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ABSTRACT

The development of new high-throughput
technologies enables us to measure genome-wide
transcription levels, protein abundance, metabolite
concentration, etc. Nevertheless, these experimen-
tal data are often noisy and incomplete, which
hinders data analysis, modeling and prediction.
Here, we propose a method to predict expression
values of genes involved in stable cellular pheno-
types from the expression values of the remaining
genes in a literature-based gene regulatory network.
The consistency between predicted and known
stable states from experimental data is used to
guide an iterative network pruning that contextual-
izes the network to the biological conditions under
which the expression data were obtained. Using the
contextualized network and the property of network
stability we predict gene expression values missing
from experimental data. The prediction method
assumes a Boolean model to compute steady
states of networks and an evolutionary algorithm
to iteratively prune the networks. The evolutionary
algorithm samples the probability distribution of
positive feedback loops or positive circuits and in-
dividual interactions within the subpopulation of the
best-pruned networks at each iteration. The result-
ing expression inference is based not only on
previous knowledge about local connectivity but
also on a global network property (stability),
providing robustness in the predictions.

INTRODUCTION

The wealth of experimental data from high-throughput
technologies in different areas of biology, and especially

at a transcriptomics level, allows us to incorporate such
data as networks of interactions. These networks can be
reconstructed based on knowledge resources such as lit-
erature or specific databases (e.g. KEGG, Reactome,
Transfac) or purely from experimental data by inferring
interactions between genes from their co-expression
patterns (1) or mutual information (2).
During the network reconstruction process from litera-

ture, genes and interactions are introduced by an expert or
using algorithms in the attempt to capture the essential
events to describe a particular biological system.
In addition, gene expression values are taken into
account in order to perform a network reconstruction.
Nevertheless, it is often the case that gene expression
values of some genes are missing despite their relevance
in gene regulation. Usually, the inference of expression
values of these genes based on regulation relationships
extracted from literature is not correct, since this informa-
tion can relate to different biological conditions, such as
different cellular types, tissues, pathological or physio-
logical states or even organisms. Furthermore, the poten-
tial introduction of ‘false’ interactions, even a few of them,
could significantly modify predicted gene expression
states.
Here, we propose a method that uses network stability

to guide the iterative network pruning of literature-based
network interactions, which are apparently not active in
the biological context under study according to expression
data. This pruning is driven by the compatibility between
predicted and experimentally verified steady state gene ex-
pression patterns. Hence, it is reasonable to assume that
interactions removed by pruning are not present in these
steady states. Once these interactions have been removed,
we predict the missing expression values using the
optimized pruned networks explaining the best-known ex-
pression values (Figure 1).
Given that our method relies on network stability

analysis of different cellular conditions, we selected for
our study examples of transitions between different
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cellular phenotypes. In these cases we assumed that
cellular phenotypes correspond to steady states (3,5) of
gene regulatory networks describing these processes.
Namely, the analyzed examples include the following: (i)
HL60-neutrophil differentiation (HL60), (ii) epithelial to
mesenchymal transition (EMT) and (iii) mesodermal pro-
genitor cells (MPCs) differentiation to osteoblasts. The
method performance was tested in these examples,
showing its predictability power. Moreover, in order to
further demonstrate the utility of our method, we
decided to expand the HL60-neutrophil differentiation
gene regulatory network by adding some previously
reported genes as relevant for this differentiation process
(3), and predicting their expression values. The results
show that our predictions are consistent with the experi-
ment performed by Huang et al. (3) for most of these
genes. In addition, we found that the networks within
the family of optimized pruned networks exhibit a very

similar response under perturbation of specific genes,
with the same three genes able to trigger the transition
from one phenotype to the other one when perturbed by
changing its expression values.

In summary, we propose a novel method to predict
missing or noisy gene expression values in transcriptomics
data, which correspond to specific biological processes.
Therefore, it can be used for curating experimental gene
expression data and can help with data analysis, modeling
and prediction.

Comparing approaches for inference of regulatory and
signaling networks

Gene regulatory networks can be inferred from literature
or using reverse engineering approaches based on gene
expression covariation patterns, such as Bayesian
network analysis (2,4) or inferred systems of differential

Figure 1. Flowchart of the method to predict missing expression values using an iterative network pruning and training against experimental data.
The network stability is exploited to select the models that best explain the experimental expression values. The prediction of missing values is
determined by a population of optimized pruned networks.
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equations (5). Nevertheless, networks inferred purely from
experimental data and those assembled from the literature
have different limitations. In the first case, a wealth of
data about interactions previously described in literature
is ignored. On the other hand, literature-based networks
are too disconnected from experimental data to be able to
describe input–output relationships, such as cellular re-
sponses under specific biological stimuli or mechanisms
that determine specific stable (long-term) expression
patterns.

Although the main goal of our method is to predict
missing gene expression values, it requires the inference
of a set of optimized networks underlying these genes ex-
pression patterns. In this context, our network inference
strategy contains several differences and similarities with
previously introduced approaches.

An important characteristic of our method is that it
explores a reduced search space due to the fact that only
interactions previously reported in literature can be
included in the network. Methods purely based on experi-
mental data (2,4,6) rely on a large amount of data to stat-
istically validate network interactions and explore larger
search spaces since interactions are not constrained by
literature information. In some cases, literature-based
methods can also deal with large search spaces, especially
when additional interactions can be added and/or regula-
tory logic rules are flexible (7,8).

A clear advantage of the method here we present is that
only a single experiment is required—a microarray experi-
ment comparing two stable states of a biological system.
Other approaches combine literature information with ex-
perimental data; however, they require a significant
number of perturbation experiments, i.e. different combin-
ations of inputs and outputs (8,7). In order to be able to
train the model these methods require perturbation experi-
ments targeting different starting points in the network
including combinations of perturbations to solve the
cross-talking between different pathways in the graph
until the entire network is covered. More details are
included in the Supplementary Data.

Another remarkable difference between the work pub-
lished by Irit Gat-Viks et al. (8) and the approach we
present consists on the complete confidence that this
previous method has in the experimental data. The as-
sumption is that this information is always correct, adjust-
ing the regulation functions that define the state of a
specific node based on the states of its parents in an
acyclic graph. If after this process some discrepancies or
local inconsistencies still remain, the model is refined by
addition of novel regulatory hypothesis (with interactions
not described in literature) using a learning algorithm. In
the method we propose, a local inconsistency could be
accepted if the global consistency of the computed
network state and experimental expression data is
increased, strategy suitable to deal with noisy expression
data. Given that the main goal of our approach is to
predict missing expression values and not to describe the
specific regulatory mechanism, we do not introduce inter-
actions not described before in literature to refine the
model and we only work on the contextualization of

networks with enough connectivity to explain missing ex-
pression values.
Another important feature of the method here we

present is that it provides a strategy to increase the
match with expression data using an evolutionary algo-
rithm that considers the probability distribution of
positive circuits and individual edges in an iterative
process so it is not necessary to exhaustively explore the
entire search space as in previously published works that
also exploit the attractors of the system, as in the work
published by Layek et al. (9). In this work the authors
proposed a method to infer regulatory networks using a
priori information of biological pathways and the con-
cordance between network attractors and experimental
data. In their method, they integrate information from
pathways described in literature to create a family of
possible networks. Secondly they check if experimentally
observed stable states agree with computed attractors of
the family of possible networks and they select the top
ones (different alternative networks could fit expression
data). If the match is not good they can question the
validity of the pathway information, so the stable states
distribution data can be used to assess the accuracy of the
pathway information, but there is no method to improve
this match. Here, we distinguish our method by providing
a systematic technique to improve the match between ex-
perimental and computed steady states.
Summarizing, the method presented here to predict

missing expression values rests on a strategy for network
inference that works on a reduced search space of
literature-based networks, requires a reduced amount of
experimental data as it exploits the stability of the network
and uses a strategy to increase the match between the
model and the experimental expression data.
Finally, it is worth noting that our method exploits

global network information, i.e. network stability,
whereas several other methods rely on local network in-
formation, such as pairwise gene expression covariation
(2,4), or response to perturbations of specific genes (5).
Hence, our method constitutes a good compromise
between robustness in predictions and the amount of
required experimental information.

MATERIALS AND METHODS

Principle of the approach

In order to illustrate the idea, let us consider a microarray
experiment comparing two cellular phenotypes which
provides a list of three genes differentially expressed
between the phenotype 1 and phenotype 2—gene b is
upregulated and genes a and c are downregulated.
According to this description we can generate two
Booleanized phenotypes which are: the phenotype 1 with
the gene b in OFF (0) and genes a and c in ON (1); the
phenotype 2 with the gene b in ON and genes a and c in
OFF (Figure 2A) corresponding with the two classes
compared in the microarray experiment. Let us pretend
that there are two interactions described in literature
that allow us to reconstruct a small gene regulatory
network with the three differentially expressed genes and
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these two interactions. Assuming that cellular phenotypes
correspond with stable states as proposed by several
authors (10–12), these two Booleanized phenotypes
should be steady states of this small network. After the
computation of the attractors of this network in a dynam-
ical Boolean system with a synchronous updating scheme
(13) and using our own implementation of the method
described by Garg et al. (14), we found that this
network only have one attractor corresponding with
phenotype 2. The logic rule applied by default is the fol-
lowing: if none of its inhibitors and at least one of its
activators is active, then a gene becomes active; otherwise
the gene is inactive. This result is consistent with the
results obtained using previously published software to
compute attractors in Boolean systems [Boolnet (15),
GenYsis (14), GinSim (16)]. In other words, this
network is clearly not suitable to describe this two
steady states system with the known gene states.

But let us introduce in our small network an additional
gene d without known expression values (Figure 2B).
Because gene d is involved in a positive regulatory
feedback loop (a positive circuit), its state should
because and consequence of the states of its partners in
the loop. Positive circuits or positive feed-back loops are
necessary to guarantee the exchange of information from
different parts of the network, allowing more than one
self-maintained state. Specifically in the context of the dy-
namical behavior of biological regulatory networks,
positive circuits, or circuits with an even number of
negative interactions (inhibitions), have been reported as
necessary condition for multistability (multiple fixed
points or attractors with only one state) (17). In
contrast, the presence of negative circuits, or circuits
with an odd number of negative interactions, is a neces-
sary condition for oscillatory behavior (cycles or stable
states with at least two states). In our specific example,

Figure 2. (A) Gene regulatory network with three genes and two inhibitions. Two Booleanized phenotypes are generated from microarray experi-
ment. Nodes in blue and red represent genes down and upregulated, respectively, according to microarray experiments. Nodes in grey and white
represent genes ON (1) and OFF (0), respectively, in the Booleanized phenotypes. The attractor computation of this network in a dynamical Boolean
system with a synchronous updating scheme provides only one steady state corresponding to the phenotype 2. (B) Gene regulatory network with four
genes, two inhibitions and two activations. Only the expression values of genes a, b and care known, while the expression value of gene d (in pale
grey) is missing. Nodes in blue and red represent genes down and upregulated, respectively, according to microarray experiments. Nodes in dark grey
and white represent genes ON (1) and OFF (0), respectively, in steady states (attractors) computed according to a Boolean dynamical model. Gene d
is predicted as downregulated (in pale blue).
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the introduction of the node d closing the loop provides a
way back for the signal to node a, that is required to
maintain its state active. The attractor computation
using the Boolean dynamical model for this expanded
network (four genes and four interactions) results in two
steady states matching perfectly with the states of the
genes a, b and c in the Booleanized phenotypes 1 and 2.
According to these two attractors, the gene d is ON in the
phenotype 1 and OFF in the phenotype 2. In other words,
our method is able to predict the gene d as downregulated.

However, the prediction becomes complicated for a
gene d involved in multiple regulatory feedback loops,
because its states could be different depending on the
loops being considered. Our method handles these
inconsistencies by using an optimization process
preserving interactions consistent with experimental data
and removing inconsistent interactions considered as not
active in the biological context under study. This opti-
mization process is performed using an estimation of dis-
tribution algorithm (EDA).

Estimation of distribution algorithm

EDAs are evolutionary search algorithms that can be
applied to high-dimensional optimization problems and
have been applied in several bioinformatic problems
(18). EDAs use a set of selected solutions to create a prob-
abilistic model that guides the search/optimization
process. Compared to other evolutionary algorithms,
they avoid premature convergence of solutions, due to
the modeling of the probability distribution over many
iterations. Within the population of solutions, different
patterns of interactions between genes may be represented
as probabilities. This knowledge in terms of probability is
used to sample new solutions.

Depending on the complexity of the probabilistic
models used to capture the interdependencies between
the variables, EDAs can be divided into univariate and
multivariate approaches. Univariate EDAs assume that
all variables are independent and factorize the joint prob-
ability of the selected solutions as the product of
univariate marginal probabilities. Multivariate EDAs fac-
torize the joint probability distribution using statistics
observing more than one variable at a time. In particular,
the possibility of defining the interdependencies between
variables constitutes the main advantage of EDAs in com-
parison with genetic algorithms.

Here we propose an EDA to perform an iteratively
prune a literature-based network using populations of al-
ternative pruned networks that are scored and selected
using expression data. These selected highest scored
pruned networks are used to generate the next population
of alternative pruned networks successively until the ful-
fillment of the stop criteria. For each iteration of the
algorithm, the new population of pruned networks is
generated by sampling the probability distribution of
positive circuits and individual interactions found in the
best pruned networks of the previous population. When
the iteration stops the last optimized population of pruned
networks is then used to predict missing expression values.
Each pruned network is scored comparing their predicted

steady states with a Booleanized representation of the ex-
perimental expression data. Given that the scoring of the
pruned networks is based on the stability, a property that
rests on the global topology of the network, we cannot
assess each interaction separately. In our method, the
dependencies between variables (interactions) are
captured using information about the network topology.
Specifically, we treat all the interactions belonging to
positive circuits as a unique entity, considering that this
entity is present if and only if all of its interactions are
present too or, in other words, if the circuit is complete.
In the expanded gene regulatory network (Figure 2B),

the contribution of each interaction to generate two steady
states cannot be assessed separately because all of these
interactions are necessary to close the loop and produce a
bi-stable behavior. These interactions are not independent
from the stability point of view.

Algorithm steps and scores

To look for a set of alternative optimized pruned networks
to explain the experimental expression data and predict
missing values the following algorithm was implemented
in four steps (Figure 3):

(1) Generation of an initial population of pruned net-
works—In this step the first population of pruned
networks is generated by random removal of inter-
actions from the original literature-based network, in
other words, sampling individual interactions with a
probability of 0.5. No considerations about topo-
logical features such as preserving the degree of the
nodes or a scale-free topology are taken into
account. The only constraint we introduce is that
all networks are forced to include at least one
positive circuit, a necessary condition for
multi-stability (17). This positive circuit is randomly
selected from the pool of all positive circuits in the
original literature-based network. The population
size is defined by the user; a larger population size
increases the likelihood of achieving global optimum
but also increases computational expense and, in
general, requires more iterations to converge to one
or multiple solutions.

(2) Selection of best-scored pruned network—Each
pruned network is scored using the objective
function (described below) and a defined number of
best-scored pruned networks are selected. The user
can define this selection number, which is 50% of
the population size by default.

(3) Termination criteria—The algorithm checks the ful-
fillment of the stop criteria (defined by the user):
either the maximum number of iterations is
reached, or all the scores in the population of
pruned networks are higher than a defined value
(e.g. 80%). If this criteria is not fulfilled the algo-
rithm proceeds with the generation of next popula-
tion of pruned networks.

(4) Generation of next pruned network population—The
next population of pruned networks is created by
sampling the probability distributions of each
positive circuit and individual interaction, calculated

PAGE 5 OF 18 Nucleic Acids Research, 2013, Vol. 41, No. 1 e8



from the best-scored pruned network selection, to
decide whether circuits and individual interactions
are included or not in the new pruned networks. In
other words, taking the top scored pruned networks
we check how many times one specific positive circuit

appears, creating a background for the next popula-
tion random generation. For example, assume that a
hypothetical set of 10 pruned networks has been
selected due to their high scores, and one specific
circuit is present in 7 of these 10 pruned networks.

Figure 3. Iterative network pruning using an EDA.
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Then, the probability of this circuit is 0.7 and when
we generate the next population of pruned networks,
on �70% of the new networks will have this circuit.
Once the circuits are sampled we follow the same
sampling on individual interactions to model inter-
actions not present in selected circuits. Additionally,
in order to retain the best scoring networks we im-
plemented elitism—pruned networks with the best
scores within the subset of selected pruned
networks are directly transferred to the next gener-
ation. The algorithm also introduces a certain
amount of noise in the optimization process by
sampling the truncated probability of both circuits
and interactions. These probability distribution
values are truncated to 0.2, in the case of frequencies
<0.2 and to 0.8 in the case of frequencies >0.8. This
strategy avoids convergence (all pruned networks
with or without a specific circuit or interaction) by
chance, and enables efficient optimization for smaller
population size.

The objective function

The objective function assesses the match between pre-
dicted steady states (see section on computation of attrac-
tors) and a Booleanized representation of the experimental
expression data assigning a score to each sampled pruned
network (n). This score S uses the normalized Hamming
distance (h) to compare N Boolean gene expression values
(s) between all calculated steady states (a) of a pruned
network and the two known phenotypes (j1 and j2)
defined by the expression data, in order to identify
the two best-matching phenotype/steady state couples
(ja1 and ja2). Finally, the pruned network score (from
0 to 1) is defined as:

Sn ¼ 1�
ðh’�1+h’�2Þ

2

� �
, with h’� ¼

1

N

XN
i¼1

ð�’i ��
�
i Þ

2

Prediction of gene expression

Once the iterative pruning terminates, we calculate five
prediction scores for each gene. The scores correspond
to five classifications—UP or DOWN (differentially ex-
pressed genes), ON or OFF (invariant genes), or UNK
(genes with unknown expression). For instance, the clas-
sification score for UP (resp. DOWN, ON, OFF, UNK) is
equal to the number of solutions with a steady state couple
��2g , ��1g

� �
equal to {1,0} (resp. {0,1}, {1,1},{0,0}, {�,�})

for this gene g divided by the total number of solutions.
The classification with the highest score corresponds to
our predicted gene expression for the gene g. In case of
more than one highest score, we predict the gene expres-
sion as UNK.

Computation of attractors and circuits

In order to compute the attractors, we model the network
as a dynamical system using a deterministic rule-based
approach or, more specifically, a Boolean dynamical

model. Other possible dynamic models include continuous
models, which have the benefit of being easily compared
to quantitative experimental data (19), and discrete
models with more than two possible values (20).
However, since the continuous models would have to be
studied numerically as opposed to analytically, the com-
putation of attractors becomes computationally expen-
sive. Furthermore, biological regulatory processes are
such that the graph of rate of expression between a
regulated gene as a function of its regulator, commonly
exhibits a sharp sigmoid curve, which can be
approximated to a Boolean switch-like behavior (21).
Within this Boolean dynamical model the network is

created as a graph, which is directed and signed, in
order to represent positive or negative regulation. The
nodes represent genes and the edges denote regulation.
Each node has an associated value ‘1’ or ‘0’ encoding
the activation/presence or inactivation/absence, respect-
ively. The logic functions that encode the regulation for
each specific node are represented using the disjunctive
normal form representation, that uses only AND, OR
and NOT operators (22). Given the regulators (activators
and inhibitors) for each node, the Boolean function is
evaluated using rules proposed by (14): if none of its in-
hibitors and at least one of its activators are active, then a
gene becomes active; otherwise, the gene is inactive.
Finally, we use a synchronous updating scheme (13),
where all genes in the network update their expression
levels simultaneously in each time step. We use synchron-
ous updating scheme as it facilitates computation due to
the smaller state space and yet preserves the generic quali-
tative properties of the network (23). An alternative
updating scheme, which we do not investigate, would be
the asynchronous scheme, which would have a much
larger state space, leading to a higher complexity of
computing attractors (13). With this synchronous
updating scheme all the genes are updated from one step
to the next one at the same time.
Using the set of Boolean functions for each node and

synchronous updating, we then compute the attractors of
the network, i.e. the set of states towards which a dynam-
ical system evolves over time. The attractors were
computed using an efficient method to model the
network dynamics using Reduced Order Binary Decision
Diagrams (ROBDD or in short BDD), due to their
compact representation of Boolean functions and the
ease of computing complex Boolean operations(14).
More details about attractor computation are included
in the Supplementary Data.
The Johnsons algorithm (24) is used to detect all elem-

entary circuits in the network. A circuit is a path in which
the first and the last nodes are identical. A path is elem-
entary if no node appears twice. A circuit is elementary if
no node but the first and the last appears twice. Once we
have all elementary circuits, we select positive circuits, or
circuits for which the difference between the number of
activating edges and the number of inhibiting edges is
even. Johnson’s algorithm uses backtracking to eliminate
partial candidate solutions, where the partial candidates
are created by building elementary paths. The algorithm
begins from a root node s and creates elementary paths
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from s. Additionally, the algorithm provides two advan-
tages—it reduces the search space considerably by
blocking nodes as they are added to an elementary path
and the method also reduces the search space by removing
the previous root nodes so that new cycles are generated.
The algorithm runs in O(n+e)(c+1) time and requires a
storage space of O(n+e), where n is the number of nodes,
c is the number of elementary circuits and e is the number
of edges.

Availability and implementation

The computation of attractors and the detection of
circuits were implemented in C++, the EDA algorithm
was developed in Perl and the interface was designed in
PHP as a module of M@IA (25). The tool (named as
XPred) and source code are freely available for
academic use at http://maia.uni.lu/XPred.

Simulations to test the consistency in response to
perturbation within a family of optimized pruned networks

To perform these simulations we used a continuous dy-
namical model based on a set of ordinary differential
equations (ODE) implementing the method described by
Mendoza et al. (19). In this continuous system the steady
state computed in the Boolean model is introduced as
initial state. Then we proceeded to perturb one by one
every gene in the network, changing its state to ON (1)
or to OFF(0) depending on the case and checking if such a
perturbation is able to trigger the transition to the steady
state corresponding to the neutrophils phenotype or not.
The results of these simulations were consistent with the
results obtained with a previous implementation of this
method published by (26).

RESULTS

Approach optimizing pruned networks and predicting
missing expression values

Our method is designed for stable cellular phenotypes with
known expressions values. It means that, for microarray
expression data, the two phenotypes should correspond to
steady states or long-term expression patterns. The three
biological examples used to illustrate and validate the
method correspond to three cellular differentiation
networks (HL60–neutrophil differentiation, EMT and
MPCs differentiation to osteoblasts). The list of differen-
tially expressed genes provided by the expression data
analysis is transformed to generate two Booleanized
phenotypes. Then, our method generates alternative con-
figurations of the original network in order to select those
having attractors, computed with a Boolean model, with
the best fit to Booleanized phenotypes. Finally, these
optimized pruned networks show interactions that best
explain the known expression values, and the gene states
of its attractors are used to predict missing expression
values.

Illustration of the method using a toy network

In order to illustrate the algorithm and to interpret the
results, we constructed a toy network with 18 nodes, 23
edges and three positive circuits (Figure 4, up-left), and an
incomplete gene expression dataset for two ‘experimental’
stable states that represent a microarray experiment (node
A, C and F without expression). The gene expression
dataset is used to generate two Booleanized phenotypes
(Figure 4, up-right). This network has only one steady
state or fixed point according to a Boolean dynamical
model following the rules described in the ‘Materials and
Methods’ section, so it is clearly not suitable to describe a
system with at least two steady states.

We run 40 iterations of the algorithm with a population
size of 30 and a best-score network selection number of 12,
that is, at each iteration, we selected 12 best-scoring indi-
viduals from a population of 30. The new generation is
created by sampling the probability distribution of
positive feedback loops (positive circuits) and individual
edges in these 12 selected individuals. The elitism method
directly transfers the best six solutions to the next
population.

In the final population, some edges are removed by the
algorithm because they prevent a perfect match between
the Booleanized phenotypes and the computed attractors
(considering only genes with known expression data, i.e.
all of them but A, C and F). These edges represent inter-
actions that are described in literature, but apparently are
not active in the context under study. According to the
predictions performed using the optimized pruned
network, the algorithm predicts missing expression
values for genes A (downregulated), C (upregulated) and
F (upregulated).

We noticed that the interactions B -j D, E -> P and
Q -> J are correctly removed from all solutions with a
100% matching score because their presence avoided the
perfect match. Interestingly, we noticed that in such solu-
tions, the interactions B -> C and G -> C could be missing
but not simultaneously. They constitute alternative
pathways to guarantee the bi-stability of the system. In
other words, some of the perfect matching solutions have
one and only one of these interactions missing.
Interestingly, the probability distribution of the circuits in
these 100% matching solutions shows that the circuit 1 is
always absent, but circuits 2 or 3 could be missing (but not
both at the same time) precisely because the missing B -> C
and G -> C interactions break them (Figure 4, down).

The interaction J -> Q can be present or absent accord-
ing to our model and the logic gate that rules the regula-
tion of Q, without change in the state of this node in the
attractors. It highlights a limitation of our method, as we
cannot remove this link due to a lack of evidence (it could
be present or absent in a perfect matching solution). The
validation of such links in the specific biological context
defined by the experimental data is out of the scope of this
method.

Biological sample cases

We chose three cellular differentiation processes
as examples to illustrate and validate the method
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Figure 4. Top-left—Toy network with 18 nodes, 23 edges and three positive circuits. Top-right—Incomplete gene expression data for two ‘experi-
mental’ stable states that are going to be used to generate two Booleanized phenotypes. Bottom—Alternative solutions with a perfect match to
expression data. Pale red and blue indicates prediction of up and downregulation, respectively. Circuit 1 was removed in both solutions, but circuits 2
and 3 constitute alternative pathways so the presence of either (could be both) is enough to generate two stable states with a perfect match with
expression values.
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(Table 1): HL60–neutrophil differentiation (HL60), EMT
and differentiation of MPCs to osteoblasts. The gene
regulatory network reconstruction process is described in
the Supplementary Data, and references about the inter-
actions are included in the Supplementary Material SII.
The multipotentpromyelocytic leukemia cell line HL60

was originally isolated by Dr Steven Collins from an acute
promyelocytic leukemia (APL) patient (27). The HL60
system was used by Huang et al. (12) to demonstrate
the correspondence between cell fates and high-
dimensional attractor states of the underlying network.
This cell line can be stimulated to differentiate into neu-
trophils using different chemical agents. In order to recon-
struct the HL60-neutrophil differentiation gene regulatory
network, we used a set of genes composed by genes dif-
ferentially expressed between HL60 cells (precursor or
phenotype 1) and neutrophils (phenotype 2), where the
differentiation was induced by dimethyl sulfoxide
(DMSO) in the experiment performed by Mollinedo
et al. (28). We were able to reconstruct a gene regulatory
network with 18 genes and 38 interactions representing
positive or negative effect over gene expression.
EMT plays a crucial role in cancerogenesis and metasta-

sis, by initiating by the breakdown of epithelial cell homeo-
stasis correlated with the acquisition of invasive capacities
and stemness properties. We used a set of differentially
expressed genes between epithelial and mesenchymal cells
obtained from an experiment performed by Vetter et al.
(29) where the transition is triggered by the induced expres-
sion of the EMT master transcription regulator SNAI1
(human snail). We obtained a gene regulatory network
with 46 genes and 129 interactions representing positive
or negative effect over gene expression.
Single human bone marrow-derived MPCs differentiate

into osteoblasts, chondrocytes, adipocytes, myocytes and
endothelial cells. In the experiment performed by Qi et al.
(30), MPCs were induced to differentiate into osteoblasts,
cells involved in bones formation, by adding dexametha-
sone, ascorbic acid and b-glycerophosphate to the cell
cultures. A microarray analysis performed afterwards
yielded a list of differentially expressed genes between
osteoblasts and MPCs. The resulting network includes
67 genes and 123 interactions representing positive or
negative effect over gene expression.
Figure 5 shows the results after the application of our

method to the three biological examples. Using the

prediction scores described in ‘Material and Methods’
section, we are able to obtain a consensus among a popu-
lation of optimized pruned networks.

Statistical validation

In our biological examples, to statistically validate pre-
dicted expression values, we compared the distribution
of network scores generated by our optimized pruned
networks from multiple training sets, with the distribution
of scores corresponding to a population of randomly
generated expression patterns (Figure 6). This population
of random expression patterns was generated assigning
randomly one of the following values for each gene in
the network: upregulated, downregulated, invariant-up
and invariant-down. These values correspond to genes
that in a Booleanized model changes from 0 to 1 and
from 1 to 0 in the first two cases, and that remain invariant
in 1 and 0 for the latter two cases, respectively. Once we
assign values to all genes, expression patterns are scored
using the Booleanized phenotypes from experimental
data. This scoring scheme is the same used during the
optimization process, reflecting the match between the
random expression pattern and the experimental
Booleanized phenotypes. We repeated the process 10 000
times, obtaining a population of random expression
patterns with the respective scores. Then, we compared
this population with the population of optimized pruned
networks (30 alternative pruned networks, which consti-
tute the last population of optimized pruned networks
after the last iteration of the algorithm) for 20 different
and randomly selected training and predicted sets of
genes. We use different training sets to perform this
cross-validation, since not all possible training sets are
equally predictive due to the fact that not all genes are
equally informative according to our method. For
example, highly connected genes are in general more in-
formative than genes with few interactions. Preliminary
tests showed that the optimal percentage of genes for
which gene expression values can be predicted was 35%,
based on the expression values of the remaining 65%. For
instance, in the HL60 network, that includes 18 genes, 12
genes were used to predict the expression values of the
remaining six genes for 20 different combinations of
training and predicted genes. Then, we scored the match
between predictions and expression data using the same
scoring process as in the pruning, but now considering all

Table 1. Gene regulatory networks of three biological examplesa

Network properties HL60–neutrophils EMT MPC–osteoblast

Number of nodes 18 46 67
Number of edges 39 129 123
Activations 37 92 72
Inhibitions 2 37 51

Feed-back loops (circuits)
Positive 5 38 5
Negative 1 71 1

Feed;forward loops (up to 5 nodes) 326 1074 1121

aHL60–neutrophil differentiation network, epithelial–mesenchymal transition network, MPC–osteoblast differentiation network. Information about
number of nodes, edges, circuits and feed-forward loops is shown in the table.
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Figure 5. Illustration of results after the application our algorithm on the three biological examples. (a) Raw networks. Missing expression values,
upregulated genes and downregulated genes are in grey, bright red and dark blue, respectively. (b) Genes predicted as upregulated and downregulated
are in pale red and pale blue, respectively. Genes in white and yellow are predicted as invariant-inactive and invariant active, respectively.
(c) Prediction scores are displayed in a range from black (low prediction scores) to white (high prediction scores).
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the 18 genes since some of the computed expression values
of the training set genes could mismatch with experimental
expression values. Therefore, we have a population of 600
pruned networks (30� 20) with the corresponding scores.
Then, we proceeded to compare this population with the
randomly generated population of scored expression
patterns. This comparison was done to show that gene
expression predicted values were better than those pre-
dicted by chance.
Furthermore, we used the Welch’s t-test to estimate

the similarity between the predicted and randomly
generated populations of gene expression values scores.
Results demonstrated that the P-values for the similarity

of the two distributions were very low for the three
examples, stressing the statistical significance of predic-
tions obtained by our algorithm. Figure 7 shows the cu-
mulative frequency distributions of the scores for each
example, illustrating that pruned network tends to have
steady states describing well cellular phenotypes.
Particularly, 10% of highest scoring random expression
patterns have scores above 0.47, 0.39 and 0.42 for
HL60, EMT and MPC networks, respectively. The corres-
ponding scores using the optimized networks increased to
0.94, 0.59 and 0.52, and the corresponding P-values using
the Welch’s t-test are 2.2e�16, 2.812e�9 and 2.2e�16

(Figure 6).

Figure 6. Workflow for validation of predictions. Comparison between the distributions of network scores generated by our optimized pruned
networks and the distribution of network scores corresponding to a population of randomly generated expression patterns. This strategy was done
from multiple training sets.
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Figure 7. The cumulative frequency distribution of the scores, which indicate similarity to the experimental phenotypes, applying the algorithm for
the HL60 (top), EMT (middle) and MPC (bottom) networks. The above plot shows that for example, 10% of highest scoring within the population
of random expression patterns have scores above 0.47, 0.39, 0.42 for HL60, EMT and MPC networks, respectively. The corresponding scores using
the optimized networks increased to 0.94, 0.59 and 0.52. Evidently, for less complex networks such as HL60, the prediction performance increases.
The corresponding P-values for the Welch’s t-test of the hypothesis that both distributions have the same true mean are 2.2e�16, 2.812e�9 and
2.2e�16.
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Expanded gene regulatory networks of HL60, EMT and
MPC: prediction of missing expression values

Once we validated the method by predicting previously
known expression values using different training and pre-
dicted sets, we applied this strategy to predict expression
values of new genes in expanded gene regulatory networks
of HL60, EMT and MPC.
The strategy to expand the networks was the following.

We looked in literature [using Ariadne’s Med Scan tech-
nology (31,32)] for interactions that allow us to connect
new genes to our original networks in such a way that they
are included in regulatory circuits, i.e. the signal flows
from the original network to the genes and back, so all
the new genes have incoming and outgoing edges. The list
of genes involved in such circuits was compared with a list
of candidate genes. Genes present in both lists were
selected, and these genes and their corresponding inter-
actions were used to obtain the expanded network. The
lists of candidate genes were obtained from a specific ex-
periment in the case of the HL60 network (3). In the cases
of the EMT and MPC networks the lists of candidate
genes were obtained from Biograph, a data mining
frame-work for the computational identification of
suitable targets among candidate genes in a biomedical
context (33). Using Biograph we obtained two lists with
the 100 top scoring genes involved in the epithelial–mes-
enchymal transition and mesodermal–osteoblast differen-
tiation. The genes that were common between the lists
obtained by Biograph, and those involved in the circuits
described above, were used to expand the networks, and
their expression values were predicted applying our
approach.

HL60
The list of candidate genes for the network expansion was
extracted from an experiment performed by Huang et al.
(3). In this work the authors applied two different treat-
ments (different in dosage and duration but using the
same agent, all-trans-retinoic acid or ATRA) to an
HL60 multipotentpromyelocyticleukemia cell line,
generating two populations at the apparently same stage
of differentiation. However, once the treatments finished,
one of the populations proceeded toward a differentiated
neutrophil population while the other one reverted back
toward the undifferentiated promyelocytic state. The list
of genes differentially expressed between these two popu-
lations (see Supplementary Data for details), potentially
relevant for the neutrophil differentiation process, was
used to expand our original HL60 gene regulatory
network constructed using only genes differentially ex-
pressed between the undifferentiated promyelocytic and
differentiated neutrophil states. Notice that genes differ-
entially expressed according to the experiment performed
by Huang et al. (3) constitute a comparison between two
populations of cells in transient states, and they cannot be
considered differentially expressed genes between the two
stable phenotypes (HL60 and neutrophils). To illustrate
the integration of the two experiments used to construct
the HL60 expanded example we included the
Supplementary Figure S11.

This procedure allowed us to add six new genes and 15
new interactions (seven activations and eight inhibitions),
four (ORM1, CCNE1, TRH and PLK1) from the new list
of genes and two (CDKN1A and CAST) from the original
list of differentially expressed genes between the undiffer-
entiated promyelocytic and differentiated neutrophil
states, that can be included in the gene regulatory
network now thanks to the connectivity with the other
four new genes (see Table 3 and Figure 8a and b). After
computing the attractors of this expanded network using
the Boolean model with the synchronous updating scheme
we obtained only one steady state or fixed point with all
the genes in ‘OFF’ but CAST, PLK1 and TRH. Clearly
this network is not suitable to describe a system with at
least two steady states or fixed points

Once we have this expanded HL60 gene regulatory
network with 24 nodes and 54 interactions (44 activations
and 10 inhibitions) our algorithm was applied to prune the
network and predict the values of the newly added genes
(see Table 3 and Figure 8c and d).

The consistency of the predictions between different
pruned networks was very high (Table 2) due to the fact
that the attractors are practically identical for all the
networks, with highest prediction scores always> 0.66, ac-
cording to the definition given in the ‘Materials and
Methods’ section, meaning that at least 66% of the
optimized pruned networks gave the same prediction for
any given gene. Discrepancies in the attractors are repre-
sented in Table 3 (in bold).

Interestingly, the predicted expression for three of these
four new genes, ORM1, CCNE1 and PLK1 is consistent
with the expression profile of the population of stimulated
promyelocytic cells that are going to differentiate to neu-
trophils in the experiment performed by Huang et al. (3)
where ORM1 is upregulated and CCNE1 and PLK1 are
downregulated. There is a discrepancy between this ex-
periment and our prediction concerning to TRH, which
is upregulated in the experiment but downregulated in the
predictions.

We also performed and experiment on the HL60
expanded network to test if not only the steady states
but also the network response under perturbation
(change of expression values) of specific genes are consist-
ent for different optimized pruned networks. Interestingly,
in the six top-scored pruned networks CASP1, IRF1 and
IL1B were the genes able to trigger the transition from the
HL60 to the neutrophil phenotype when perturbed. The
perturbation of remaining genes failed to cause such a
transition. These simulations showed that despite the dif-
ferences in topology between different optimized pruned
networks, the response under specific perturbations were
consistent. These three triggering genes are involved in a
positive circuit without incoming edges but with a number
of genes directly or indirectly regulated by them, so they
constitute a ‘head’ of regulation in a network that resem-
bles the ‘medusa model’ described by Kauffman (34). In
particular, IRF1 has been reported as an inductor of the
myeloid differentiation of HL60 cells (35), which consti-
tutes an experimental validation of the key role played by
this gene in HL60 differentiation processes.
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More details about these simulations and tables with the
results are available in the Supplementary Information
and Supplementary File SII, respectively.

EMT
The network expansion allowed us to add five new genes
(BMP4, CTNNB1, EP300, TGFB1 and TP53) and 53 new
interactions (42 activations and 11 inhibitions). Once we
have this expanded EMT gene regulatory network with 50
nodes and 182 interactions (134 activations and 48 inhib-
itions) our algorithm was applied to prune the network
and predict the values of the newly added genes. Three of
these five genes, BMP4, CTNNB1 and EP300 were pre-
dicted as upregulated, invariant ‘OFF’ and invariant

‘OFF’, respectively, with highest prediction scores
always >0.66, according to the definition given in the
‘Materials and Methods’ section, meaning that at least
66% of the optimized pruned networks gave the same
prediction for any given gene. TGFB1 and TP53 were
classified as ‘unknown’ due to discrepancies in its predic-
tions within the family of optimized pruned networks. In
both cases 50% of the pruned networks classified these
genes as upregulated and the other 50% as invariant
‘ON’. Details about results are included in the
Supplementary Information.
The prediction of BMP4 as upregulated is consistent

with previously published work (36) where BMP4 was
reported as an inducer of the epithelial–mesenchymal

Table 3. HL60 expanded example

Genes Phenotypes Computed attractors of the alternative pruned networks Predictions Prediction scores

1&2 #0 #1 #2 #3 #4 #5 UP DOWN ON OFF UNK

CASP1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 UP 1 0 0 0 0
CAST 0 1 0 1 0 1 1 0 1 1 0 1 0 1 UP 0.6667 0.1667 0.1667 0 0
CCL2 0 1 0 1 0 1 0 1 0 1 0 0 0 1 UP 0.8333 0 0 0.1667 0
CCL3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 UP 1 0 0 0 0
CCNE1 – – 1 0 1 0 1 0 0 0 1 0 1 0 DOWN 0 0.8333 0 0.1667 0
CD55 0 1 0 1 0 1 0 1 0 1 0 1 0 1 UP 1 0 0 0 0
CDKN1A 0 1 0 1 0 1 0 1 0 0 0 1 0 1 UP 0.8333 0 0 0.1667 0
CEBPD 0 1 0 1 0 1 0 1 0 1 0 1 0 1 UP 1 0 0 0 0
CR1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 UP 0.8333 0 0 0.1667 0
CXCR4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 UP 1 0 0 0 0
FCGR2B 0 1 0 1 0 1 0 1 0 1 0 1 0 1 UP 1 0 0 0 0
IL1B 0 1 0 1 0 1 0 1 0 1 0 1 0 1 UP 1 0 0 0 0
IL8 0 1 0 1 0 1 0 1 0 0 0 1 0 1 UP 0.8333 0 0 0.1667 0
IRF1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 UP 1 0 0 0 0
ITGAM 0 1 0 1 0 1 0 1 0 1 0 1 0 1 UP 1 0 0 0 0
NCF1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 UP 1 0 0 0 0
NCF2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 UP 1 0 0 0 0
NFKBIA 0 1 0 1 0 1 0 1 0 1 0 1 0 1 UP 1 0 0 0 0
ORM1 – – 0 1 0 1 0 1 0 1 0 1 0 1 UP 1 0 0 0 0
PLK1 – – 1 0 1 0 1 0 1 1 0 0 1 0 DOWN 0 0.6667 0.1667 0.1667 0
S100A8 0 1 0 1 0 1 0 1 0 0 0 1 0 1 UP 0.8333 0 0 0.1667 0
S100A9 0 1 0 1 0 1 0 1 0 1 0 1 0 0 UP 0.8333 0 0 0.1667 0
SERPINA1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 UP 1 0 0 0 0
TRH – – 1 0 1 0 1 0 1 0 1 0 1 0 DOWN 0 1 0 0 0

The table shows the computed attractors for the six best optimized pruned networks, the predicted expression values and the confidence scores.
All predictions obtained high confidence scores that reflect a good consensus in the attractors of different optimized pruned networks. Discrepancies
in the attractors are represented in bold. Genes without experimental expression values are highlighted in grey.

Table 2. Gene regulatory networks of three expanded examplesa

Network properties HL60–neutrophils
expanded

EMT
expanded

MPC–osteoblast
expanded

Number of nodes 24 50 73
Number of edges 54 182 193

Activations 44 134 134
Inhibitions 10 48 72

Feed-back loops (circuits)
Positive 8 1533 1771
Negative 3 1566 1802

Feed-forward loops (up to 5 nodes) 829 46 807 3009

aHL60–neutrophil differentiation network, epithelial–mesenchymal transition network, MPC-osteoblast differentiation network. Information about
number of nodes, edges, circuits and feed-forward loops is shown in the table.
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transition. CTNNB1 has been reported as downregulated
by activation of TRKB in the context of EMT-like trans-
formation (37). Although we predict CTNNB1 gene as
invariant ‘OFF’ and not downregulated, the result is con-
sistent with the absence of activity of this gene. Ep300 has
been reported as involved in a regulatory mechanism
regulating the transcriptional suppressor/activator role
of ZEB1 in the epithelial–mesenchymal transition (38),
acting as a cofactor for ZEB1 and causing the shift
towards epithelial characteristics. These mechanisms are
consistent with our prediction of Ep300 as inactive in
the opposite transition from epithelial to mesenchymal.

MPC
The network expansion allowed us to add six new genes
(BCL2, CTNNB1, IL6, JUN, TGFB1 and TP53) and 70
new interactions (49 activations and 21 inhibitions.
Interestingly, three of these six genes were also included
in the expansion of the EMT example. Once we have this
expanded MPC gene regulatory network with 73 nodes
and 193 interactions (134 activations and 72 inhibitions)
our algorithm was applied to prune the network and
predict the values of the newly added genes. Five of
these six genes, CTNNB1, IL6, JUN, TGFB1 and TP53
were predicted as invariant ‘OFF’, upregulated, invariant
‘OFF’, upregulated and invariant ‘OFF’, respectively,
with highest prediction scores always >0.5, according to

the definition given in the ‘Materials and Methods’
section, meaning that at least 50% of the optimized
pruned networks gave the same prediction for any given
gene. BCL2 was classified as ‘unknown’ due to
discrepancies in its predictions within the family of
optimized pruned networks. A 50% of the pruned
networks classified this gene as upregulated and the
other 50% as invariant ‘ON’. Details about results are
included in the Supplementary Information. The predicted
upregulation of IL6 during the osteoblast differentiation
process is consistent with previously published works
about the role of IL6 and its receptor (39). The predicted
inactive state of TP53 is also consistent with previously
published works (40) where TP53-null osteoprogenitor
cells have increased osteoblast maturation. TGFB1 has
been reported as osteoblastic cell proliferation inductor
(41), a description consistent with the predicted
upregulation.

Impact of removed interactions on the match with
expression values

To get some insights about the effect on the networks of
interactions removed during the pruning process we
re-introduced some of the least frequent interactions in
the final population of optimized pruned networks. In
the case of the HL60, re-introducing two interactions

Figure 8. (a) HL60 network. Genes in red are upregulated according to experimental expression values (b) HL60 expanded network. Genes in red
and grey are upregulated and unknown, respectively. Six new genes and 15 new interactions (seven activations and eight inhibitions) were added: four
(ORM1, CCNE1, TRH and PLK1) from the new list of genes and two (CDKN1A and CAST) from the original list of differentially expressed genes
between the undifferentiated promyelocytic and differentiated neutrophil states. (c) Genes in pale red and pale blue correspond with genes predicted
as upregulated and downregulated, respectively. (d) Prediction scores of HL60 expanded network.
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that were systematically removed in the pruning process
produced a dramatic decrease in the match with expres-
sion data from 98.6% to 61.05%. In the case of EMT, the
re-introduction of the 10 least frequent interactions within
the optimized pruned networks led to a decrease in the
match with expression data from 66.5% to 63.3%.
Finally, in the MPC example the re-introduction of the
ten least frequent interactions within the optimized
pruned networks decreased the match with expression
data from 57.5% to 55.8%. Details about re-introduced
interactions and scores are included in the Supplementary
Information. As we can see, the removal of these inter-
actions during the pruning process allows us to construct
network that better explain the experimental expression
values, increasing the reliability of the predictions.

DISCUSSION

Here we propose a method that enables us to generate
optimized pruned networks from literature to predict ex-
pression values of a fraction of genes in a network based
on the knowledge of experimental stable gene expression
values of the remaining genes in the network. This
approach, which in particular searches for optimal popu-
lations of solutions of pruned networks, overcomes the
limitations of classic optimization techniques that try to
improve a single solution exploring a limited portion of
the solution space. This allows detecting alternative
pruned network solutions caused by the multiplicity in
network connectivity, which increases the probability of
achieving a global optimum that best fits theoretical gene
expression values to the experimental ones. It is worth
noting that the full agreement between experimental and
predicted gene expression values is limited by lack of in-
formation on network connectivity.

In order to validate our method, we selected three
examples (HL60–neutrophil differentiation, Epithelial–
Mesenchymal transition, Mesodermal progenitor–
Osteoblast differentiation) and showed the method
performance in each case. Results show a good consist-
ency between predicted and experimentally validated gene
expression values. Moreover, we expanded the HL60 gene
regulatory network with genes with no experimental gene
expression values in order to demonstrate the utility of our
method. Predicted expression values for these genes were
shown to be consistent with independent experimental
results. In addition, we carried out an in silico perturb-
ation analysis of each gene corresponding to this
expanded HL60 gene regulatory network and found a
consistency in genes triggering the HL60-neutrophil dif-
ferentiation. In particular, IRF1 has been reported as
inductor of the myeloid differentiation of HL60 cells
(35), which constitutes an experimental validation of the
key role played by this gene in HL60 differentiation
processes.

A possible extension of the current method could
consider not only the existence of steady states but also
cyclic stable states, which would require the existence of
negative circuits. Such an extended method could be

applied to gene regulatory network inference in biological
systems with oscillatory behavior, such as cell cycles.
In summary, the presented method constitutes a useful

tool for predicting missing or noisy gene expression
values, and therefore can be used for curating experimen-
tal gene expression data and can help with data analysis,
modeling and prediction.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Information, Supplementary Files I–V
and Supplementary References [10–14, 27–32,42–50].

ACKNOWLEDGEMENTS

I,C., A,K., A.L.B. and A.dS. participated in the design of
the method and drafted the manuscript. IC constructed
the network data. I.C. and A.K. implemented the algo-
rithms and performed data analysis. ALB coordinated the
study. A.dS. conceived of the study, participated in its
design and coordination, and supervised the project.

FUNDING

Funding for open access charge: Luxembourg Centre for
Systems Biomedicine (LCSB) and Life Sciences Research
unit (LSRU), University of Luxembourg.

Conflict of interest statement. None declared.

REFERENCES

1. Carro,M.S., Lim,W.K., Alvarez,M.J., Bollo,R.J., Zhao,X.,
Snyder,E.Y., Sulman,E.P., Anne,S.L., Doetsch,F., Colman,H.
et al. (2010) The transcriptional network for mesenchymal
transformation of brain tumours. Nature, 463, 318–325.

2. Margolin,A.A., Nemenman,I., Basso,K., Wiggins,C.,
Stolovitzky,G., Dalla Favera,R. and Califano,A. (2006)
ARACNE: an algorithm for the reconstruction of gene regulatory
networks in a mammalian cellular context. BMC Bioinformatics,
7(Suppl. 1), S7.

3. Huang,A.C., Hu,L., Kauffman,S.A., Zhang,W. and Shmulevich,I.
(2009) Using cell fate attractors to uncover transcriptional
regulation of HL60 neutrophil differentiation. BMC Syst.
Biol., 3, 20.

4. Sachs,K., Perez,O., Pe’er,D., Lauffenburger,D.A. and Nolan,G.P.
(2005) Causal protein-signaling networks derived from
multiparameter single-cell data. Science, 308, 523–529.

5. Nelander,S., Wang,W., Nilsson,B., She,Q.B., Pratilas,C.,
Rosen,N., Gennemark,P. and Sander,C. (2008) Models from
experiments: combinatorial drug perturbations of cancer cells.
Mol. Syst. Biol., 4, 216.

6. Gat-Viks,I. and Shamir,R. (2003) Chain functions and scoring
functions in genetic networks. Bioinformatics, 19(Suppl. 1),
i108–i117.

7. Saez-Rodriguez,J., Alexopoulos,L.G., Epperlein,J., Samaga,R.,
Lauffenburger,D.A., Klamt,S. and Sorger,P.K. (2009) Discrete
logic modelling as a means to link protein signalling networks
with functional analysis of mammalian signal transduction.
Mol. Syst Biol., 5, 331.

8. Gat-Viks,I., Tanay,A. and Shamir,R. (2004) Modeling and
analysis of heterogeneous regulation in biological networks.
J. Comput. Biol. J. Comput. Mol. Cell Biol., 11, 1034–1049.

9. Layek,R.K., Datta,A. and Dougherty,E.R. (2011) From biological
pathways to regulatory networks. Mol. bioSyst., 7, 843–851.

PAGE 17 OF 18 Nucleic Acids Research, 2013, Vol. 41, No. 1 e8

http://nar.oxfordjournals.org/cgi/content/full/gks785/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks785/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks785/DC1


10. Kauffman,S.A. (1969) Metabolic stability and epigenesis in
randomly constructed genetic nets. J. Theor. Biol, 22, 437.

11. Kauffman,S.A. (1993) The Origins of Order. Oxford University
Press, New York, 1993.

12. Huang,S., Eichler,G., Bar-Yam,Y. and Ingber,D.E. (2005) Cell
fates as high-dimensional attractor states of a complex gene
regulatory network. Phys Rev. Lett., 94, 128701.

13. Garg,A., Di Cara,A., Xenarios,I., Mendoza,L. and De Micheli,G.
(2008) Synchronous versus asynchronous modeling of gene
regulatory networks. Bioinformatics, 24, 1917–1925.

14. Garg,A., Xenarios,I., Mendoza,L. and DeMicheli,G. (2007) An
efficient method for dynamic analysis of gene regulatory networks
and in silico gene perturbation experimentsresearch in
computational molecular biology. In: Speed,T. and Huang,H.
(eds), Lecture Notes in Computer Science, Vol. 4453. Springer
Berlin, Heidelberg, pp. , pp–76.

15. Mussel,C., Hopfensitz,M. and Kestler,H.A. (2010) BoolNet–an R
package for generation, reconstruction and analysis of Boolean
networks. Bioinformatics, 26, 1378–1380.

16. Gonzalez,A.G., Naldi,A., Sanchez,L., Thieffry,D. and
Chaouiya,C. (2006) GINsim: a software suite for the qualitative
modelling, simulation and analysis of regulatory networks. Bio
Systems, 84, 91–100.

17. Thomas,R., Thieffry,D. and Kaufman,M. (1995) Dynamical
behavior of biological regulatory networks.1. Biological role of
feedback loops and practical use of the concept of the
loop-characteristic state. Bull. Mathemat. Biol., 57, 247–276.

18. Armananzas,R., Inza,I., Santana,R., Saeys,Y., Flores,J.L.,
Lozano,J.A., Van de Peer,Y., Blanco,R., Robles,V., Bielza,C.
et al. (2008) A review of estimation of distribution algorithms in
bioinformatics. BioData mining, 1, 6.

19. Mendoza,L. and Xenarios,I. (2006) A method for the generation
of standardized qualitative dynamical systems of regulatory
networks. Theor. Biol. Med. Modelling, 3, 13.

20. Garg,A., Mendoza,L., Xenarios,I. and DeMicheli,G. (2007)
Modeling of multiple valued gene regulatory networks. Conference
proceedings: Annual International Conference of the IEEE Engineering
in Medicine and Biology Society IEEE Engineering in Medicine and
Biology Society Conference 2007, Lyon, France, pp. 1398–1404.

21. Thomas,R. (1998) Laws for the dynamics of regulatory networks.
Int. J. Dev. Biol., 42, 479–485.

22. Mendelson,E. (1970) Schaum’s Outline of Boolean Algebra and
Switching Circuits. McGraw-Hill, New York.

23. Speed,T.H.H. (2007) Regulatory networks and in-silico gene
perturbation experiments. Research in Computational Molecular
Biology. Springer Berlin, Heidelberg, pp. 62–76. Lect. Notes
Comput. Sci., 4453, 62–76.

24. Johnson,D.B. (1975) Finding all the elementary circuits of a
directed graph. SIAM J. Comput., 4, 77–84.

25. Le Bechec,A., Zindy,P., Sierocinski,T., Petritis,D., Bihouee,A.,
Le Meur,N., Leger,J. and Theret,N. (2008) M@IA: a modular
open-source application for microarray workflow and integrative
datamining. In Silico Biol., 8, 63–69.

26. Di Cara,A., Garg,A., De Micheli,G., Xenarios,I. and Mendoza,L.
(2007) Dynamic simulation of regulatory networks using SQUAD.
BMC Bioinformatics, 8, 462.

27. Gallagher,R., Collins,S., Trujillo,J., McCredie,K., Ahearn,M.,
Tsai,S., Metzgar,R., Aulakh,G., Ting,R., Ruscetti,F. et al. (1979)
Characterization of the continuous, differentiating myeloid cell
line (HL-60) from a patient with acute promyelocytic leukemia.
Blood, 54, 713–733.

28. Mollinedo,F., Lopez-Perez,R. and Gajate,C. (2008) Differential
gene expression patterns coupled to commitment and acquisition
of phenotypic hallmarks during neutrophil differentiation of
human leukaemia HL-60 cells. Gene, 419, 16–26.

29. Vetter,G., Le Bechec,A., Muller,J., Muller,A., Moes,M.,
Yatskou,M., Al Tanoury,Z., Poch,O., Vallar,L. and Friederich,E.
(2009) Time-resolved analysis of transcriptional events during
SNAI1-triggered epithelial to mesenchymal transition. Biochem.
Biophys. Res. Commun., 385, 485–491.

30. Qi,H., Aguiar,D.J., Williams,S.M., La Pean,A., Pan,W. and
Verfaillie,C.M. (2003) Identification of genes responsible for
osteoblast differentiation from human mesodermal progenitor
cells. Proc. Natl Acad. Sci. USA, 100, 3305–3310.

31. Novichkova,S., Egorov,S. and Daraselia,N. (2003) MedScan, a
natural language processing engine for MEDLINE abstracts.
Bioinformatics, 19, 1699–1706.

32. Daraselia,N., Yuryev,A., Egorov,S., Novichkova,S., Nikitin,A. and
Mazo,I. (2004) Extracting human protein interactions from
MEDLINE using a full-sentence parser. Bioinformatics, 20, 604–611.

33. Liekens,A.M., De Knijf,J., Daelemans,W., Goethals,B., De
Rijk,P. and Del-Favero,J. (2011) BioGraph: unsupervised
biomedical knowledge discovery via automated hypothesis
generation. Genome Biol., 12, R57.

34. Kauffman,S. (2004) A proposal for using the ensemble approach
to understand genetic regulatory networks. J. Theor. Biol., 230,
581–590.

35. Shen,M., Bunaciu,R.P., Congleton,J., Jensen,H.A., Sayam,L.G.,
Varner,J.D. and Yen,A. (2011) Interferon regulatory factor-1
binds c-Cbl, enhances mitogen activated protein kinase signaling
and promotes retinoic acid-induced differentiation of HL-60
human myelo-monoblastic leukemia cells. Leukemia Lymphoma,
52, 2372–2379.

36. Molloy,E.L., Adams,A., Moore,J.B., Masterson,J.C., Madrigal-
Estebas,L., Mahon,B.P. and O’Dea,S. (2008) BMP4 induces an
epithelial-mesenchymal transition-like response in adult airway
epithelial cells. Growth Factors, 26, 12–22.

37. Smit,M.A., Geiger,T.R., Song,J.Y., Gitelman,I. and Peeper,D.S.
(2009) A twist-snail axis critical for TrkB-induced
epithelial-mesenchymal transition-like transformation, anoikis
resistance, and metastasis. Mol. Cell. Biol., 29, 3722–3737.

38. Mizuguchi,Y., Specht,S., Lunz,J.G. 3rd, Isse,K., Corbitt,N.,
Takizawa,T. and Demetris,A.J. (2012) Cooperation of p300 and
PCAF in the control of microRNA 200c/141 transcription and
epithelial characteristics. PloS One, 7, e32449.

39. Li,Y., Backesjo,C.M., Haldosen,L.A. and Lindgren,U. (2008) IL-6
receptor expression and IL-6 effects change during osteoblast
differentiation. Cytokine, 43, 165–173.

40. Lengner,C.J., Steinman,H.A., Gagnon,J., Smith,T.W.,
Henderson,J.E., Kream,B.E., Stein,G.S., Lian,J.B. and Jones,S.N.
(2006) Osteoblast differentiation and skeletal development are
regulated by Mdm2-p53 signaling. J. Cell Biol., 172, 909–921.

41. Kassem,M., Kveiborg,M. and Eriksen,E.F. (2000) Production and
action of transforming growth factor-beta in human osteoblast
cultures: dependence on cell differentiation and modulation by
calcitriol. Eur. J. Clin. Invest., 30, 429–437.

42. Breitman,T.R., Selonick,S.E. and Collins,S.J. (1980) Induction of
differentiation of the human promyelocytic leukemia cell line
(HL-60) by retinoic acid. Proc. Natl Acad. Sci. USA, 77, 2936–2940.

43. Collins,S.J., Ruscetti,F.W., Gallagher,R.E. and Gallo,R.C. (1978)
Terminal differentiation of human promyelocytic leukemia cells
induced by dimethyl sulfoxide and other polar compounds.
Proc. Natl Acad. Sci. USA, 75, 2458–2462.

44. McCarthy,D.M., San Miguel,J.F., Freake,H.C., Green,P.M.,
Zola,H., Catovsky,D. and Goldman,J.M. (1983)
1,25-dihydroxyvitamin D3 inhibits proliferation of human
promyelocytic leukaemia (HL60) cells and induces
monocyte-macrophage differentiation in HL60 and normal
human bone marrow cells. Leukemia Res., 7, 51–55.

45. Rovera,G., Santoli,D. and Damsky,C. (1979) Human
promyelocytic leukemia cells in culture differentiate into
macrophage-like cells when treated with a phorbol diester.
Proc. Natl Acad. Sci. USA, 76, 2779–2783.

46. Smoot,M.E., Ono,K., Ruscheinski,J., Wang,P.L. and Ideker,T.
(2011) Cytoscape 2.8: new features for data integration and
network visualization. Bioinformatics, 27, 431–432.

47. Somenzi,C.U.D.D. (2005) CU Decision Diagram Package Release
2.4.1. University of Colorado at Boulder 2005.

48. Tomonaga,M., Golde,D.W. and Gasson,J.C. (1986) Biosynthetic
(recombinant) human granulocyte-macrophage colony-stimulating
factor: effect on normal bone marrow and leukemia cell lines.
Blood, 67, 31–36.

49. Xie AaB,P.A. (1998) Efficient State Classification of Finite State
Markov Chains. Proc of DAC, 1998.

50. Zinovyev,A., Viara,E., Calzone,L. and Barillot,E. (2008) BiNoM:
a Cytoscape plugin for manipulating and analyzing biological
networks. Bioinformatics, 24, 876–877.

e8 Nucleic Acids Research, 2013, Vol. 41, No. 1 PAGE 18 OF 18


