

asymptomatic P. falciparum infection.

2.6. Targeted amplicon PCR and var DBLα sequencing

A targeted amplicon Illumina sequencing approach was used to sequence the ubiquitous 

DBLα domain of the var genes for all P. falciparum isolates (i.e., microscopic and 

submicroscopic). The DBLα domains of P. falciparum var genes were amplified from 

genomic DNA, as previously described (Ruybal-Pesántez et al., 2017) and the individually-

tagged amplicons were pooled equimolarly. Barcoded libraries were prepared using the 

KAPA Low-Throughput Library Preparation Kit Standard (Kapa Biosystems, Woburn, MA, 

USA) and amplified using the KAPA HiFi Library Amplification kit (Kapa Biosystems, 

Woburn, MA, USA) (eight cycles). An equimolar pool of the barcoded libraries was 

sequenced on an Illumina MiSeq sequencer using the 2×300 paired-end cycle protocol, 

MiSeq Reagent kit v3 chemistry (New York University Genome Technology Center, New 

York, NY, USA; Australian Genome Research Facility, Melbourne, Australia). Sequence 

data was successfully obtained from 664 isolates at the EWS (out of 1,151 infected 

residents) and 435 isolates (out of 669 infected residents) at the EDS. As expected, 

a significant failure rate was observed in both seasons for low-density submicroscopic 

infections but not microscopic infections (Chi-square test, P < 0.001).

2.7. Illumina DBLα sequence data processing

A full tutorial of each data processing step is available on GitHub at https://github.com/

UniMelb-Day-Lab/tutorialDBLalpha. See below details of each step.

2.7.1. Illumina DBLα sequence cleaning pipeline—A pipeline tailored to the 

analysis of DBLα sequence tags was developed to de-multiplex and remove PCR and 

sequencing artefacts from the DBLα reads. Briefly, flexbar v2.5 (Dodt et al., 2012) was used 

to demultiplex each pooled paired-end fastq file into individual files for each isolate based 

on both the forward and reverse MID tags. PEAR v.0.9.10 (Zhang et al., 2014) was then 

used to merge the overlapping paired-end reads. The minimum assembly length required 

was set to 100 nucleotides (nt) and at least 10 overlapping bases were required. The resulting 

merged reads were then filtered for quality, and those reads with more than one expected 

error were removed using the fastq_filter command (Edgar, 2010). Chimeras were filtered 

using Uchime denovo (Edgar et al., 2011) and then the remaining reads were clustered 

using the cluster_fast function of Usearch (Edgar, 2010) after first removing singletons to 

reduce the impact of errors. The standard pairwise sequencing identity threshold of 96% 

was used for clustering (Day et al., 2017). To remove clusters with low support, those that 
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contained less than 15 reads were discarded. The centroid from each cluster was kept as a 

representative of each cluster for the remaining stages of the pipeline. Finally, non-DBLα 
sequences were removed using Hmmer (Rask et al., 2016) with a domain score threshold of 

80. The code for the sequence cleaning pipeline is available on GitHub at https://github.com/

UniMelb-Day-Lab/DBLaCleaner.

2.7.2. Illumina DBLα sequence clustering pipeline—To match DBLα types 

between isolates, the cleaned DBLα reads were clustered using a pipeline optimised for 

the analysis of DBLα sequence tags (Ruybal-Pesántez et al., 2017). In short, reads were 

sorted based upon their frequency in the dataset and duplicates removed. The reads were 

then clustered at 96% pairwise sequence identity using the Usearch cluster_fast command. 

The original unfiltered reads were aligned back to the centroids of the clusters and an 

operational taxonomic unit (OTU) table was generated using the usearch_global command. 

The code for the pipeline is available on GitHub at https://github.com/UniMelb-Day-Lab/

clusterDBLalpha.

2.7.3. Translation and classification of DBLα sequences to upsA/non-upsA 
var gene groups—DBLα types were assigned a DBLα domain class using a hidden 

Markov model (HMM) to classify each DBLα type into either upsA or non-upsA groups, 

as described in Ruybal-Pesántez et al. (2017). The reads were first translated into all six 

reading frames and protein HMMs of 150 var domains (Rask et al., 2010) were aligned 

to the translated sequences using HMMER v3.1b1 with an e-value cutoff of 1e-8. A read 

was then classified as upsA if their most significant match was to a DBLα1 domain and 

as non-upsA if it matched otherwise (i.e., either DBLα0 or DBLα2 domains). Any DBLα 
types that were “non-translatable” or were unable to be matched to a DBLα domain were 

excluded. The code for the pipeline is available on GitHub at https://github.com/UniMelb-

Day-Lab/classifyDBLalpha.

2.8. Pairwise type sharing statistics

To quantify the relatedness (or overlap) between the DBLα repertoires identified from two 

isolates, pairwise type sharing (PTS) (Barry et al., 2007; He et al., 2018) statistics were 

utilised. This statistic is analogous to the Sørensen Index (Chao et al., 2005) and is a useful 

similarity index to determine the number of DBLα types shared between two isolates. 

Briefly, a PTS score is the proportion of shared DBLα types between two isolates and 

ranges between 0 and 1, where a PTS score of 0 signifies no shared DBLα types, a low 

PTS score indicates little overlap and a high PTS score indicates a high degree of overlap 

between the two isolates.

2.9. Accumulation curves and simulation model

We implemented a computational experiment to simulate the time it would take to acquire 

immunity to 95% of (i) upsA DBLα types, (ii) non-upsA DBLα types and (iii) all DBLα 
types circulating in a human population based on an annual entomological inoculation rate 

(EIR) in Bongo of 25 (Tiedje et al., 2017). The accumulation curves were only run up 

to 95% (instead of 100%) due to computational limitations, as reaching 100% requires 

extremely intensive and long computing times. We assumed that isolate DBLα repertoires 
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are composed of n DBLα types and that each DBLα type is immunogenic and would 

present a unique variant-specific epitope and consequently elicit a variant-specific host 

immune response. The isolate repertoires in our simulation were sampled from our empirical 

data at random. In this simulation, we also assume exposure to a particular isolate repertoire 

results in acquired immunity to all the types present in the repertoire. Therefore, the 

accumulation of variant-specific immunity to all DBLα types circulating in the population 

would lead to the acquisition of sterilising immunity in the host. We envisage two scenarios. 

In scenario A, mosquitoes can transmit only single-genome infections (i.e., multiplicity of 

infection (MOI) = 1), whereas in scenario B, mosquitoes can transmit one or more than 

one infection (MOI ≥ 1). Therefore, in scenario A (but not in B) we sub-sampled our 

dataset to include only isolates with MOI = 1. We ran both scenarios with subsampling and 

without subsampling of MOI = 1 infections separately for upsA, non-upsA and all DBLα 
types for 100 iterations. The code used for this simulation is available on GitHub at https://

github.com/pascualgroup/dbla_curves.

2.10. Statistical analysis

Statistical analyses were carried out using R v3.3.3 (https://cran.r-project.org). We used 

base R and the R packages tidyverse (Wickham et al., 2019) for data curation and 

visualisation. We used the R package vegan (Oksanen, J., Blanchet, F.G., Friendly, 

M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O’Hara, R.B., Simpson, G. 

L., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., 2019. vegan: Community 

Ecology Package. R package version 2.5–6. https://cran.r-project.org/web/packages/vegan/

index.html) to generate species accumulation curves. For age-stratified analyses the study 

participants were categorized into five age groups (1–5, 6–10, 11–20, 21–39 and ≥40 years) 

based on the age-stratified study design, as well as into three broader age groups (children: 

1–10 years, adolescents: 11–20 years, and adults: ≥20 years) for additional analyses. Chi-

squared tests (χ2) were used for univariate analyses of categorical variables to compare 

proportions. Nonparametric tests were used to compare distributions of continuous variables 

between two groups (Mann-Whitney test) and among k groups (Kruskal-Wallis test) with 

a Bonferroni correction for multiple comparisons. A test was deemed to be statistically 

significant if the P-value was less than 0.05.

2.11. Data accessibility

The sequences for this Targeted Locus Study project have been deposited at DDBJ/ENA/

GenBank under the Bio-Project Number: PRJNA 396962. The open-source tutorial 

detailing the data processing steps is available at https://github.com/UniMelb-Day-Lab/

tutorialDBLalpha. The python code for the sequence cleaning pipeline is available at https://

github.com/UniMelb-Day-Lab/DBLaCleaner. The python code to determine DBLα types 

is available at https://github.com/UniMelb-Day-Lab/clusterDBLalpha. The python code 

to translate and classify DBLα types is available at https://github.com/UniMelb-Day-Lab/

classifyDBLalpha. The R script used for the simulations is available at https://github.com/

pascualgroup/dbla_curves. All other analysis code is available at: https://github.com/

shaziaruybal/ghana-var-age-immunity.
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3. Results

3.1. Individuals of all ages harbour high var DBLα diversity at the end of sequential wet 
and dry seasons

To test the hypothesis that high var diversity explains infection in all ages, we characterised 

age-specific DBLα type diversity in this cohort at two time points. As expected for 

a high transmission setting, the prevalence of infection detected by microscopy and 

PCR varied by age in the wet and the sequential dry season (Supplementary Fig. 

S1A–B). A high proportion of adults harboured asymptomatic infections, particularly 

submicroscopic infections (>50%) (Supplementary Fig. S1A–B), and they were more likely 

to become parasite-negative at the EDS than children or adolescents (Chi-square test, P < 

0.001, Supplementary Fig. 1C). Isolates from all individuals harbouring asymptomatic P. 
falciparum infections at either the EWS or the EDS were then typed for var DBLα diversity 

(n = 1820 P. falciparum isolates).

Sequence data were successfully obtained from 664 isolates at the EWS (out of 1151 

infected residents) and 435 isolates (out of 669 infected residents) at the subsequent EDS. 

There were totals of 33,517 (n = 2138 upsA and 31,379 non-upsA) unique DBLα types 

at the EWS and 26,078 (n = 1801 upsA and 24,277 non-upsA) unique DBLα types at 

the EDS (Fig. 1A). Cumulative diversity curves indicate that we sampled the majority of 

the upsA types but not the more diverse non-upsA types in this local parasite population 

(Supplementary Fig. S2).

This study allowed us to document the extent of var diversity in the population over two 

seasons where the diversity at the end of the dry season can be considered as surviving from 

the prior wet season. Fig. 1 shows that 40.8% (n = 17,296) of the DBLα types (upsA and 

non-upsA) were found in both seasons (Fig. 1A) across all ages (Fig. 1B). The upsA were 

~3× more likely to be found in both seasons than non-upsA types (Chi-square test, P < 

0.001). There was a high proportion of non-upsA types seen only once in each season, i.e. 

rare types (50.6% EWS, 56.2% EDS, Supplementary Fig. S3). These rare types may have 

also persisted between seasons but were not detected by the seasonal sampling. Overall, we 

observed a large pool of types at a point in time and >40% of the types were seen in different 

individuals at two time points.

A key result was that individuals of all ages harboured diverse DBLα types at the EWS 

and EDS, albeit with children and adolescents harbouring more of the DBLα diversity than 

adults, i.e. a higher proportion of the total number of unique types was observed in children 

(Fig. 1B). Children harboured 55% of all the 42,399 unique DBLα types sampled in the 

population in both seasons compared with 45% in adolescents and 15% in adults. A similar 

age-specific decline in the proportion of total unique types identified was observed for both 

upsA and non-upsA types, but the proportion of conserved upsA types identified was higher 

compared with non-upsA, regardless of age (Fig. 1B). This was expected due to the smaller 

pool of these types in the population (2383 unique upsA types in both seasons compared 

with 40,016 non-upsA types). Overall, these age-specific diversity patterns show exposure to 

a large population of variants, with children and adolescents having greater carriage of var 

DBLα diversity.
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3.2. var DBLα isolate population structure

Previously we showed limited relatedness and restricted networks of var DBLα repertoires 

in single infections in this population with combined data for EWS and EDS. The absence 

of recombinants was explained by variant-specific immune selection (He et al., 2018). 

As >80% of infections in this population were multi-genome (MOIvar > 1)–see below in 

Section 3.3, we repeated the repertoire relatedness analysis among isolates with DBLα 
data from all 1099 isolates using the similarity index PTS (Section 2.8). Overall, our 

results demonstrate a pattern of minimal relatedness (i.e., low median PTS ≤0.10) in the 

majority of isolates and very few highly-related parasites identified at the end of each season 

(Supplementary Fig. S4A–B) and temporally across seasons (Supplementary Fig. S4C). For 

all population-level stratifications, we found significantly higher sharing of upsA compared 

with the non-upsA types (Mann-Whitney test, P < 0.001, Supplementary Fig. S4). This 

pattern was expected due to the lower number of upsA types in the population. This lower 

number is also consistent with approximately 18–24% of the var genes per repertoire being 

upsA on average (Supplementary Table S1), as is the case for whole genome sequencing of 

laboratory strains (Rask et al., 2010).

Given the large pool of var DBLα types in the population, under conditions of variant-

specific immune selection, we would expect the DBLα repertoires of isolates infecting 

children to show more relatedness than those associated with adults. To test this hypothesis, 

we examined whether age-related exposure would also result in differences in DBLα 
repertoire relatedness in children (i.e. limited exposure to the pool of variants) compared 

with adolescents and/or adults (i.e., semi-immune) within and between seasons. There was 

minimal repertoire relatedness (Fig. 2) and significantly higher sharing of upsA compared 

with the non-upsA types (Mann-Whitney test, P < 0.001) in each age group regardless 

of season (Supplementary Fig. S5). As predicted, the age-related repertoire relatedness 

was significantly higher in the children compared with adolescents and adults within and 

between seasons (Mann-Whitney test, P ≤ 0.001 for all comparisons, Fig. 2) and more 

unrelated repertoires (i.e., PTS = 0) were identified in adults (Fig. 2).

3.3. Age-specific multiplicity of infection

Next, we examined age-dependent patterns of infection within individuals in relation to 

DBLα repertoire diversity. The unique structure of limited relatedness of DBLα repertoires 

among genomes in this transmission system (described in Section 3.2) allowed us to gain 

an understanding of the reservoir of diversity of DBLα types within an individual and 

to define isolate-specific DBLα repertoires regardless of multiplicity of infection (MOI). 

An estimate of MOI was inferred by var (MOIvar – i.e., assuming 45 non-upsA DBLα 
types per parasite genome) to describe the number of genetically distinct parasite genomes 

per isolate repertoire. Our data show that a high proportion of multi-genome (MOIvar > 

1) infections were seen in all age groups at the EWS (maximum MOI of 14, 18, and 6 

in children, adolescents, and adults, respectively) and at the EDS (maximum MOI of 11, 

8, and 4 in children, adolescents, and adults, respectively) (Fig. 3). Even in adults, we 

found that more than half of their infections were MOIvar > 1 despite repeated exposure 

to potentially hundreds to thousands of distinct parasite genomes during their lifetime. 

Children had significantly higher MOI compared with adolescents or adults, and adolescents 
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had significantly higher MOI compared with adults (Mann-Whitney test, P < 0.001 for all 

comparisons, Fig. 3) in both seasons.

3.4. Within-host var diversity

Since a proportion of the cohort participants (n = 575) had infections (microscopic or 

submicroscopic) at both time points, we also measured DBLα repertoire relatedness 

“retrospectively” in the parasite isolates collected from the same individuals to examine 

temporal within-host diversity turnover patterns. For our analysis, we examined 296 of these 

individuals (n = 592 P. falciparum isolates) with DBLα data at both time points. Regardless 

of MOIvar or age, DBLα repertoire relatedness in these paired samples was very low 

(median PTS = 0.05), indicating within-host diversity turnover (Fig. 4). Consistent with our 

other analyses at the population level, there was also significantly higher sharing of upsA 

compared with the non-upsA types (Mann-Whitney test, P < 0.001, Supplementary Figs. 

S4D, S5D). We found evidence of a small number of possible chronic infections, since four 

individuals (1.4%, age range = 4–15 years) harboured infections sharing the same 43–50 

non-upsA DBLα types between seasons, possibly indicating chronicity of one P. falciparum 
genome between seasons. There was one definitive case of a chronic infection where a 15 

year old male harboured a chronic infection (PTS = 0.98) for at least 7 months between 

the EWS and EDS (i.e., throughout the dry season). This chronic infection was easily 

detected due to the PTS being almost 1, however, in most cases MOIvar was high and PTS 

relatively low, making it more difficult to confirm chronicity in the context of multi-genome 

infections. As expected, chronic infections were not readily observed in adults since they 

were more likely to turnover their infections between time points. The overall pattern of high 

turnover within hosts was again consistent with variant-specific immune selection.

3.5. Acquisition of variant-specific immunity: A simulation exercise

Having defined the extent of DBLα diversity and population structure in residents of all ages 

in both seasons, and for the first known time in adolescents and adults, we then explored 

what this diversity, degree of DBLα repertoire relatedness, and prevalence of MOI > 1 

meant for the development of immunity to the major variant surface antigen of P. falciparum 
blood stages. The existence of high DBLα diversity (a minimum of 42,399 DBLα types) 

in 1099 isolates with unrelated DBLα repertoires implies that it would take a long time 

for an individual in Bongo to be exposed, and acquire variant-specific immunity, to all the 

currently circulating DBLα types if we assume that each type represents a unique major 

antigenic epitope (e.g. Recker et al., 2004). In addition, theory predicts that the acquisition 

of anti-PfEMP1 DBLα immunity is dependent on the degree of DBLα repertoire relatedness 

in the population and not just on prevalence of infection per se (Artzy-Randrup et al., 2012).

Given the enormous task of measuring variant-specific immunity to 42,399 variants in the 

cohort of 1541 individuals, we implemented a computational experiment to simulate the 

time it would take an individual to acquire immunity (i.e., via exposure) to 95% of the 

circulating types in Bongo. The key genomic epidemiological features described in our 

empirical data were used to refine our simulations to present a conservative exploration of 

acquisition of immunity in this population (see Section 2.9). We assume that isolate DBLα 
repertoires are composed of n DBLα types (i.e., repertoire size) and that each DBLα type is 
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immunogenic and would present a unique variant-specific epitope and consequently elicit a 

variant-specific host immune response. This assumption is reasonable as pairwise identity of 

types encoding DBLα domains are approximately 42% similar (Tonkin-Hill et al., 2021) and 

diversify by recombination, but not at the high mitotic rates described in vitro (Claessens et 

al., 2014) as seen by the levels of conservation in this study.

The isolate repertoires in our simulation were sampled from our empirical data at random 

and from our observed distribution of minimal DBLα repertoire relatedness. In this 

simulation, we also assume exposure to a particular isolate repertoire results in acquired 

immunity to all the types present in the repertoire. Therefore, the accumulation of variant-

specific immunity to all DBLα types circulating in the population would lead to the 

acquisition of sterilising immunity in the host. We also envisaged two scenarios: scenario 

A, where mosquitoes can transmit only one infection with each infectious bite assuming no 

co-transmission of genomes (i.e., subsampling only MOI = 1, green in Fig. 5) or scenario B, 

assuming co-transmission of ≥1 genomes can occur with each infectious bite (i.e., MOI = 1 

and MOI > 1, magenta in Fig. 5).

Fig. 5 shows the minimum number of infective bites needed to acquire immunity to 50% 

(Fig. 5A) and 95% of DBLα types (Fig. 5B), with 301 and 1353 infectious bites needed 

to acquire immunity to 50% of all types when allowing for co-transmission (i.e., MOI 

≥ 1 infections) and no co-transmission (i.e., transmission of only MOI = 1 infections), 

respectively. We found the minimum number of infective bites needed to acquire immunity 

to 95% of DBLα types was 2185 and 13,774 infectious bites when allowing for co-

transmission and no co-transmission, respectively. To translate these observations into a 

simulation of the accumulation of immunity within an individual host, we used an annual 

EIR of 25 infective bites per person per year for Bongo (Tiedje et al., 2017) to generate 

accumulation curves by age (Fig. 5C). As expected, acquisition of immunity to the upsA 

would take less time compared with the non-upsA or all DBLα types (Fig. 5C) due to 

the smaller pool of variants in the population. This is consistent with children acquiring 

immunity to severe disease earlier in the case of the disease-associated upsA types since 

there are fewer of these types in the population. There were marked differences when we 

allowed for co-transmission (i.e., MOI ≥ 1), with faster acquisition of immunity compared 

with transmission of MOI = 1, regardless of whether we stratified by upsA/non-upsA/all 

types (Fig. 5C). This is due to increased exposure to a higher number of types in the case of 

co-transmission. Importantly, the simulations showed that it would take more than 100 years 

to develop immunity to 95% of the circulating DBLα types, even with co-transmission.

4. Discussion

The motivation for this study was to understand why residents of high-transmission settings 

in Africa remain susceptible to blood stage infection. We did this by examining age-specific 

patterns of diversity of the genes encoding the major variant surface antigen that facilitate 

persistence of P. falciparum in the blood of infected humans. We were able to make a 

conservative estimate of the size of the reservoir of var DBLα diversity by deep sampling 

of microscopic and submicroscopic infections in all ages in an area of high seasonal 

transmission in Ghana. Overall diversity in these genes, as assessed by DBLα types in 
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all ages combining the EWS and the subsequent EDS samples, was in the order of tens of 

thousands of variants. This DBLα diversity at the end of two seasons with all ages combined 

was structured as predominantly non-overlapping isolate repertoires, as previously reported 

for children in other African sites (Chen et al., 2011; Day et al., 2017; Ruybal-Pesántez et 

al., 2017). This observed low relatedness of isolate var DBLα repertoires in all ages would 

not be expected under conditions of short-lived immune memory to PfEMP1 variants or 

generalised exposure-dependent immune responses (He et al., 2018).

Infections in children, adolescents, and adults were characterised by highly diverse var 
DBLα isolate repertoires, demonstrating that risk of infection by parasites with diverse var 
DBLα repertoires may occur at any age. Moreover, we discover the extent of multiple 

diverse var repertoires per infection (MOIvar > 1) with the finding that these multi-genome 

infections with diverse var repertoires occur in children as well as adolescents and adults. 

This is in line with earlier studies conducted in Ghana and Mali, where adults were 

also found to harbour multiclonal infections with diverse parasite clones, albeit based on 

genotyping of msp2 polymorphisms, an antigen-encoding gene orders of magnitude less 

diverse than var genes (Owusu-Agyei et al., 2002; Sama et al., 2005; Felger et al., 2012; 

Sondén et al., 2015).

The observed age-specific decline in MOI inferred by var DBLα types is consistent with 

immune memory to PfEMP1 variants being long-lived as otherwise adults would keep 

accumulating parasites with diverse repertoires. Importantly, the age-specific patterns we 

describe support frequency-dependent immune selection as described by He et al. (2018), 

but interpreted here as age differences in host immune space. Indeed, our findings show 

that limited exposure in children is consistent with them having a higher carrying capacity 

to harbour MOIvar > 1 infections with diverse var DBLα repertoires as well as more 

related repertoires since they have more “gaps” in immune space than adults. In adults, 

however, related repertoires would be cleared more readily due to acquired variant-specific 

immunity, with only parasites with unrelated repertoires able to establish infections in 

these hosts. Existing infection and clinical data from West Africa are in support of our 

findings (Owusu-Agyei et al., 2001; Tran et al., 2013), such as reports from Mali where 

individuals followed up longitudinally were at risk of P. falciparum infections (based on 

PCR positivity) regardless of age, but risk of clinical malaria was inversely related with 

age (Tran et al., 2013). Our findings provide a genetic explanation for such observations 

since the high parasite diversity that exists in a high-transmission setting such as Bongo in 

Ghana is sufficient to allow for re-infection even in adults, despite the acquisition of broad 

exposure-dependent immunity over time. Based on the observed patterns we describe here, 

a role for cross-immunity or exposure-dependent generalised immunity is not ruled out but 

does not appear to be dominant in adolescents and adults.

Individuals infected at both time points (~7 months apart) were infected by unrelated 

var DBLα repertoires except for one adolescent and possibly a few children harbouring 

highly-related chronic infections. This apparent within-host diversity “turnover” at the EDS 

is not surprising since individuals may naturally clear their infections throughout the dry 

season when transmission is negligible. However, our observations of high turnover between 

two time points in this high transmission seasonal setting may appear to be at odds with 

Ruybal-Pesántez et al. Page 12

Int J Parasitol. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



other longitudinal studies from Africa describing persistent, chronic infections in several 

African settings and in travellers returning from malaria-endemic areas (Staalsoe et al., 

2002; Giobbia et al., 2005; Bachmann et al., 2009; Berry et al., 2018; Ndam et al., 2018). 

For example, in an unstable, seasonal transmission setting of Sudan, a longitudinal study 

reported an individual that harboured a chronic, monoclonal, and genetically identical 

infection (based on msp2 genotyping) for over 7 months (Staalsoe et al., 2002). Given the 

limited resolution when genotyping only msp2 alleles and the fact that parasite clones can 

harbour identical msp2 alleles but different var repertoires as the latter fingerprint is more 

diverse than msp2, it is possible that these two seemingly genotypically identical isolates 

could indeed have different var repertoires. Several earlier longitudinal studies exploring 

infection dynamics in Africa and Papua New Guinea using 1–3 antigen-encoding genes 

have described fluctuations in parasite densities as well as periodicity in detection of P. 
falciparum due to synchronous replication, i.e., expansion of major and minor parasite 

populations throughout the course of an infection (Farnert et al., 1997; Babiker et al., 1998; 

Bruce et al., 2000; Koepfli et al., 2011; Felger et al., 2012). From these data it has been 

estimated that on average only 47–82% of the infection parasite clones are detected with a 

single finger-prick blood sample (Sama et al., 2005; Koepfli et al., 2011). When looking at 

the individuals with paired samples in our cohort, 53.7% of the infections would have been 

“asynchronous” at the time of the EDS survey (based on calculations of 48 h synchronous 

replication cycles) and possibly below detection limits. Nonetheless, it is worth noting 

that only 37.3% (575/1541) of individuals in our cohort experienced either microscopic or 

submicroscopic infections at both time points, highlighting the fact that recurrent infections 

were not a common epidemiological feature and most individuals who were infected at the 

EWS became slide- or PCR-negative by the EDS. Transmission intensity also plays a role in 

the apparent complexity of these chronic infections.

Importantly, we have discovered a local transmission system with tens of thousands of 

diverse var DBLα types organised into var DBLα repertoires that were not significantly 

related to those infecting other hosts nor the same host over time with only rare exceptions. 

Of further significance, we report maintenance of a large pool of var DBLα types over short 

time scales (3–6 months). Our longitudinal data indicate the stability of the var DBLα types 

in the reservoir over time despite potential for high sexual recombination rates, where var 
types but not repertoires are maintained temporally. The pattern of conservation of many 

of the individual var DBLα types over time is noteworthy given the high rates of mitotic 

recombination predicted by in vitro studies (Claessens et al., 2014). Overall this stability is 

consistent with the important role of balancing selection reported for var genes (Zilversmit 

et al., 2013; Larremore et al., 2015).

We undertook in silico simulations of acquisition of variant-specific immunity as a practical 

alternative to measuring immunity to 42,399 variants over a lifetime. Using the observed 

diversity and denominator for the number of DBLα repertoires detected in the study 

population as well as realistic transmission parameters, simulations of these empirical 

observations illustrated that even adults will remain susceptible to blood stage infection 

after a lifetime of repeated exposure to P. falciparum as a consequence of the extent 

and structure of diversity of var genes in highly diverse, non-overlapping repertoires. By 

making the distinction between upsA and non-upsA var DBLα types, we demonstrated that 
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acquisition of immunity to the less diverse and smaller pool of upsA types (i.e., severe 

disease-related types) would occur faster than to the more diverse non-upsA types. By the 

age of ~5 years an individual will have acquired immunity to ~50% of the upsA types 

circulating in Bongo. These patterns are consistent with theoretical work demonstrating 

immunity to severe disease is acquired early in life (Gupta et al., 1999) and with serological 

network studies (Buckee et al., 2009) where it was shown that different levels of immune 

selection occur upon different var gene groups (i.e., upsA and non-upsA). In addition, our 

findings support the existing empirical evidence demonstrating faster antibody acquisition to 

upsA-like PfEMP1 variants and their implication in protection from severe disease (Cham et 

al., 2010, 2009; Barry et al., 2011; Tessema et al., 2019).

Our simulation model presents a conservative case since we assume that exposure to 

a repertoire leads to lifelong immunity to all its var types, which in turn will elicit 

variant-specific host immune responses. In reality, it is conceivable that not all var types 

in a repertoire are expressed during an infection and that each antigenic var type may 

encode several antigenic epitopes (Recker et al., 2004; He et al., 2018), which would 

consequently lengthen the time to develop immunity to all epitopes and types. We have 

also underestimated the actual circulating diversity in the population since we assume a 

closed population i.e., no new diversity is generated, which does not consider genetic 

processes such as mutation, meiotic and mitotic recombination (He et al., 2018). In fact, 

even after identifying 42,399 unique DBLα types, sampling of the diversity still did not 

reach saturation as estimated by cumulative diversity curves. However, the upsA cumulative 

diversity curves appeared to level off, indicating the upsA immunity patterns we describe 

are based on exposure to the majority of upsA types in Bongo. They are consistent with 

the overall higher temporal stability compared with the non-upsA types. Moreover, the 

immunity patterns we describe by examining only the DBLα region of var genes would be 

more prolonged when considering other diverse regions of the entire gene (Otto et al., 2019). 

Various factors such as seasonality, differences in transmission intensity, crossreactivity 

among antigenic epitopes, and the efficiency of within-host immune responses (including 

to other surface antigens encoded by single copy genes, e.g. merozoite surface proteins and 

antigens encoded by other multi-gene families such as rifins and stevors), would make this 

process of developing immunity even longer.

Here we show that var DBLα diversity in this local community is orders of magnitude 

greater than the variation in the targets of current allele-specific blood-stage vaccines (Early 

et al., 2018). Whilst this high var diversity makes PfEMP1 variants unsuitable targets for 

blood-stage vaccines against infection in Africa, it points to the need for pre-erythrocytic 

vaccines and allele-specific blood stage vaccines, although targeted at different molecules, to 

be totally efficacious against all parasites to avoid maintaining sufficient var diversity in the 

parasite population.

In conclusion, the extent and structure of var DBLα diversity that we discovered is sufficient 

to explain why “gaps” still exist in the variant-specific or strain-specific PfEMP1 antibody 

responses as well as the age-specific signatures of infection in high transmission African 

settings. These diversity patterns can explain why immunity to P. falciparum blood stages 

is non-sterilising and why adults remain susceptible to infection, often with multiple 
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genomes, even after a lifetime of repeated exposure to this parasite. Importantly, examining 

var repertoires highlights within-host diversity of genomes in relation to key antigenic 

diversity driving transmission dynamics within and between hosts. Consequently, examining 

changes in var diversity and structure will provide important insights into the efficacy of 

transmission-blocking interventions with insecticides, antimalarial drugs, and/or vaccines on 

parasite antigenic fitness to persist in the host. The ability of such interventions to minimise 

the reservoir of var diversity will be key to achieving malaria elimination.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Individuals of all ages in Bongo, Ghana, harbour high Plasmodium falciparum var Duffy-

binding-like alpha domain (DBLα) diversity at the end of both seasons. (A) Proportion of 

unique DBLα types identified at the end of the wet season, (EWS, turquoise), at the end of 

the dry season, (EDS, gold), and found in both seasons (grey). n refers to the total number 

of unique DBLα types. A total of 17,296/42,399 DBLα types were found at both time 

points. (B) Proportion of the total number of unique DBLα types identified in the study 

as seen in each age group at the EWS (turquoise), at the EDS (gold) and found in both 

seasons (grey). The proportion not filled (i.e., no colour) corresponds to types not identified 

in that particular age group. Note that a DBLα type could be identified in more than one 

age group. The DBLα types are also stratified by ups grouping (i.e. upsA and non-upsA) 

since expression of genes from these groups has been associated with different disease and 

infection outcomes.
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Fig. 2. 
Age-specific patterns of Plasmodium falciparum isolate repertoire relatedness. (A–C) Violin 

plots show the distribution of pairwise type sharing (PTS) scores among isolate repertoires 

in each age group (A) at the end of the wet season (EWS), (B) at the end of the dry season 

(EDS), (C) comparing between seasons. The dashed line in (A–C) indicates the median 

PTS for children and box plots show the median and interquartile ranges for each age 

group stratification. (D–F) Kernal density plots show the lower end of the distribution of 

PTS scores among isolate repertoires in children between 1–10 years, adolescents between 

11–20 years and adults >20 years at the (D) EWS, (E) EDS, and (F) between seasons. 

The total number of pairwise comparisons at the EWS were as follows: n = 440,232 

for all comparisons (not age-stratified), n = 133,590 among children, n = 23,562 among 

adolescents, and n = 20,592 among adults. The total number of pairwise comparisons at the 

EDS were as follows: n = 188,790 for all comparisons (not age-stratified), n = 62,250 among 

children, n = 16,770 among adolescents, and n = 2970 among adults. The total number of 

pairwise comparisons between seasons were as follows: n = 577,680 for all comparisons 

(not age-stratified), n = 183,000 among children, n = 40,040 among adolescents, and n = 

15,840 among adults.
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Fig. 3. 
Age-specific differences in Plasmodium falciparum multiplicity of infection inferred by var 
(MOIvar) at the end of the wet season (EWS, turquoise) and at the end of the dry season 

(EDS, gold). Values above the dashed line indicate MOIvar > 1. There were significant 

differences in the distribution of MOIvar between children, adolescents and adults in each 

season (Mann-Whitney test, P < 0.001 for all comparisons at EWS or EDS). There were no 

significant differences in MOIvar between seasons for any age group (Mann-Whitney test, P 
> 0.05) except for adults (Mann-Whitney test, P = 0.02).
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Fig. 4. 
Age-specific patterns of Plasmodium falciparum isolate repertoire relatedness in paired 

samples. (A) Violin plots show the distribution of pairwise type sharing (PTS) scores among 

paired isolate repertoires in each age group. The dashed line indicates the median PTS for 

children and box plots show the median and interquartile ranges. (B) Density plots show the 

lower end of the distribution of PTS scores among isolate repertoires in paired samples from 

children between 1–10 years, adolescents between 11–20 years and adults >20 years. The 

total number of pairwise comparisons were as follows: n = 385 among children, n = 162 

among adolescents, and n = 45 among adults.
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Fig. 5. 
Simulation of patterns of acquisition of variant-specific immunity to Plasmodium falciparum 
var Duffy-binding-like alpha domain (DBLα) types in Bongo, Ghana. Scenario A (green) 

was calculated by assuming a mosquito can transmit only one infection (i.e., multiplicity 

of infection or MOI = 1, no co-transmission) and scenario B (magenta) was calculated by 

assuming a mosquito can transmit ≥1 infection with each infectious bite (i.e., MOI ≥ 1, 

allowing for co-transmission). Simulations were carried out for the different DBLα type 

ups groupings (i.e. upsA and non-upsA) since expression of genes from these groups has 

been associated with different disease and infection outcomes. (A-B) The minimum number 

of infective bites necessary to acquire immunity to (A) 50% of the DBLα types and (B) 

95% of the DBLα types based on 100 simulations. (C) Accumulation curves showing the 

time it takes an individual to acquire immunity to 95% of upsA, non-upsA, and all DBLα 
types based on an annual entomological inoculation rate (EIR) of 25 (see Section 2.9). As 

an illustrative example, it would take ~5, ~12 and ~12 years for an individual to acquire 

immunity to 50% of the upsA, non-upsA, and all DBLα types, respectively, in the case of 

co-transmission.
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