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ABSTRACT Many insects possess beneficial bacterial symbionts that occupy special-
ized host cells and are maternally transmitted. As a consequence of their host-re-
stricted lifestyle, these symbionts often possess reduced genomes and cannot be
cultured outside hosts, limiting their study. The bacterial species Serratia symbiotica
was originally characterized as noncultured strains that live as mutualistic symbionts
of aphids and are vertically transmitted through transovarial endocytosis within the
mother’s body. More recently, culturable strains of S. symbiotica were discovered
that retain a larger set of ancestral Serratia genes, are gut pathogens in aphid hosts,
and are principally transmitted via a fecal-oral route. We find that these culturable
strains, when injected into pea aphids, replicate in the hemolymph and are patho-
genic. Unexpectedly, they are also capable of maternal transmission via transovarial
endocytosis: using green fluorescent protein (GFP)-tagged strains, we observe that
pathogenic S. symbiotica strains, but not Escherichia coli, are endocytosed into early
embryos. Furthermore, pathogenic S. symbiotica strains are compartmentalized into
specialized aphid cells in a fashion similar to that of mutualistic S. symbiotica strains
during later stages of embryonic development. However, infected embryos do not
appear to develop properly, and offspring infected by a transovarial route are not
observed. Thus, cultured pathogenic strains of S. symbiotica have the latent capacity
to transition to lifestyles as mutualistic symbionts of aphid hosts, but persistent verti-
cal transmission is blocked by their pathogenicity. To transition into stably inherited
symbionts, culturable S. symbiotica strains may need to adapt to regulate their titer,
limit their pathogenicity, and/or provide benefits to aphids that outweigh their cost.

IMPORTANCE Insects have evolved various mechanisms to reliably transmit their ben-
eficial bacterial symbionts to the next generation. Sap-sucking insects, including
aphids, transmit symbionts by endocytosis of the symbiont into cells of the early
embryo within the mother’s body. Experimental studies of this process are hampered
by the inability to culture or genetically manipulate host-restricted, symbiotic bacte-
ria. Serratia symbiotica is a bacterial species that includes strains ranging from obli-
gate, heritable symbionts to gut pathogens. We demonstrate that culturable S. sym-
biotica strains, which are aphid gut pathogens, can be maternally transmitted.
Cultured S. symbiotica therefore possesses a latent capacity for evolving a host-re-
stricted lifestyle and can be used to understand the transition from pathogenicity to
beneficial symbiosis.
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Host-associated bacteria can be placed on a continuum ranging from parasitic to
mutualistic. Mutualistic symbionts often arise from pathogenic ancestors and

rarely revert back to pathogenicity (1). This one-way transition is expected when verti-
cal transmission, usually from mother to offspring, replaces horizontal transmission as
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the dominant route of new infection, causing symbionts to benefit from host repro-
duction and thereby to face strong selection for avirulence (2–4). In insects, the reliable
vertical transmission of mutualistic symbionts can be accomplished by mechanisms
that are external, including the placement of symbionts or symbiont-containing capsu-
les on the egg surface, or internal, via transovarial transmission (5, 6).

Transovarial transmission, the transfer of maternal symbionts to eggs or embryos
within the mother’s body, is common in obligate symbioses wherein symbionts occupy
special host cells (bacteriocytes) within the body cavity (7). Individual bacteria may be
transferred, as in aphids, cicadas, leafhoppers, cockroaches, and bedbugs, or entire
bacteriocytes may be transferred, as in whiteflies (7–10). In ancient symbioses with
exclusively maternal transmission, hosts appear to control transmission, as the sym-
bionts involved often possess reduced genomes devoid of pathogenicity factors that
would allow them to invade host cells (11). However, host mechanisms for transmis-
sion may depend on bacterial factors for interpartner recognition and thereby limit
which bacterial species or strains can make the transition from pathogenicity to com-
mensal or mutualistic symbioses.

Aphids (Hemiptera: Sternorrhyncha: Aphidoidea) are a clade of roughly 5,000 spe-
cies that feed exclusively on nutrient-poor plant sap and depend on the primary bacte-
rial symbiont Buchnera aphidicola for biosynthesis of essential amino acids missing
from their diet (12–16). B. aphidicola has been transovarially transmitted in aphids for
over 160 million years (17). These bacteria occupy bacteriocytes, possess highly
reduced genomes, and cannot persist outside of their hosts (11, 18). In addition to B.
aphidicola, many aphids also host secondary symbionts, such as Serratia symbiotica,
“Candidatus Hamiltonella defensa,” “Candidatus Regiella insecticola,” and “Candidatus
Fukatsuia symbiotica” (19–22). Due to their more recent associations with aphids, these
secondary symbionts are commonly found at intermediate stages of genome reduc-
tion (23, 24). Unlike Buchnera, their genomes retain mobile genetic elements, pseudo-
genes, and even intact virulence factors (25, 26). These features can inform hypotheses
regarding their origins, the mechanisms they use to infect new hosts, and the contribu-
tion of selfish genetic elements to their decay. Further, some secondary symbionts
have genomes with sizes similar to those found in free-living bacteria (2 to 4Mb).
These symbionts are promising candidates for axenic culture, genetic manipulation,
and reestablishment in hosts. These experimental capabilities greatly facilitate the
study of symbiotic factors involved in host-microbe interactions.

S. symbiotica strains have evolved diverse associations with aphids. They range
from pathogens and facultative mutualists to obligate mutualists that co-reside with B.
aphidicola (27–36). The genome sizes and gene contents of S. symbiotica strains reflect
this variation in lifestyle, ranging from larger genomes similar to those of free-living
Serratia (35, 37) to highly reduced genomes similar to those of B. aphidicola and other
obligate symbionts (28, 30, 31, 36). The first descriptions of S. symbiotica, initially
named pea aphid secondary symbiont (PASS) or the “R-type” symbiont, were of strains
that occupied secondary bacteriocytes, sheath cells, and hemolymph (19, 38). Unlike B.
aphidicola, these S. symbiotica strains are not required by their hosts; they provide con-
text-dependent benefits, such as protection against heat stress (27, 39) and parasitoid
wasps (40). However, similar to B. aphidicola, they are host restricted and vertically
transmitted by a transovarial route (8, 41, 42). A detailed study showed that a mutualis-
tic S. symbiotica strain, present in the hemolymph, migrates to early embryos and is
endocytosed with B. aphidicola into the syncytium, a specialized, multinucleated cell of
the early embryo (8). In the pea aphid, B. aphidicola and S. symbiotica are later segre-
gated into distinct bacteriocytes.

Recently, strains of pathogenic S. symbiotica have been discovered living in the guts
of Aphis species collected in Belgium and Tunisia (29, 33–35). These strains are
hypothesized to resemble ancestors of facultative and co-obligate S. symbiotica strains
(43, 44). In contrast to previously studied S. symbiotica strains, their primary transmis-
sion route appears to be horizontal, through honeydew (feces) and host plant phloem
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(43, 44). Also, in contrast to previously studied strains, these S. symbiotica strains can
be cultured axenically. S. symbiotica CWBI-2.3T, from the black bean aphid (Aphis fabae)
(29), retains a larger gene set and larger genome (3.58Mb) (37) than do facultative S.
symbiotica strains Tucson and IS (2.79 and 2.82Mb, respectively) (23, 45).

In this work, we investigated whether cultured S. symbiotica strains are capable of
vertical transmission similar to facultative or obligate symbionts. We isolated a new S.
symbiotica strain, HB1, that shares many features with CWBI-2.3T but is notably less
pathogenic. We examined the capacity of each of these strains to colonize hemolymph
of the pea aphid (Acyrthosiphon pisum) and access embryos through the transovarial
route described for B. aphidicola (8). Both strains are endocytosed into embryos, but
embryos infected by the transovarial route do not appear to develop properly, and off-
spring infected by a transovarial route are not observed. Using green fluorescent pro-
tein (GFP)-tagged strains, we addressed whether transovarial transmission is open to
any bacterial cell that comes into contact with the embryo or whether this process
involves specific partner recognition. We found that Escherichia coli cannot colonize
embryos, despite achieving a high titer within hosts. Thus, the endocytosis step
required for transovarial transmission limits the taxonomic range of bacteria that can
readily evolve to become aphid symbionts.

RESULTS
Pathogenic S. symbiotica strains form a distinct group closely related to

mutualistic strains. We examined the evolutionary relationships of all S. symbiotica
strains with publicly available complete genome sequences. To this list, we added a
recently isolated and sequenced strain, designated S. symbiotica HB1, from the melon
aphid (Aphis gossypii). Our phylogenetic analysis was based on 176 shared orthologous
genes and was rooted with outgroups that included other Serratia and more distant
Enterobacterales species (Fig. 1; see Fig. S1 and Table S1A in the supplemental mate-
rial). S. symbiotica strains are split into two clades, as previously reported (46). Clade A
is composed of strains that act as pathogens, mutualists, or co-obligate symbionts in
aphids from across the family Aphididae, while clade B is composed of strains that live
only as co-obligate symbionts in aphids of the subfamily Lachninae. Clade A strains
possess a range of genome sizes (1.54 to 3.58Mb), GC content (48.7 to 52.5%), host
species, and lifestyles. Within clade A, the cultured, gut pathogen strains (CWBI-2.3T,
HB1, Apa8A1, and 24.1) form a clade closely related to vertically transmitted mutualist

FIG 1 Phylogeny and gene content evolution of S. symbiotica. (A) Maximum likelihood phylogeny of S. symbiotica,
based on concatenation of 176 single-copy orthologs (56,881 amino acid positions) shared across S. symbiotica,
other Serratia species, E. coli, Yersinia pestis, and Salmonella enterica. Genomes used for the phylogeny and relevant
references for S. symbiotica genome features are listed in Table S1A in the supplemental material. Bootstrap values
are indicated with symbols on nodes. The scale bar represents the expected number of substitutions per site. The
complete phylogeny is presented in Fig. S1.
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strains (Tucson, IS, MCAR-56S, and AURT-53S). Although average nucleotide identities
are high (95.8 to 98.6%) across these sets of strains (Table S1B), the gut pathogen
strains retain larger genomes (3.09 to 3.58Mb) and more Serratia-specific marker genes
than nonpathogenic, maternally transmitted S. symbiotica strains (0.65 to 2.82Mb)
(Fig. 1; Table S1A). Together, these observations suggest that both lifestyles have
recently emerged from a common, presumably pathogenic ancestor.

Cultured S. symbiotica strains are pathogenic when injected into pea aphid
hemolymph. Based on previous studies, S. symbiotica CWBI-2.3T acts as a gut patho-
gen in its original host, the black bean aphid (44). In both black bean aphid and pea
aphid hosts, S. symbiotica CWBI-2.3T appears to be restricted to the gut and is not
observed infecting hemolymph (44, 47, 48). To determine whether S. symbiotica CWBI-
2.3T and HB1 can persist and act as pathogens in the hemolymph of pea aphids, we
injected fourth-instar pea aphids with tagged strain CWBI-GFP or HB1-GFP at two
doses: low (;80 cells injected, 3 replicate trials per treatment) and high (;800 cells
injected, 1 trial per treatment). Then, we tracked aphid survival and bacterial titer over
time. For comparison, we simultaneously performed injections of Serratia marcescens
Db11, a known insect pathogen (49), injections of hemolymph from pea aphids
infected with facultative, vertically transmitted S. symbiotica Tucson (23), and injections
of buffer as a negative control. We found that S. symbiotica CWBI-GFP and HB1-GFP act

FIG 2 Infection dynamics of S. symbiotica strains CWBI-GFP and HB1-GFP injected into hemolymph of fourth-instar
pea aphids. (A) Survival curves of pea aphids injected with cultured S. marcescens Db11 (30 aphids injected at a high
dose; 30 and 25 aphids injected at a low dose), recombinant S. symbiotica CWBI-GFP (18 aphids injected at a high
dose; 37, 41, and 44 aphids injected at a low dose), or recombinant S. symbiotica HB1-GFP (20 aphids injected at a
high dose; 49, 46, and 49 aphids injected at a low dose), with hemolymph from S. symbiotica Tucson (17, 45, and 45
aphids injected), or with injection buffer (27 aphids injected). ***, P, 0.001, Cox proportional-hazards model. (B)
Bacterial titer of recombinant S. symbiotica strains CWBI-GFP and HB1-GFP, obtained by spot-plating dilutions from
whole aphids. **, P, 0.01, Wilcoxon rank sum test. (C) Relative titer of S. symbiotica across treatment groups after
injections (left) or 5 dpi (middle) and for 7-day-old pea aphids from laboratory-reared clonal lines that are naturally
infected with vertically transmitted S. symbiotica strains, established from collections in Austin in 2014 (Austin), Tucson
in 2019 (Tuc19), Tucson in 1999 (Tucson), and Wisconsin in 2017 (WIG5) (right). The relative titer was calculated as the
copy number of S. symbiotica dnaK normalized by copy number of the single-copy Acyrthosiphon pisum gene ef1a.
CWBI and HB1 samples used for qPCR are the same as those used to determine bacterial titer by spot-plating. Letters
a and b denote two groups of strains that have significantly different titers from one another and indistinguishable
titers within groups at an a of 0.01 by the Kruskal-Wallis test, followed by Dunn’s multiple-comparison test. In all box
plots, boxes mark upper and lower quartiles, and the central line denotes the median value.

Perreau et al. ®

March/April 2021 Volume 12 Issue 2 e00359-21 mbio.asm.org 4

https://mbio.asm.org


as pathogens in pea aphid hemolymph, regardless of dose injected. The survival rates
of aphids injected with S. symbiotica CWBI-GFP, S. symbiotica HB1-GFP, and S. marces-
cens Db11 were much lower than those of aphids injected with buffer or S. symbiotica
Tucson (P, 0.001, Cox proportional-hazards model) (Fig. 2A).

We hypothesized that the virulence of S. symbiotica CWBI-GFP and HB1-GFP was
related to their titer in hemolymph. To test this hypothesis, aphids were sacrificed ev-
ery 24 h to measure the number of CFU per aphid. Regardless of the injection dose, S.

FIG 3 Differences in transmission of S. symbiotica Tucson and S. symbiotica HB1 following injection into pea
aphid adults. (A) Fecundity and transmission of S. symbiotica for adults injected with S. symbiotica Tucson. Box
plots in gray depict the total offspring, including infected and uninfected offspring, per adult. Box plots in
green depict the total offspring infected with S. symbiotica Tucson per adult. Filled curves represent a locally
estimated scatterplot smoothing (LOESS) regression and display the increase in offspring infected with S.
symbiotica Tucson from 10 dpi to 15 dpi. (B) Left, fecundity of adults injected with a low dose (;80 cells) of S.
symbiotica HB1. Middle and right, transmission of HB1-GFP to offspring born 10 to 15 dpi and surviving to 15
dpi (middle) and 20 dpi (right). Infection was determined by GFP fluorescence. (C) Infected offspring sampled
from three different mothers possess HB1-GFP in their gut. Additional images are presented in Fig. S3 in the
supplemental material. (D) Second-generation embryos, dissected from fluorescent and nonfluorescent
offspring of injected mothers when they were 9 days old, do not contain HB1-GFP.
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symbiotica CWBI-GFP and HB1-GFP grow exponentially within aphids, plateauing at
;109 CFU per aphid by 5 to 7 days postinjection (dpi) (Fig. 2B; Fig. S2). The difference
in growth of CWBI-GFP and HB1-GFP at 3 and 4 dpi may explain the difference in aphid
survival rate across these treatment groups (Fig. 2B). As S. symbiotica Tucson is not cul-
turable, quantitative PCR (qPCR) was used to compare titers of CWBI-GFP and HB1-GFP
to those of S. symbiotica Tucson, immediately after injection (initial) and several days
after injection (5 dpi), and to the titers at which other mutualist S. symbiotica strains
persist in pea aphids reared in the laboratory (Fig. 2C). The relative titer was calculated
as the copy number of a single-copy Serratia gene (dnaK) normalized by a single-copy
pea aphid gene (ef1a). Although similar numbers of S. symbiotica CWBI-GFP, HB1-GFP,
and Tucson cells were injected into aphids, both S. symbiotica CWBI-GFP and HB1-GFP
reach higher titers than S. symbiotica Tucson at 5 dpi (Fig. 2C). The titer of S. symbiotica
Tucson at 5 dpi is comparable to the steady-state titer of S. symbiotica strains main-
tained in naturally infected, clonal pea aphids established as laboratory lines (Fig. 2C).

Cultured S. symbiotica strains are not vertically transmitted in pea aphids.
Typically, S. symbiotica CWBI-2.3T infects aphids by a fecal-oral route or from plants
(44). To determine if S. symbiotica CWBI-GFP and HB1-GFP can be transmitted to off-
spring via the transovarial route used by mutualistic symbiotic strains, we screened the
offspring of surviving aphids for S. symbiotica by looking for GFP fluorescence and by
plating for CFU. As transovarial transmission of symbionts occurs early in embryonic
development, there is a delay between injection and the birth of infected offspring
(38). To determine when after injection we should begin to observe offspring infected
by transovarial transmission, we injected mutualistic S. symbiotica Tucson and moni-
tored its transmission by sampling offspring and using PCR to screen for the presence
of S. symbiotica. Transmission of S. symbiotica Tucson was identified in newborn off-
spring starting at 10 dpi (Fig. 3A). The proportion of infected offspring per mother
increased over time, reaching 100% for most mothers by 15 dpi (Fig. 3A).

In contrast to aphids injected with S. symbiotica Tucson, most aphids injected with
S. symbiotica CWBI-GFP and HB1-GFP did not survive to 10 dpi (Fig. 2A) or did not pro-
duce offspring past 10 dpi. However, 36 of the 144 females injected with a low dose
(;80 cells) of S. symbiotica HB1 did survive and produce offspring beyond 10 dpi. Of
these, only 20 females (55.6%) produced both infected offspring and offspring that sur-
vived for more than 5days. The number of offspring produced by these females
decreased from 10 to 15 dpi, and no females survived past 16 dpi (Fig. 3B). At 15 dpi,
all offspring born from 10 to 15 dpi were screened for GFP fluorescence to determine
infection status. A large proportion of offspring born from 10 to 15 dpi were fluores-
cent at 15 dpi (72/117, or 61.5%) and at 20 dpi (58/88, 65.9%) (Fig. 3B). Fluorescence
from S. symbiotica HB1-GFP appeared to be limited to the guts of these offspring
(Fig. 3C; Fig. S3). To determine if offspring infected with HB1-GFP could transmit HB1-
GFP to the next generation, we waited until they were reproductive adults (9 days old)
and dissected out embryos from 12 fluorescent and 12 nonfluorescent offspring. We
observed no evidence of HB1-GFP in embryos (Fig. 3D). We plated the remaining off-
spring (46 fluorescent, 18 not fluorescent) and observed that only fluorescent aphids
produced fluorescent colonies. Together, these results suggest that the majority of
infected offspring that survive to adulthood are infected by a fecal-oral route and that
S. symbiotica HB1-GFP cannot be stably vertically transmitted through the transovarial
route across multiple generations.

Cultured S. symbiotica strains are capable of colonizing pea aphid embryos.
Stable intergenerational transmission of S. symbiotica CWBI-2.3T and HB1 was not
observed, apparently due to the pathogenicity of these strains and/or their limited
ability to colonize offspring. In order to determine whether these strains were, never-
theless, capable of transovarial transmission, we injected aphids with S. symbiotica
CWBI-2.3T and HB1, dissected ovarioles at 7 dpi, and used fluorescence in situ hybrid-
ization (FISH) to visualize its infection pattern relative to that of the primary symbiont
B. aphidicola during embryonic development. To compare these results to the
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transmission pattern of a mutualist strain, we injected aphids with hemolymph from
pea aphids infected with S. symbiotica Tucson (Fig. 4A to D).

Embryos injected with S. symbiotica Tucson display regular growth and develop-
ment, reaching 400mm in length by the time of katatrepsis (41) (Fig. 4A). As previously
described, B. aphidicola and mutualistic S. symbiotica are transmitted to the syncytium
of stage 7 blastula from hemolymph via an endocytic process (8, 41, 50). S. symbiotica
Tucson appears to be unable to infect embryos at later developmental stages, as
embryos that were beyond stage 7 at the time of injection lack S. symbiotica (Fig. 4B).
This observation is supported by the absence of S. symbiotica in offspring born the first
10 days after injection (Fig. 3A) (38). Those embryos exposed to S. symbiotica Tucson at
stage 7 possess S. symbiotica in sheath cells, but strain Tucson does not invade primary
bacteriocytes that contain B. aphidicola (Fig. 4C). The endocytosis of S. symbiotica
Tucson into stage 7 embryos occurs at the posterior end of the embryo (Fig. 4D), as
previously described for the closely related strain S. symbiotica IS (8).

Despite its pathogenicity, the dominant infection pattern of CWBI-2.3T is similar to
that of the nonpathogenic Tucson strain (Fig. 4E and F). Cells of CWBI-2.3T are attached
to the embryonic surface but do not infect embryos that are beyond stage 7 (Fig. 4G).
Following infection, CWBI-2.3T is packaged similarly to the Tucson strain; both are

FIG 4 Transovarial transmission of the pathogenic strain S. symbiotica CWBI-2.3T and the mutualistic strain S. symbiotica
Tucson in stage 7 embryos of pea aphids. Blue, red, and green signals are used for host nuclei, S. symbiotica, and B.
aphidicola, respectively. (A) S. symbiotica Tucson infection across embryonic stages at 7 dpi. (B) S. symbiotica Tucson does
not infect embryos that are beyond stage 7 of development at the time of injection, as indicated by a lack of S. symbiotica
Tucson in late-stage embryos. (C) In infected, midstage embryos, S. symbiotica Tucson cannot infect primary bacteriocytes
that contain B. aphidicola but does infect sheath cells. (D) S. symbiotica Tucson enters the syncytium of an early-stage
blastula with B. aphidicola but is underrepresented relative to B. aphidicola during this infection. (Yellow near the top of
the embryo is due to particularly bright red signal plus overlap of red and green channels). (E and F) S. symbiotica CWBI-
2.3T infection across embryonic stages at 7 dpi. Embryos depicted in panels E and F derive from the same ovariole but
were separated during dissection. Infection with this strain results in reduced embryonic growth, as indicated by scale
bars. (G) S. symbiotica CWBI-2.3T does not infect embryos that are beyond stage 7 of development at the time of injection,
as indicated by a lack of CWBI-2.3T in late-stage embryos. (H) In infected, midstage embryos, S. symbiotica CWBI-2.3T

cannot infect primary bacteriocytes that contain B. aphidicola but does infect sheath cells. (I) S. symbiotica CWBI-2.3T enters
the syncytium of an early-stage blastula with B. aphidicola and is overrepresented relative to B. aphidicola during this
infection.
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sorted into sheath cells and cannot colonize the primary bacteriocytes that house B.
aphidicola (Fig. 4C and H). CWBI-2.3T is endocytosed into early embryos with B. aphidi-
cola (Fig. 4I), as is S. symbiotica HB1 (Movie S1). Remarkably, at 7 dpi, CWBI-2.3T greatly
outnumbers B. aphidicola in the syncytial cell (Fig. 4I). In contrast to S. symbiotica
Tucson, infection with cultured S. symbiotica CWBI-2.3T stunts embryonic growth,
though it does not prevent progression through characteristic early developmental
stages (Fig. 4E and F).

Transovarial transmission is a specific capability of S. symbiotica strains. To
determine if endocytosis is selective at the level of bacterial species, we tested the
transmission capability of E. coli K-12 strain BW25113. E. coli is related to B. aphidicola,
S. symbiotica, and several other mutualistic symbionts of aphids, which are all within
Enterobacterales (20). We chose strain BW25113 because it can infect the gut and
hemolymph of pea aphids and kills aphids a few days postinfection (51). We created
the tagged E. coli strain BW25113-GFP and injected it into fourth-instar aphids as
described above. For comparison, we injected S. symbiotica CWBI-GFP into a separate
set of fourth-instar aphids. E. coli BW25113-GFP forms a robust infection in pea aphid
hemolymph, reaching titers comparable to those of S. symbiotica CWBI-GFP at 5 dpi
(Fig. 5A). We dissected single ovarioles from 10 aphids in each treatment group at 5
dpi and observed early embryos to determine infection status. Using this approach, S.
symbiotica CWBI-GFP could be seen infecting early embryos (Fig. 5B and C; Movies S2
and S3). In contrast, E. coli BW25113-GFP attaches to the embryonic surface, sometimes
coating the entire exterior of the embryo, but was never observed endocytosing into
embryos (Fig. 5D and E; Movies S4 and S5).

DISCUSSION

Transovarial transmission is a key feature of many insect-bacterium symbioses
wherein bacteria provide a benefit to their host. This transmission route is linked to ir-
reversible bacterial transitions, from pathogenicity to mutualism (2). However, many
relationships that rely on transovarial transmission are ancient, and their early stages
cannot be experimentally recapitulated, leaving unanswered if and how pathogenic
bacteria access this transmission route. Focusing on secondary symbionts may be

FIG 5 Ability of S. symbiotica CWBI-GFP but not E. coli BW25113-GFP to achieve transovarial transmission to
stage 7 embryos of pea aphids. (A) Recombinant S. symbiotica CWBI-GFP and E. coli BW25113-GFP reach
comparable titers 5 dpi, as determined by spot-plating. (B and C) Recombinant S. symbiotica CWBI-GFP enters
the posterior region of stage 7 blastula. Embryos were dissected and visualized at 5 dpi. Dotted lines outline S.
symbiotica present within the embryo. (D and E) Recombinant E. coli BW25113-GFP does not enter into stage 7
blastula. Embryos were dissected and visualized at 5 dpi. Arrows indicate bacteria attached to the embryonic
surface. Scale bars, 20mm.
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more useful for understanding these early transitions, as some secondary symbionts or
their close relatives are culturable, genetically tractable, and can be removed from or
introduced to hosts without dramatically compromising host fitness (52–54). For exam-
ple, Sodalis praecaptivus, a close relative to Sodalis species found as host-restricted
symbionts across diverse insects, uses quorum sensing to attenuate virulence and gain
access to vertical transmission in a nonnative host, the tsetse fly (55). The bacterial spe-
cies S. symbiotica was first known as a vertically transmitted mutualist, but pathogenic
strains were subsequently cultured from aphids collected in Europe and Africa (29,
33–35) and, in this study, in North America. These strains have provided a new oppor-
tunity to dissect the early steps involved in the transition to a host-restricted lifestyle.
Knowing that vertical transmission is a key to this transition, we aimed to determine
whether culturable, pathogenic S. symbiotica could access this pathway and what, if
any, limitations are faced by S. symbiotica in this transition.

Cultured S. symbiotica strains are close relatives to nonculturable, vertically trans-
mitted mutualists. However, several lines of evidence suggest that these strains lack a
history of maternal transmission in aphids. For one, persistent vertical transmission
generally leads to the irreversible loss of genes such that symbionts can no longer
access a free-living or pathogenic lifestyle (56). In comparison to vertically transmitted
strains, CWBI-2.3T, HB1, Apa8A1, and 24.1 are culturable, maintain larger genomes, and
possess more ancestral genes common to free-living Serratia (Fig. 1). Second, these
strains do not appear to undergo vertical transmission in natural infections. Following
ingestion by black bean or pea aphids, S. symbiotica CWBI-2.3T is not subsequently
detected in hemolymph or embryos but is present in the gut and in honeydew, sug-
gesting that the dominant route of transmission for this strain is fecal-oral (33, 43, 47,
48). We injected CWBI-2.3T and HB1 into hemolymph to determine if they are nonethe-
less capable of transovarial transmission in pea aphids. Vertical transmission is theor-
ized to be the primary force driving permanent bacterial transitions from pathogenicity
to mutualism, but to do so, vertical transmission must precede mutualism (2). That
pathogenic S. symbiotica strains CWBI-2.3T and HB1 are endocytosed into the syncytial
cell of early embryos along with B. aphidicola provides empirical evidence for the prec-
edence of vertical transmission in this system. Together, these results suggest that the
aphid gut has served as an access point for environmental or plant-associated Serratia
to infect aphids and that gut pathogenicity was an ancestral lifestyle for strains that
are now intracellular and mutualistic (33).

S. symbiotica is common to natural populations of pea aphids (38, 57), and previous
16S rRNA gene surveys have identified S. symbiotica in aphid tribes from across the
Aphidoidea (33, 58). However, pathogenic and mutualistic strains have near-identical
16S rRNA sequences, so it is unclear how many cases represent S. symbiotica patho-
gens. To date, pathogenic strains have been cultured only from Aphis species.
However, S. symbiotica CWBI-2.3T can horizontally transmit across aphids feeding on
the same plant (43) and can infect the guts of alternative aphid species, including the
pea aphid (47), suggesting that pathogenic S. symbiotica may be more widespread
across aphid genera in nature. The global distribution of Aphis-associated strains, along
with their ability to transmit using the same transovarial route as B. aphidicola, sug-
gests that related gut-associated strains may serve as a source pool for the evolution
of commensal or mutualistic strains. Mutualism may have arisen several times inde-
pendently in S. symbiotica and, along with the subsequent horizontal transfer, would
contribute to the phylogenetic discordance between facultative strains and their aphid
hosts (58). The acquisition and replacement of secondary symbionts have occurred
during the evolution of many ancient insect-microbe symbioses and may help hosts to
escape the “evolutionary rabbit hole” of dependence on a primary symbiont that has
become an ineffective mutualist due to genome decay (59–61).

Transovarial transmission in aphids generally occurs by bacterial endocytosis into
the syncytial cell of early embryos (8). What host and bacterial factors are involved in
this pathway are unclear, but insights may be gained from other systems in which
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hosts are genetically tractable. In Drosophila, knockout of yolk proteins or the Yolkless
receptor results in reduced localization to and/or endocytosis of Spiroplasma in
embryos, suggesting that the vitellogenin pathway is involved in transovarial transmis-
sion (62). While parthenogenetic aphids do not undergo vitellogenesis or produce visi-
ble yolk, it is possible that similar receptor-mediated processes are used for B. aphidi-
cola and S. symbiotica transmission and that specific bacterial ligands are required. If
this is the case, S. symbiotica strains that normally live in the aphid gut appear to pos-
sess the requisite molecular determinants, as they display an innate potential for endo-
cytosis into embryos. Furthermore, the inability of E. coli BW25113 to endocytose into
the syncytial cell of embryos suggests that the endocytic step of transovarial transmis-
sion contributes to selectivity in this system. While many bacterial taxa occasionally
infect pea aphids (34, 63), few are found as long-term mutualists. The primary sym-
biont, B. aphidicola, is stably maintained in most aphid lineages, though rare replace-
ments exist (e.g., see reference 64). Additionally, few species are found as secondary
symbionts, and most are members of the Enterobacterales, including S. symbiotica, “Ca.
H. defensa,” “Ca. R. insecticola,” “Ca. F. symbiotica,” “Ca. Erwinia haradaeae,” and
Arsenophonus; and, less commonly, other bacterial groups, including Wolbachia,
Rickettsia, and Spiroplasma (21, 22, 61).

Aphids that are coinfected with B. aphidicola and mutualistic secondary symbionts
possess several known mechanisms that limit the competition between these bacteria.
For one, hosts can sort symbionts into distinct cell types, with B. aphidicola in primary
bacteriocytes and S. symbiotica relegated to secondary bacteriocytes and sheath cells.
Despite its pathogenicity, we observed that CWBI-2.3T is not able to invade primary
bacteriocytes with B. aphidicola and is compartmentalized into sheath cells in a man-
ner similar to that of mutualistic strains (Fig. 3). Pea aphid genotypes may vary in their
ability to associate with secondary symbionts. In contrast to the results obtained with
Acyrthosiphon pisum LSR1 in our study, when the facultative, host-restricted strain S.
symbiotica IS was transferred to Acyrthosiphon pisum AIST, it showed a disordered
localization, invading primary bacteriocytes with B. aphidicola (8, 65, 80). In these cases,
S. symbiotica IS was trapped in primary bacteriocytes, unable to exocytose during
transmission (8). The specific exocytosis of B. aphidicola also likely plays a role in limit-
ing competition between B. aphidicola and secondary symbionts across multiple
generations.

The vertical transmission of CWBI-2.3T and HB1 in pea aphids is limited by their viru-
lence in hemolymph. Both CWBI-2.3T and HB1 are more pathogenic in hemolymph
than facultative S. symbiotica Tucson but also notably far less pathogenic than S. mar-
cescens Db11. Possibly, adaptation to the gut selects for reduced Serratia virulence by
allowing Serratia the time to form a robust gut infection and transmit to other aphids,
including offspring, via honeydew (44). The genome of CWBI-2.3T appears to already
reflect some transition to symbiont status, having lost some genes common to free-liv-
ing Serratia, such as those underlying chemotaxis (66). However, this strain also retains
factors that promote host cell invasion and may continue to contribute to pathogenic-
ity, including a complete type III secretion system. The virulence of CWBI-2.3T and HB1
coincides with unregulated titer, as both of these strains attain 100- to 1,000-fold
higher titers than mutualistic S. symbiotica when injected into hemolymph. This enor-
mous difference in titer, and the constancy of the low titers observed for the symbiotic
strains, suggests that mutualistic S. symbiotica growth is regulated. The regulation of
virulence and titer is important in the establishment of vertical transmission. Self-regu-
lation of both titer and virulence through quorum sensing has been demonstrated in
Sodalis praecaptivus and allows this species to establish vertically transmitted infections
in weevil and tsetse fly hosts (55, 67). Whether mutualistic S. symbiotica strains have
relied on similar mechanisms to establish persistent vertical transmission in aphids is
unclear. Alternatively, S. symbiotica virulence may be attenuated by the loss of one or
several key virulence factors before the establishment of vertical transmission. The ex-
perimental tractability of these strains will allow for future investigations focused on
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these attenuation mechanisms and the role of vertical transmission in the transition to
a host-restricted lifestyle in aphids.

MATERIALS ANDMETHODS
Isolation and culture of S. symbiotica. S. symbiotica strain CWBI-2.3T (DSM 23270) was obtained

from the DSMZ-German Collection of Microorganisms and Cell Cultures and grown on tryptic soy agar
(TSA) plates at 27°C (29). S. symbiotica strain HB1 was isolated from the melon aphid (Aphis gossypii), col-
lected in August 2018 from HausBar Farms in Austin, Texas. Details are provided in Text S1 in the supple-
mental material.

S. symbiotica HB1 genome sequencing. S. symbiotica HB1 was grown in tryptic soy broth (TSB) at
room temperature and harvested at an optical density at 600 nm (OD600) of ;1.0, and DNA was
extracted with the DNeasy blood and tissue kit (Qiagen). A paired-end sequencing library with dual barc-
odes was prepared using the Illumina Nextera XT DNA kit, and sequencing was performed on an
Illumina iSeq 100. Raw reads were trimmed using Trimmomatic (68) and assembled using the SPAdes
algorithm (69) via Unicycler (70). Genome contamination and completeness were assessed using
CheckM (71).

Phylogenetic analysis. S. symbiotica and outgroup genomes used for phylogenetic analysis are
listed in Table S1A in the supplemental material. Genomes were downloaded from the NCBI Assembly
Database on 2 March 2020. All outgroup genomes were filtered for.95% completeness and,5% con-
tamination using CheckM (71). Annotations were obtained using Prokka (72), and 176 single-copy ortho-
logs were identified by OrthoFinder (73). These single-copy orthologs were aligned with MAFFT (74),
trimmed using a BLOSUM62 matrix in BMGE (75), and concatenated using an in-house script, producing
an alignment with 56,881 total amino acid positions. A tree was constructed by maximum likelihood
with a JTT1R10 model and 100 bootstraps, using IQ-Tree (76). The complete phylogeny is available in
Fig. S1. The presence of Serratia marker genes was determined using CheckM with the Serratia marker
gene set provided with CheckM. The average nucleotide identity for S. symbiotica genomes was calcu-
lated using FastANI (77).

Chromosomal integration of sfGFP. Superfolder GFP (sfGFP) was integrated into the chromosomes
of S. symbiotica CWBI-2.3T, S. symbiotica HB1, and E. coli BW25113 through mini-Tn7 tagging, as
described by Choi and Schweizer (78). Details are provided in Text S1.

Tracking aphid survival, fecundity, and transmission after injection with S. marcescens, S.
symbiotica, and injection buffer. Fourth-instar pea aphids were injected with S. marcescens Db11,
recombinant S. symbiotica CWBI-GFP, recombinant S. symbiotica HB1-GFP, hemolymph from pea aphids
infected with S. symbiotica Tucson, or injection buffer, as described in Text S1. Every 24 h, survival was
recorded, offspring were collected, and surviving adults were moved to a fresh dish. Adults were col-
lected at death or at the end of the experiment at 15 dpi and screened for the presence or absence of S.
symbiotica. Details are provided in Text S1.

Bacterial titer by spot-plating and qPCR. Fourth-instar pea aphids were injected with recombinant
S. symbiotica CWBI-GFP, recombinant S. symbiotica HB1-GFP, or hemolymph from pea aphids infected
with S. symbiotica Tucson, as described in Text S1. At 24 h, aphids were transferred in sets of 15 to seed-
lings of Vicia faba and stored under long-day conditions (16-h light, 8-h dark) in incubators held at a
constant 20°C. At each time point, aphids were collected in separate tubes, surface sterilized in 10%
bleach for 1 min, rinsed in deionized water for 1min, and then crushed and resuspended in 100 ml phos-
phate-buffered saline (PBS). For aphids injected with culturable S. symbiotica CWBI-GFP or HB1-GFP, 50
ml of this homogenate was used for spot-plating and 50 ml was frozen for DNA extraction and quantita-
tive PCR (qPCR). For aphids injected with S. symbiotica Tucson, all 100 ml of homogenate was frozen and
used for DNA extraction and qPCR. Details are provided in Text S1.

Statistical analyses. All statistical analyses and graphing were performed in the R programming lan-
guage (version 3.6.3) (79). Survival rates for each treatment group were visualized as Kaplan-Meier sur-
vival curves, and comparisons of rates across treatment groups were performed using the Cox propor-
tional-hazards model. Bacterial titers across treatment groups were compared using the Kruskal-Wallis
analysis of variance, followed by Dunn’s multiple-comparison test.

FISH microscopy. Fourth-instar pea aphids were injected with wild-type S. symbiotica CWBI-2.3T,
wild-type S. symbiotica HB1, or hemolymph from pea aphids infected with S. symbiotica Tucson, as
described in Text S1. Embryos were dissected at 4 dpi (Movie S1) or 7 dpi (Fig. 4) in 70% ethanol.
Fluorescence in situ hybridization (FISH) was performed as described by Koga et al. (8) with slight modifi-
cations. Details are provided in Text S1.

Live imaging of E. coli and S. symbiotica in pea aphids. For live imaging, fourth-instar
Acyrthosiphon pisum LSR1 aphids were injected with recombinant S. symbiotica CWBI-GFP or recombi-
nant E. coli BW25113-GFP, as described in Text S1. At 24 h, the aphids were transferred in sets of 15 to
seedlings of V. faba and stored under long-day conditions (16-h light, 8-h dark) in incubators held at a
constant 20°C. At 5 dpi, a subset of aphids from each treatment group were used to obtain titer counts
via spot-plating, as described above, and the remaining aphids were dissected in TC-100 insect medium.
Single ovarioles from 10 infected aphids per treatment group were observed under a Zeiss LSM 710 con-
focal microscope.

Data availability. This whole-genome shotgun project for S. symbiotica HB1 has been deposited at
DDBJ/ENA/GenBank under accession no. JACBGK000000000. The version described in this paper is ver-
sion JACBGK010000000.
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