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Background
Osteosarcoma comprises less than 1  % of cancers in the United States, occurring in 
less than 1000 patients per year. It is the most common primary bone tumour in child-
hood and adolescence (Mirabello et  al. 2009a, b). The presence of metastasis confers 
worse prognosis for osteosarcoma affected patients (Meyers et al. 2005). Metastasizing 
tumours partially respond to current therapies and represent the primary cause of can-
cer related mortality (Meyers et al. 2005).

Osteosarcoma includes several pathological entities, comprising of different clini-
cal, radiological, and histological features (Mirabello et al. 2009a, b; Gatta et al. 2005). 
Osteosarcoma arises from a mesenchymal cell that owns or can acquire the ability to 
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produce osteoid (Gorlick et al. 2003; Marina et al. 2010). The complex pathogenesis of 
osteosarcoma includes numerous factors (Gorlick et al. 2003), both genetic abnormali-
ties and environmental exposures, in experimental models as well as in humans (Gorlick 
2009). Many efforts to identify a unifying recurrent event were made, bringing multiple 
genetic risk factors together with epidemiologic and association data. However, despite 
the considerable improvement in the knowledge, the pathogenesis of osteosarcoma is 
largely unknown.

The definition of the number and nature of the signal transduction pathways involved 
in the pathogenesis and the identification of the molecules promoting metastasis spread 
might improve the knowledge of the natural history of osteosarcoma, allowing refine 
the prognosis and opening the way to novel therapeutic strategies. Recently, great inter-
est arose about ezrin a protein belonging to the ezrin–radixin–moesin (ERM) family, 
and related signal transduction pathways (Khanna et al. 2004; Ferrari et al. 2008; Hunter 
2004, Dard et al. 2004; Zhu et al. 2007; Yang et al. 2012; Zhao et al. 2011; Tan and Yang 
2010). Ezrin protein is codified by Vil2 gene (OMIM *123900). The Protein 4.1, ezrin, 
radixin, moesin (FERM) domain (Chishti et al. 1998) of ezrin is involved in the recogni-
tion of Phosphatydil inositol (4,5) bisphosphate (PIP2), a crucial molecule belonging to 
the Phosphoinositide (PI) signal transduction pathway (Gautreau et al1999; Martin 2003; 
Pujuguet et al. 2003; Zhao et al. 2004; Hao et al. 1997; Fievet et al. 2004, 2007). The actin 
binding activity of Ezrin (Defacque et al. 2000, 2002) largely depends on the membrane 
PIP2 levels (Hao et al. 2009). ERM proteins simultaneously bind actin and, by means of 
their N-terminal domains, PIP2 located at the membrane (Niggli and Rossy 2008; Gil-
more and Burridge 1996; Isenberg and Niggli 1998; Nakamura et al. 1999; Eberle et al. 
1990; Dobos et al. 1992; Apgar 1995; Hartwig et al. 1995; Gachet et al. 1997; Gratacap 
et al. 1998). Beside phosphorylation, activation of ERM proteins, was suggested to occur 
after interaction with PIP2, which induces the conformation to open (Gilmore and Bur-
ridge 1996). Both PIP2 binding and phosphorylation are thought to allow the stabili-
zation of ERM proteins or a more efficient binding to their own receptors (Hirao et al. 
1996; Heiska et al. 1998; Legg and Isacke 1998; Nakamura et al. 1999). Increasing evi-
dences indicated that ezrin is involved in osteosarcoma progression and metastasis and 
that the levels of PIP2 play a critical role for its activation.

PIP2, a phosphorylated derivative of phosphatydil inositol mainly located in the inner 
half of the plasma membrane lipid bilayer, is critical for many cellular activities, such as 
endo- and exocytosis, ion channel activity and cell motility. The levels of PIP2 are regu-
lated by means of PI-specific Phospholipase C (PLC) family of enzymes (Berridge and 
Dupont 1994; Divecha and Irvine 1995; Hisatsune et al. 2005; Rhee 2001; Bunney and 
Katan 2011; Fukami et al. 2010).

Activated PLC cleaves PIP2 into inositol trisphosphate (IP3) and diacylglycerol (DAG), 
both crucial molecules in signal transduction (Rhee et  al. 1991). IP3 induces calcium 
release. DAG can be further cleaved to release arachidonic acid (Tang et  al. 2005) or 
can activate serine/threonine calcium-dependent protein kinase C enzymes (PKC), also 
influenced by the IP3-induced calcium increase.

The mammalian PLC family comprises a related group of complex, modular, multi-
domain enzymes which cover a broad spectrum of regulatory interactions, including 
direct binding to G protein subunits, small GTPases from Rho and Ras families, receptor 
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and non-receptor tyrosine kinases and lipid components of cellular membranes (Rhee 
et  al. 1991). PLC enzymes are thirteen isoforms classified on the basis of amino acid 
sequence, domain structure and mechanism of recruitment into six subfamilies: β(1–4), 
γ(1–2), δ(1, 3, 4), ε(1), ζ(1), and η(1–2) (Suh et al. 2008).

The activity of PLC is required for chemokine mediated dissociation of ERM pro-
teins from the membrane (Brown et al. 2011). Previous studies had placed selected PLC 
enzymes at the convergence point for the broad range of signalling pathways that pro-
mote Rho and Ras GTPase mediated signalling (Hao et al. 2009; Lo Vasco et al. 2015), 
which also contributes to the regulation of ezrin metabolism. In our previous reports 
we suggested that the RasGTPases network ezrin involving the PLC enzymes (Lo Vasco 
et al. 2015).

In our previous reports, we identified the panel of expression of PLC enzymes (Lo 
Vasco et al. 2013) and analyzed the effect of ezrin silencing or PLCE isoform silencing 
upon selected osteosarcoma cell lines (Lo Vasco et al. 2014a, b).

In the present experiments, we analyzed the PLC signal transduction system in cul-
tured human osteosarcoma MG-63 cells. MG-63 cell line is commonly used as an exper-
imental model for human osteoblasts, presenting with low levels of alkaline phosphatase 
activity, and PTH unresponsive adenylate cyclase (Fukayama and Tashjian Jr. 1990).

We treated MG-63 cells with U-73122 (1-[6-[[17b-3-methoxyestra-1,3,5(10)-trien-
17-yl]amino]exyl]-1H-pyrrole-2,5-dione), a widely used PLC enzyme inhibitor that 
probably also acts upon the gene regulation (Lo Vasco et al. 2010a, 2013 os1). U-73343 
[1-(6-((17-beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-2,5-pyrrolidinedione], 
a structural analogue of U73122, with negligible activity as a PLC inhibitor, was used as 
a control compound (Heemskerk et al. 1997). We silenced Vil2 using siRNA methodol-
ogy (Lo Vasco et al. 2014a). We evaluated all those treatments upon the MG-63 viabil-
ity, in order to investigate the role of PLC inhibition upon cell growth and survival. As 
U-73122 is not water soluble and it used to be dissolved in dimethyl sulfoxide (DMSO), 
we evaluated the effects of DMSO alone upon cultures. We also evaluated the mor-
phological changes occurring in MG-63 after different treatments and investigated the 
localization and sub-cellular distribution of PLC isoforms within untreated and U-73122 
treated MG-63 cell.

Methods
Cell culture

MG-63 human osteosarcoma cell line was obtained from the American Type Culture 
Collection (ATCC, Rockville, MD, USA). Cells were counted using a Neubauer haemo-
cytometer and a phase contrast microscope. Cells were grown at 37 °C with 5 % of CO2 
in Dulbecco’s minimum essential medium (Sigma) supplemented with 10 % fetal bovine 
serum (GIBCO), penicillin (100 μg/ml), streptomycin (100 U/ml) and sodium pyruvate. 
Cells were grown for 24 h, reaching a confluence of around 40–60 %, and until conflu-
ence (reached from 72 to 96 h). U-73122 (Sigma-Aldrich) was addicted solved in DMSO 
(Takenouchi et al. 2005; Lo Vasco et al. 2011).

The initial number of cells (time 0) was 250.000 for each experiment of growth curve 
assessment. The number of cells for molecular biology experiments was 1 × 106 cells/
each experiment. Each experiment was repeated at least three times.
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Cells were grown under different conditions. Cells were grown respectively 24 h: (1st) 
without treatment, with addiction to the culture medium of respectively (2nd) DMSO 
(3th) 10  μΜ of U-73122, (4th) 10  μM U-73343 (Sigma-Aldrich), (5th) 1  μM U-73122. 
Untreated cells were also grown (6th) until the confluence was reached (range 72–96 h). 
Analyses of cultures was performed, both in treated and untreated cells, in the beginning 
of experiment (time 0), after 1, 3, 6, 24 h and at confluence for PCR experiments; after 
18 and 24 h for morphology experiments. Experiments were independently repeated at 
least 3 times for each isoform.

Cell survival Trypan blue test

Cells suspension was diluted 1:1 in 0.4 % Trypan blue staining (Sigma Aldrich, Dorset, 
UK) for survival quantification. Viable cells were counted using a Neubauer haemocy-
tometer and a phase contrast microscope. The following equation was used to calculate 
the total number of viable cells in 1 ml suspension: number of total viable cells in 1 ml 
(TC) = x̄ ∗ 2 ∗ 104 (x̄ = average of the cell counts from the squares of the haemocytom-
eter grid, 2 = dilution factor 1:1). The number of live cells was used to determine the 
growth rate and experiments were repeated three times.

Cells transfection for ezrin silencing

MG63 cells were transiently transfected with ezrin silencing RNA using METAFECT-
ENE SI+ (Biontex Laboratories GmbH, Munich, Germany). siRNA sequences targeting 
Ezrin and negative control siRNA, were designed and synthesized by Invitrogen (Life 
Technologies, Foster City, CA, USA). The siRNA was designed according to Ezrin com-
plementary DNA (cDNA) sequence (EZR Gene ID: 7430). Briefly, 2.2 ml cell suspension 
were prepared in complete cell culture medium with a concentration of 1.5 × 105 cells/
ml. Cells were seeded, in 6-well plates, shortly before the addition of the lipoplex, 
according to the manufacturer’s instructions. Then cells were incubated under normal 
culture conditions (37  °C in CO2–containing atmosphere) until the lipoplex addition. 
Before transfection, 150 µl of 1× SI+ buffer were mixed with 72 µl of METAFECTENE® 
SI+ and 540 pMol of RNA stock solution. The mixture was incubated for 15  min at 
room temperature and then added to the cells in 1 h from seeding. Cells were incubated 
72 h. Functional siRNA was measured by reverse transcription–polymerase chain reac-
tion (RT-PCR) and western blot analysis 24, 48 and 72 h after tranfection.

RNA extraction

After all the above indicated treatment procedures and times, cells were detached and 
suspended using TRIzol reagent (Invitrogen Corporation, Carlsbad, CA). Total RNA was 
extracted with a SV Total RNA Isolation System (Promega, Madison, WI, USA) accord-
ing to the manufacturer’s instructions. The concentration and purity of the obtained 
RNA was checked using a NanoDrop ND-1000 Spectrophotometer (Thermo Fisher Sci-
entific, Inc. USA).

RT‑PCR

RNA was reverse-transcribed into cDNA using High-Capacity cDNA Reverse Tran-
scription Kit (Life Technologies, Foster City, CA, USA) following manufacturer’s 
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indications. The RNA mix was then amplified for 10 min at 25 °C, 120 min at 37 °C and 
5 min at 85 °C in a Gene Amp® PCR System 9700 (Applied Biosystems) thermocycler.

Glyceraldehyde 3 phosphate dehydrogenase (GAPDH) was used as positive control 
(Bio Basic Inc, Amherst, New York, USA). The primer pairs (Bio Basic Inc, Amherst, 
New York, USA) for each PLC isoform, GAPDH and Vil2 gene are listed in Table 1. The 
specificity of the primers was verified by searching in the NCBI database for possible 
homology to cDNAs of unrelated proteins. RNA samples were also amplified by PCR 
without RT to exclude possible contamination.

Standard analytical PCR reaction was performed with GoTaq Master Mix (Promega) 
following manufacturer’s instructions. Cycling conditions were performed with 95  °C 
initial denaturation step for 1 min was followed by 40 cycles consisting of 95 °C dena-
turation (30 s), annealing (30 s) at the appropriate temperature for each primer pair and 
72 °C extension (1 min) in Gene Amp® PCR System 9700 (Applied Biosystems) thermo-
cycler. Amplified PCR products were analysed by 1.5 % TAE ethidium bromide-stained 
agarose gel electrophoresis (Agarose Gel Unit, Bio-Rad Laboratories S.r.l., Segrate, IT). 
A PC-assisted CCD camera (GelDoc 2000 System/Quantity One Software; Bio-Rad) was 
used for gel documentation and quantification. Optical densities were normalized to the 
mRNA content of GAPDH.

RNA samples were also amplified by PCR without RT. No band was observed, exclud-
ing DNA contamination during the procedure (data not shown). Experiments were inde-
pendently repeated at least 3 times for each isoform.

Table 1 PCR primers

PI-PLC β1 (PLCB1; OMIM *607120) Forward 5′-AGCTCTCAGAACAAGCCTCCAACA-3′
Reverse 5′-ATCATCGTCGTCGTCACTTTCCGT-3′

PI-PLC β2 (PLCB2; OMIM *604114) Forward 5′-AAGGTGAAGGCCTATCTGAGCCAA-3′
Reverse 5′-CTTGGCAAACTTCCCAAAGCGAGT-3′

PI-PLC β3 (PLCB3; OMIM *600230) Forward 5′-TATCTTCTTGGACCTGCTGACCGT-3′
Reverse 5′-TGTGCCCTCATCTGTAGTTGGCTT-3′

PI-PLC β4 (PLCB4; OMIM *600810) Forward 5′-GCACAGCACACAAAGGAATGGTCA-3′
Reverse 5′-CGCATTTCCTTGCTTTCCCTGTCA-3′

PI-PLC γ1 (PLCG1; OMIM *172420) Forward 5′-TCTACCTGGAGGACCCTGTGAA-3′
Reverse 5′-CCAGAAAGAGAG CGTGTAGTCG-3′

PI-PLC γ2 (PLCG2; OMIM *600220) Forward 5′-AGTACATGCAGATGAATCACGC-3′
Reverse 5′-ACCTGAATCCTGATTTGACTGC-3′

PI-PLC δ1 (PLCD1; OMIM *602142) Forward 5′-CTGAGCGTGTGGTTCCAGC-3′
Reverse 5′-CAGGCCCTCGGACTGGT-3′

PI-PLC δ3 (PLCD3; OMIM *608795) Forward 5′-CCAGAACCACTCTCAGCATCCA-3′
Reverse 5′-GCCA TTGTTGAGCACGTAGTCAG-3′

PI-PLC δ4 (PLCD4; OMIM *605939) Forward 5′-AGACACGTCCCAGTCTGGAACC- 3′
Reverse 5′-CTGCTTCCTCTTCCTCATATTC- 3′

PI-PLC ε (PLCE; OMIM *608414) Forward 5′-GGGGCCACGGTCATCCAC-3′
Reverse 5′-GGGCCTTCATACCGTCCATCCTC-3′

PI-PLC η1 (PLCH1; OMIM *612835 Forward 5′-CTTTGGTTCGGTTCCTTGTGTGG-3′
Reverse 5′-GGATGCTTCTGTCAGTCCTTCC-3′

PI-PLC η2 (PLCH2; OMIM *612836) Forward 5′-GAAACTGGCCTCCAAACACTGCCCGCCG-3′
Reverse 5′-GTCTTGTTGGAGATGCACGTGCCCCTTGC-3′

Glyceraldehyde 3 phosphate dehydrogenase (GAPDH) Forward 5′-CGAGATCCCTCCAAAATCAA-3′
Reverse 5′-GTCTTCTGGGTGGCAGTGAT-3′
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Real‑time PCR

Gene expression of Ezrin, PLC ε, PLC γ2, PLC δ4 were determined by real-time PCR 
using the 7500 Real-Time PCR instrument from Applied Biosystems™. TaqMan® prim-
ers and probes for each gene, as well as the GAPDH reference gene, were obtained from 
Applied Biosystems™.

Transfected MG63 cells and normal controls were harvested 24, 48 and 72  h after 
transfection. The messenger RNA (mRNA) expression of Ezrin, PLC ε, PLC γ2, PLC δ4 
was determined by Real-Time PCR. Total RNA was extracted with a SV Total RNA Isola-
tion System (Promega, Madison, WI, USA) according to the manufacturer’s instructions. 
We confirmed purity and quantity of RNA by NanoDrop ND-1000 Spectrophotometer 
(Thermo Fisher Scientific, Inc. USA). The RNA was reverse transcribed into cDNA with 
High Capacity cDNA Reverse Transcription Kit (Life Technologies, Foster City, CA, 
USA).

PCR products were detected using gene-specific primers and probes labeled with 
reporter day FAM which yielded a predicted amplicons of 82, 84, 61, 78, 64, 93 and 62 
base pairs respectively; glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used 
as an internal standard, which yielded a predicted amplicon of 58 base pairs. Reaction 
mixtures for all gene expression assays contained: 5 μl TaqMan® mastermix (2×; Applied 
Biosystems™), 0.5 μl gene of interest primer/probe mix and 1 μl PCR grade water. To 
each reaction, 3.5 μl of the diluted cDNA (35 ng) were added. All samples were assayed 
in triplicate. PCR reaction was carried out in triplicate on 96-well plate with 10 μl per 
well using 1× TaqMan Master Mix. After an incubation for 2 min at 50 °C and 10 min at 
95 °C, the reaction continue for 40 cycles at 95 °C for 15 s and 60 °C for 1 min. At the end 
of the reaction, the results were evaluated using the ABI PRISM 7500 software. For each 
sample, ΔCt value was calculated as Ct of the target gene minus Ct of the endogenous 
gene. Subsequently, for each sample, ΔΔCt value was calculated as ΔCt of the sample 
minus ΔCt of the control sample. Relative quantification was obtained as the mathemati-
cal function 2 − ΔΔCt. Based on these calculations, the control sample has a value of 1, 
taken as 100 %.

Western Blot

Whole-cell lysates (106 cells for each experiment) were prepared by lysing cells in RIPA 
buffer (50 mM Tris pH  =   7.5, NP-40, 0.1 % SDS, 100 mM NaCl, 50 mM NaF, 1 mM 
EDTA) supplemented with a set of protease inhibitors: 10 μg of leupeptin per ml, 10 μg 
of aprotinin per ml, 1 mM sodium benzamidine, and 1 mM phenylmethylsulfonyl flu-
oride. Proteins (50  μg) were separated on 12  % polyacrylamide, 0.1  % SDS gel. Then, 
incubation with a monoclonal antibody specific for each PLC isoform (Santa Cruz, 
CA) followed. Immunoreactive bands were visualized using the enhanced chemilumi-
nescence method. Experiments were independently repeated at least 2 times for each 
isoform.

For PLC β2 and PLC η2, positive controls were used to test the efficacy of primers in 
RT-PCR analyses and of antibodies in Western Blot analyses. For PLC β2 human leu-
cocytes were used as positive controls. For PLC η2, nervous tissue was used as positive 
control.
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Immunofluorescence analysis of subcellular distribution of target molecules

Immunofluorescence localization of all PLC isoforms was performed on coverslips cul-
tured cells with 18 and 24 h U73122 treated cells and untreated control cells. Cells were 
washed three times with PBS and fixed with 4 % paraformaldehyde (PFA) in phosphate 
buffer saline (PBS) for 10 min at 4  °C, followed by three washes with PBS. Cells were 
incubated with primary antibodies diluted in PBS for 1 h at room temperature. Cover-
slips were then incubated with the specific secondary antibody Texas Red or fluorescein-
conjugated for 1 h at room temperature. Cells were washed twice with 1X PBS 5 min, 
then counterstained with 4′,6-diamidino-2-phenylindole (DAPI) fluorescent staining. 
The slides were visualized images were visualized and captured with an Olympus IX50 
inverted fluorescence microscope (Olympus, Tokyo, Japan) and processed using Adobe 
Photoshop 7.0 software.

Statistical analysis

For in vitro studies, differences were determined either with two-way repeated measures 
analysis of variance (ANOVA) (http://www.physics.csbsju.edu/stats/anova_NGROUP_
NMAX_form.html) with Bonferroni’s multiple comparison test, or by student’s one 
tailed t test, using Prism 5.0a software (GraphPad Software, San Diego, CA, USA). A p 
value <0.05 was considered significant.

Results
Cells morphology and growth

Untreated cells reached the confluence after 72–96 h, acquiring the expected morphol-
ogy: cells were oval to spindle-shaped, without branching cell processes. The number 
of Cells treated with 1 μΜ U-73122 was decreased and intercellular adhesion was sub-
sequently reduced; moreover, a little percentage of round cells were countered (5  %) 
after 6 h from treatment. In cultures treated with 10 μΜ U-73122, marked morphology 
changes were observed in MG-63 cells, acquiring round shape.

Untreated cells linearly grew with doubling time about 15 h. After 24 h the number of 
viable cells increased 2.7 folds (Table 2; Fig. 1).

In cultures in which DMSO was added to the culture medium, cells showed a little 
growth slowing down after 1 h from administration of DMSO. However, the number of 
viable cells rapidly increased after 6 h. The number of viable cells increased 1.9 and 2.8 
folds respectively after 1 μΜ and 10 μΜ DMSO. After 24 h from DMSO administration, 
the doubling time was not completely reached with 1 μΜ DMSO, while it was reached 
after 13.5 h (Table 2; Fig. 1).

In cultures in which different concentrations of U-73122 in DMSO was added to the 
culture medium, we observed a significant reduction of the number of viable cells, more 
evident with the highest U-73122 concentration. The number of viable cells after treat-
ment with 1 μΜ U-73122 was reduced after from 1 to 6 h, and increased 1.7 folds after 
24 h (Table 2; Fig. 1).

In cultures in which 10 μΜ U-73343 in DMSO was added to the culture medium, the 
growth linearly increased from 6 to 24 h. After 24 h, the number of live cells increased 
2.5 folds; the doubling time was reached after 16 h (Table 2; Fig. 1).

http://www.physics.csbsju.edu/stats/anova_NGROUP_NMAX_form.html
http://www.physics.csbsju.edu/stats/anova_NGROUP_NMAX_form.html
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Statistical analysis

Mean, standard deviation (SD) and standard error of the mean (SEM) for each cells 
group are indicated in Table 2.

The unpaired t-test was results are listed in Table  3. Comparing UT versus 10  μΜ 
U-73122 treated cells resulted statistically significant. Comparing UT versus 1  μΜ 
U-73122 treated cells resulted not quite statistically significant. Comparing UT versus 

Table 2 Growth data of MG63

The numbers indicate the viable cells. NT = untreated MG‑63. Dosage of exposure to respectively DMSO and 
DMSO + U73122

DMSO 1 = treatment with DMSO 1 μΜ, DMSO 10 = treatment with DMSO 10 μΜ, U73343 10 = treatment with U73343 
10 μΜ; U73122 1 = treatment with U73122 1 μΜ, U73122 10 = treatment with U73122 10 μΜ
SD standard deviation, SEM standard error mean

MG‑63 Time (h) Mean SD SEM

0 1 3 6 24

NT 250.000 200.000 350.000 375.000 600.000 423,750 175,849 87,924.57

DMSO 250.000 220.000 225.000 250.000 650.000 225,000 43,301.27 25,000

U73343 250.000 200.000 200.000 200.000 225.000 266,666.67 57,735.03 33,333.33

U73122 1 250.000 200.000 225.000 200.000 425.000 208,333.33 14,433.76 8333.33

U73122 10 250.000 100.000 110.000 125.000 225.000 108,333.33 14,433.76 8333.33

Fig. 1 MG-63 cultures. a Phase contrast microscopy of MG-63 cells. Cell morphology cultured 24 h: (upper 
line) untreated control cells (CTRL) and cells treated with U-73122 1 μΜ (centre line) and 10 μΜ (lower line) 
after 1, 3, 6 h from seeding b, c MG-63 cells after 1, 3, 6 h from seeding: untreated (NT), DMSO, U-73122 1 μΜ, 
U-73122 10 μΜ and U-73343 10 μΜ treated cells. c Comparison histogram of cell growth with error bars
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10 μΜ U-73343 treated cells, versus 10 μΜ DMSO treated cells and versus 1 μΜ DMSO 
treated cells resulted not statistically significant (Table 3).

RT‑PCR

Confluence cultured cells: mRNA for PLCB1, PLCB3, PLCB4, PLCG1, PLCD1, PLCD3, 
PLCE, GAPDH and Vil2 was detected. For PLCG2 the presence of mRNA was variably 
detected in 50 % of experiments. No mRNA for PLCB2, PLCD4, PLCH1 and PLCH2 was 
detected (Table 4).

Untreated controls: mRNA for PLCB1 was present at time 0, absent at 1, 3, 6 h and 
detected after 24 h. mRNA of PLCB3, PLCB4, PLCG1, PLCG2, PLCD1, PLCD3, PLCE, 
GAPDH and Vil2 was detected in all the analyzed times (1.3, 6 and 24  h). mRNA of 
PLCB2, PLCD4, PLCH1 was never detected. mRNA of PLCH2 was not present at time 0 
and after 1 h from cells seeding, while was detected after 3, 6 and 24 h (Table 4).

Control treatment with DMSO 10  μΜ: mRNA of PLCB1 was variably present after 
1 h from treatment and detected after 3, 6 and 24 h. mRNA of PLCB3, PLCB4, PLCG1, 
PLCD1, PLCD3, GAPDH and Vil2 was detected after each considered interval. mRNA 

Table 3 Statistic evaluation of MG-63 cell viability

p value was considered significant when <0.05

p

UT/10um U73122 0.0292

UT/1um U73122 0.0937

UT/DMSO 0.12

UT/10um U73343 0.2045

Table 4 PLC isoforms’ detection in MG-63

MG‑63 untreated cells (NT) cultured 24 h (T = time; T0; 1, 3, 6 and 24 h). Confl = MG‑63 which reached confluence. MG‑63 
cells treated with U‑73122: 30 μΜ (3 and 24 h from treatment), 10 μΜ (1, 3, 6 and 24 h from treatment). MG‑63 cultures 
added with DMSO (1, 3, 6 and 24 h from adding)

NT U73122 DMSO

30 10

T0 1 h 3 h 6 h 24 h cfl C− C+ 3 h 24 h 1 h 3 h 6 h 24 h 1 h 3 h 6 h 24 h

PLCB1 + − − − + + − + − + + − + + +− + + +
PLCB2 − − − − − − − + − − − − − − − − − −
PLCB3 + + + + + + − + − + +− + − + + + + +
PLCB4 + + + + + + − + − + + −+ + − + + + +
PLCG1 + + + + + + − + − + + + + + + + + +
PLCG2 + + + + + + − + − + − − −+ − − − + +
PLCD1 + + + + + + − + − + −+ + + − + + + +
PLCD3 + + + + + + − + − + − + + + + + + +
PLCD4 − − − − − − − + − − − − − − − − − −
PLCE + + + + + + − + − + −+ − + − + + + +
PLCH1 − − − − − − − + − − − − − − − − − −
PLCH2 − − + + + − − + − − − + + + + + + +
GAPDH + + + + + + − + + + + + + + + + + +
Vil2 + + + + + + − + + + + + + + + + + +
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of PLCE was variably detected after 1 h from DMSO addiction in 25 % of experiments, 
while it was detected after 3, 6 and 24 h. mRNA of PLCH2 was detected after 1 h, vari-
ably present after 3 h in 25 % of experiments and present after 6 and 24 h from DMSO 
addiction. No mRNA of PLCB2, PLCD4 and PLCH1 was detected (Table 4).

Treatment with U-73122/DMSO 10 μΜ. PLCB1: after 1 h, mRNA was detected, absent 
after 3 h, present after 6 and 24 h. PLCB2, PLCD4, PLCH1: mRNA was never detected. 
PLCB3: mRNA was detected after 1  h in 50  % experiments, detected after 3  h, unde-
tected after 6  h and detected after 24  h. PLCB4: mRNA was detected after 1 and 3  h 
in 50  % experiments, detected after 6  h and absent after 24  h. The mRNA of PLCG1, 
GAPDH and Vil2 transcription was detected at each interval. PLCG2: the mRNA was 
not detected excepting for detection in 50 % experiments after 6 h from U-73122 add-
ing to the culture. PLCD1: mRNA was detected in 50 % experiments after 1 h, and was 
detected after 3 and 6 h; after 24 h was not detected. PLCD3: mRNA was not detected 
after 1  h, while was present in the remaining intervals. PLCE: mRNA was variably 
detected in 50 % experiments, was absent after 3 h, present after 6 and absent after 24 h. 
PLCH2: mRNA was not detected after 1 h, while was detected in the remaining intervals 
(Table 4).

Effectiveness of cells transfection and Real time PCR after ezrin silencing

Silencing of ezrin was validated by western blot, RT-PCR and gel electrophoresis of 
mRNA extracts and compared to non-targeting control siRNA. Ezrin transcription was 
compared in cells transfected with ezrin-silencing specific siRNA to controls, compris-
ing untransfected cells and cells transfected with the carrier metefectamine.

Real Time PCR performed after ezrin silencing showed that Vil2 was not expressed, as 
expected. GAPDH was expressed, as expected. PLCG2 and PLCD4 were not expressed, 
while PLCE was quite almost reduced The results are listed in Table 5.

Immunofluorescence analysis of sub‑cellular distribution of target molecules

PLB β1: present in the cytoplasm and weakly in the nucleus of untreated cells, in 
U-73122-treated cells the fluorescence signal was reduced and the protein was present 
in perinuclear area (Fig. 2).

Table 5 Real-time results after ezrin (Vil2) gene silencing

Experiments were repeated each three times (exp 1, exp 2, exp 3). Transfected MG‑63 cells (silencing of Vil2)

Ud = undetected until 35 cycles

Exp 1 Exp 2 Exp 3

24 h Vil2 Ud Ud Ud

48 h Vil2 Ud Ud Ud

24 h GAPDH 17,2933769 17,3035622 17,2984695

48 h GAPDH 17,0784683 18,6328697 17,855669

24 h PLC E 26,0919533 26,8768845 26,4844189

48 h PLC E 25,7342033 27,7416077 26,7379055

24 h PLC G2 31,3051376 30,6916809 30,9984093

48 h PLC G2 30,8917274 31,3002968 31,0960121

24 h PLC D4 30,2919121 30,5054932 30,3987026

48 h PLC D4 30,415451 30,8388634 30,6271572



Page 11 of 21Lo Vasco et al. SpringerPlus  (2016) 5:156 

PLC β2: a very weak signal was detected in untreated cells; the signal was almost unde-
tectable in U-73122-treated cells (Fig. 2).

PLC β3: in untreated cells, the signal was weakly detected in the cytoplasm; in U-73122-
treated cells the protein was distributed exclusively in the perinuclear area (Fig. 2).

PLC β4: in untreated cells, the protein was detected in the cytoplasm, where it was 
also in U-73122-treated cells, although the intensity seemed to be reduced with respect 
to controls (Fig. 2).

PLC δ1: in untreated cells, the enzyme was detected in the cytoplasm with evident 
submembrane reinforcement; in U-73122-treated cells, it was also detected in the cyto-
plasm, although the membrane reinforcement resulted less evident or absent (Fig. 2).

PLC δ3: in untreated cells, the enzyme was present and localized in the cytoplasm, 
while in U-73122-treated cells it was not detected (Fig. 2).

PLC δ4: absent both in untreated and U-73122 treated MG-63 cells (Fig. 2).
PLC γ1 and PLC γ2: in untreated cells it was detected in the cytoplasm, where it was 

detected also in U-73122-treated cells, although the intensity was reduced (Fig. 2).
PLC ε: in untreated cells the enzyme was detected in the cytoplasm, while it was not 

detected in U-73122-treated cells (Fig. 2).
PLC η1: in untreated cells, the enzyme was localized in the cytoplasm and probably 

accumulated in plasmatic vesicles; in U-73122-treated cells the intensity of the signal 
was reduced (Fig. 2).

Fig. 2 Immunofluorescence images of MG-63 cells (controls and cells treated with 10 micrm U-73122). 
For each PLC isoform, on the left immunomarking with the corresponding antibody Red Texas (red) or FITC 
(green) conjugated; DAPI counterstain for nuclei in the centre; on the right merge (inverted fluorescence 
microscope, 40×)
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PLC η2: in untreated cells, the enzyme was localized in the cytoplasm and in plasmatic 
vesicles; detected in U-73122-treated cells it was localized in the perinuclear area and 
the plasmatic vesicles resulted less numerous with respect to controls (Fig. 2).

Discussion
In previous reports, we described the panel of expression of PLC enzymes in MG-63 
cells (Lo Vasco et al. 2013). The expressed PLC isoforms were PLC β1, β2, β3, β4, γ1, γ2, 
δ1, δ3 and ε. In the present experiments we analyzed the sub-cellular distribution of PLC 
enzymes and the expression panel of PLC isoforms in confluence cultures (72–96 h). In 
the present experiments, the PLC panel of expression of cells after reaching the conflu-
ence did not differ from the 24 h cultured control MG-63 cells. Interestingly, the expres-
sion of PLCG2 transcript was variably detected after confluence (50 % experiments).

In that previous work (Lo Vasco et  al. 2013) we had used high concentrations of 
U-73122, a widely used PLC inhibitor (30 μΜ), observing lack of the PLCs’ transcrip-
tion after 3 h. The transcripts for the expressed isoforms were observed after 24 h (Lo 
Vasco et  al. 2013). In the present experiments, we confirmed previous observations 
using 30 μΜ U-73122 (Table 5). U-73122 is not water soluble and, as well as U-73343, 
needs to be dissolved in DMSO, an amphipathic molecule commonly used as a solvent 
and worldwide used as cryoprotectant. DMSO acts as a differentiating agent, playing 
multiple roles both on cellular functions (e.g., metabolism and enzymatic activity) and 
cell growth by affecting cell cycle and apoptosis (Santos et al. 2003). More specifically, 
DMSO was demonstrated to induce differentiation in stem and endothelial cells (Jas-
min et al. 2010). We aimed to investigate whether DMSO might affect cell growth and/
or PLC expression. Thus, we compared the effects of DMSO, U-73122 and U-73343, an 
inactive U-73122 analogue, upon cell growth, PLC expression and localization. MG-63 
cell growth curve was significantly modified by U-73122 (Table 2; Fig. 1). After 24 h from 
seeding, the number of untreated cells increased 2.7 folds, with doubling time about 
15 h. In cultures in which different concentrations of U-73122/DMSO were added to the 
culture medium, we observed reduction of the number of viable cells. The decrease of 
viable cells number was statistically significant using 10 μΜ U-73122 dosage. The differ-
ences induced in cell growth by the lowest 1 μΜ U-73122 dosage resulted quite not sta-
tistically significant. The differences in cell growth after use of DMSO and U-73343 did 
not result statistically significant compared to untreated cells (Tables  3, 4). Therefore, 
U-73122 acts upon the cell viability, significantly reducing the number of viable MG-63 
cells within 24 h.

U-73122, amphiphilic alkylating aminosteroid homologue of the thiol reagent N-eth-
ylmaleimide (Bleasdale et al. 1990), is the most known and archetypal inhibitor of PLC. 
U-73122 was described to inhibit the Ca2+ mobilization in a dose-dependent manner, 
consistent with a mechanism of action involving PLC inhibition. The inhibition of PLC 
after U-73122 treatment is supposed to be possibly due to an action at Gprotein cou-
pling level (Smallridge et  al. 1992). U-73122 was frequently used to define the role of 
PLC mediated elevation of intracellular calcium concentration, indirectly used as a tool 
to investigate the PLCs’ signal transduction. However, lack of selectivity of PLC inhibi-
tion by U-73122 was described, as it acts (Cenni and Picard 1999) upon a number of 
unrelated proteins (Feisst et al. 2005; Hughes et al. 2000; Walker et al. 1998; Berven and 
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Barritt 1995; Pulcinelli et  al. 1998). U-73122 PLC inhibiting activity is due to preven-
tion of the turnover of PI, thus avoiding the formation of the second messengers IP3 and 
DAG (Vickers and Fisher 2004; Thomas et al. 2005). However, it is not fully known the 
mechanism leading to inhibition. Controversial reports described that U-73122 might 
be ineffective upon inhibition of PLC γ2 (Hellberg et al. 1996). The isomer of U-73122, 
namely U73343, is commonly used as a control. Although controversial reports might 
suggest a more complex relationship, U-73343 is considered inactive upon PLC enzymes 
(Heemskerk et al. 1997). The inhibitory effect of U-73122 appeared to be dependent on 
the presence of a pyrroledione group, as replacement of this with pyrrolidinedione (to 
form U-73343) abolished the inhibitory effect. (Hollywood et al. 2010). Both compounds 
play varying effects on cell signaling by activating nuclear estrogen receptors (Cenni and 
Picard 1999), acting as a protonophore in rabbit parietal cells, and activating ion chan-
nels (Mogami et al. 1997).

 In the present experiments, MG-63 cell growth was reduced after U-73343 treatment, 
although results were not statistically significant (Tables  2, 3, 4; Fig.  1). The present 
results indicated that U-73122 reduced the cell growth of cultured MG-63 line, decreas-
ing the number of cells from adding to 24 h. Comparisong to other treatments we per-
formed, one might speculate that the cell growth is related to PLC enzymes and that 
viable cells number is reduced inhibiting PLC enzymes.

Beside the observed effects upon cell viability, previous evidences indicated that 
U-73122 might act upon the gene expression of PLC isoforms (Lo Vasco et al. 2010a, b, 
2011, 2012, 2013). In the present experiments, molecular biology analyses indicated that 
a rearrangement of the panel of expression of PLC enzymes occurred after 1, 3, 6 and 
24 h after U-73122 adding.

In cultured MG-63, PLCB1 transcript was absent after 1, 3 and 6 h and was detected 
after 24 h from seeding. In U-73122 treated cells, PLCB1 transcript was detected after 
1 h, absent after 3 and detected after 6 and 24 h. In MG-63 cells grown adding DMSO 
to the culture medium, PLCB1 transcript was weakly detected after 1  h from seed-
ing and detected in the remaining intervals. PLC β1 was described to be selectively 
increased during myoblast and adipocyte differentiation (Faenza et al. 2004; O’Carroll 
et al. 2009), and evidences suggested that deletion of PLCB1 favours cancer progression 
in the myeloid lineage (Lo Vasco et al. 2004; Kaminskas et al. 2005). Thus, increase in 
PLC β1 protein and PLCB1 transcript levels might be actually considered to unfavour 
cancer progression and/or favour differentiation. Our previous results in osteosarcoma 
cells corroborated the hypothesis that increase of PLCB1 expression might be opposite 
to cancer progression, confirming a differentiating role (Lo Vasco et al. 2013, 2014a, b, 
2015). However, the increase in PLCB1 transcription we observed in the present experi-
ments might be due to DMSO, and the role of U-73122 cannot be separated and under-
stood. Moreover, while PLC β1 was localized in the nucleus and in the cytoplasm, after 
either treatment the protein was reduced and localized only in the peri-nuclear area. The 
differences in PLC β1 localization, due to DMSO, to U-73122 or to either compounds, 
might be related to differentiation.

In our present experiments, cultured MG-63 cells own PLCB3 transcripts and weak 
PLC β3 protein signal was localized in the cytoplasm, accordingly to our previous obser-
vations (Lo Vasco et  al. 2014a, b). In U-73122 treated cells, no PLCB3 transcript was 
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detected after 6 h. Interestingly, after U-73122 treatment, the PLC β3 protein was exclu-
sively localized in the nucleus and peri-nuclear area. DMSO did not seem to affect the 
expression of PLCB3. PLC β isozymes are autoinhibited, and several proteins, includ-
ing Gαq, Gβγ, and Rac1, directly engage distinct regions to release autoinhibition. High 
concentrations of Gαq or Gβ1γ2 selectively activate PLC β3 at membranes (Charpentier 
et  al. 2014). The transcription factor Stat5, involved in various leukemias, is regulated 
by PLC β3-dependent manner (Xiao et al. 2010). Moreover, PLCB3 was claimed to be 
involved in a subset of endocrine tumours, where its expression was demonstrated to be 
decreased or absent (Stålberg et al. 2003).

Transcription of PLCB4 was detected after 1, 3 (in half experiments) and 6  h after 
U-73122 treatment, and was not detected after 24 h. PLC β4, just as PLC-β1, was specifi-
cally involved in the histamine-induced IP3 increases in HeLa cells (Ishida et al. 2014). 
Amplifications of PLCB4 were described in glioblastoma multiforme (Waugh 2016) and 
altered expression was reported in non-small cell lung cancer (Tan and Chen 2014) and 
endometrial cancer (Orchel et al. 2012). Therefore, PLC β4 might favour the progression 
of selected cancers. In the present experiments, in MG-63 untreated cells, the protein 
was detected in the cytoplasm, where it was also in U-73122-treated cells, although the 
intensity seemed to be reduced with respect to controls.

In our present experiments, PLCG2 was expressed in 24  h-cultured MG-63 cells, it 
was not expressed 1 and 3 h after adding DMSO to cultures, and detected in the remain-
ing intervals. After adding U-73122 to MG-63 cultures, PLCG2 was very weakly detected 
exclusively after 6  h from treatment, while it was absent in the remaining intervals. 
The localization of PLC γ2 did not differ, being the protein detected in the cytoplasm, 
although the signal was dramatically reduced after U-73122 treatment. In our previous 
studies we had suggested a critical role for PLC γ2 in 143B cells (Lo Vasco et al. 2014a), 
probably related to their osteolytic features. Literature data indicated that the PLC γ 
subfamily enzymes used to be detected at higher level in tumour than normal tissues 
(Arteaga et al. 1991; Noh et al. 1995). Isoforms belonging to the PLC γ subfamily contain 
a unique region comprising two tandem SH2 domains and one SH3 domain adjacent to a 
split PH (Katan and Williams 1997), which allow the interaction with different molecules 
(Bunney and Katan 2011). PLC γ2 is required for early phase osteoclast differentiation 
(Kertész et al. 2012), and is involved both in actin cytoskeleton reorganization and Rac-
activation in dendritic cells (Cremasco et al. 2010), as well as in the integrin-mediated 
processes of adhesion, migration and bone resorption in osteoclast (Epple et al. 2008). 
PLC γ2 was also suggested to represent a critical regulator of the cellular and molecu-
lar mechanisms occurring in bone and immune cells during autoimmune inflammation 
(Faccio and Cremasco 2010).

Although U-73122 is widely used as non isoform-specific PLC inhibitor (Lea et  al. 
2002), it was controversially considered to act upon PLC γ subfamily enzymes (Kim 
et al. 2012). In fact, isoforms belonging to the PLC γ subfamily are considered “udrag-
gable” proteins (Lattanzio et al. 2013), with special regard to PLC γ1 isoform. However, 
U-73122 is used as a PLC γ inhibitor (Glassford et al. 2003). Our present results indicate 
that U-73122 affects the expression of PLCG genes.

The results of morphology experiments did not show accountable variations in the 
presence of the PLC γ2 protein within the U-73122 treated cells, excepting for slight 



Page 15 of 21Lo Vasco et al. SpringerPlus  (2016) 5:156 

reduction of fluorescence intensity. However, the transcription of PLC γ2 significantly 
differs after treatment with U-73122 compared with both untreated counterpart and 
DMSO adding to the cell cultures. Interestingly, ezrin silencing induced loss of PLCG2 
expression according to previous findings in osteosarcoma which suggested a crucial 
role for this isoform (Lo Vasco et al. 2014a, b).

The transcription product of PLCD3 was not detected after 1 h from U-73122 treat-
ment, while it was detected in the remaining intervals. PLC δ3, just like PLC δ1 and 
PLC β1, was localized to the cleavage furrow during cytokinesis. Activation of selected 
PLC isoforms at the cleavage furrow controls progression of cytokinesis through regula-
tion of PIP2 levels (Naito et al. 2006). PLC δ3 is highly enriched in the cerebellum and 
cerebral cortex and was demonstrated to promote neurite extension negatively regulat-
ing RhoA expression (Kouchi et al. 2011). Moreover it was found altered in nasal polyps 
(Babeto et  al. 2010). PLC δ isozymes, the most primitive and evolutionary conserved, 
are known to be the most sensitive to calcium (Suh et al. 2008). Our previous studies 
described the variation of PLC δ1 and PLC δ3 expression in LPS-induced inflammation 
and inflammatory diseases, such as endometriosis (Lo Vasco et al. 2010a, b, 2011, 2012). 
That suggested that PLC δ3 might be involved in the fine tuning and regulation of the 
inflammation cascade. Further studies are required in order to highlight the role of PLC 
δ3 isoform in the progression of the cell cycle, with special regard to the activity upon 
proliferation regulation.

In the present experiments, the PLCE mRNA was detected in 50 % experiments after 
1 h from U-73122 treatment, was absent after 3 h, present after 6 and absent after 24 h, 
indicating a “fluctuating” behaviour. In untreated MG-63 cells, the enzyme was detected 
in the cytoplasm, while it was not detected in U-73122 treated cells. PLC ε, expressed 
in the outermost layer of the neural tube, was widely described in the central nervous 
system, probably related to neuron differentiation (Lo Vasco et al. 2012). Literature data 
indicated that PLC ε is important for heart development (Tadano et al. 2005; Wang et al. 
2005), is involved in nephrotic syndrome (Hinkes et  al. 2006), increases insulin secre-
tion (Dzhura et al. 2011), and is highly expressed in the lung (Smrcka et al. 2012). PLC 
ε activates and is activated by small G protein Ras/mitogen-activated protein kinase 
(MAPK) signaling pathway (Lopez et al. 2001). The activity of PLC ε, regulated by asso-
ciation with Ras and Rap (Kelley et al. 2001; Schmidt et al. 2001; Song et al. 2001, 2002), 
might play a role in intracellular signalling from receptors for fibroblast growth factor 
(FGF) and various neurotrophic factors involved in the neural development (Vaccarino 
et al. 1999) and in PC12 pheochromocytoma cells (Qiu and Green 1991; Cowley et al. 
1994; Zhu et al. 2002). PLC ε was frequently described to be involved in carcinogenesis. 
However, controversial observations were reported regarding its role. Evidences support 
the hypothesis that PLC ε might play a tumour suppressor role in Ras-triggered can-
cers (Martins et  al. 2014). However, silencing of  PLCɛ was suggested to induce apop-
tosis via modulation of bcl-2 and bax in bladder cancer (Zhang et al. 2013) and recent 
literature data suggest that PLC ε might bear cancer-suppression activity (Martins et al. 
2014). Inhibition of PLC ε was suggested to prevent the inflammatory reactions associ-
ated with tumour development or inflammatory-related diseases (Wang et al. 2005). Plce 
knockout mice seemed to be resistant to intestinal tumour formation when crossed with 
Apc∓ mice (Li et  al. 2009). Further studies associated selected PLCE polymorphisms 
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with oesophageal squamous cell carcinoma (Abnet et al. 2012; Hao et al. 2013) and with 
gastric adenocarcinoma (Abnet et al. 2012). Knocking down of PLC ε both in vitro and 
in  vivo was referred to inhibit the growth of bladder tumour cells (Cheng et  al. 2011; 
Ou et al. 2010). Overexpression of PLCE gene was also reported in murine skin cancer 
(Bai et  al. 2004) and Plce (−/−) mice exhibit marked resistance to tumour formation 
in two-stage skin chemical carcinogenesis (Oka et al. 2010). PLC ε was also claimed to 
promote progression in head and neck cancer (Bourguignon et al. 2006). Therefore, the 
mechanism of action and role of PLC ε in cancer promotion and/or progression is far 
to be highlighted. As several direct effectors of Ras, PLC ε owns RA domain that binds 
several Ras GTPases, including oncogenic Kras and Hras (Song et al. 2001). The bind-
ing involves different interaction surfaces and requires distinct specific recognition of 
Ras, Rap, or Rho GTPases by at least four different binding interfaces. Those differences 
have fundamental biological implications for Ras-effector signalling (Song et  al. 2001, 
2002; Fukami et al. 2010). Interestingly, suppression of ezrin protein expression by anti-
sense transfection or stable expression of short hairpin RNA is associated with reduced 
Akt and MAPK activity (Khanna et al. 2001, 2004, Yu et al. 2004). In the present experi-
ments, the transcription of PLCE gene was affected by ezrin silencing (Table 5), which 
almost reduced the corresponding transcript, according to previous findings (Lo Vasco 
et  al. 2014a, b). That last observation might confirm the hypothesis that an extensive 
crosstalk among the PLC enzymes occurs in cells (Lo Vasco et al. 2012).

Conclusion
The present results confirm our previous observations in human osteosarcoma cell lines 
suggesting that each cell line owns a specific PLC panel of expression and that a com-
plex organization of PLC enzymes occurs. Probably, PLC enzymes influence each other, 
networking in a complex manner, probably following a reciprocal hierarchy of control. 
However, further studies, addressed to identify the crosstalk and the ordered timing of 
cell line-specific PLC enzymes recruitment might help to highlight the specific role of 
each isoform, opening the way to novel insights in the progression of the disease, with 
special regard to metastatic spread.

Our present results indicate that adding of U-73122 to the MG-63 cultures can signifi-
cantly reduce the number of viable cells, thus slowing the growth within 24 h intervals. 
Although the specific role played by U-73122 upon PLC enzyme inhibition is still con-
troversial, our results suggest that the compound affects the expression of selected PLC 
genes, opening the way to novel adjuvant therapy perspectives.

Our present results indicate that the use of U-73122 in MG-63 cultured cells signifi-
cantly reduces the growth rate contemporarily inducing different expression of PLC 
genes. That suggests that PLC expression might be related to the cell growth reduc-
tion. Interestingly, the expression of PLC genes which codify for PLC isoforms supposed 
to favour cancer progression was reduced, while the expression of PLCB1, which was 
thought to favour differentiation and/or apoptosis, was increased. Further studies are 
required in order to elucidate the specific role of PLC δ3 and PLC ε. Thus, our present 
results accord to previous literature data with respect to other cancer types. However, 
a number of PLC isoforms are differently expressed and lesser are differently localized 
within the MG-63 cells, so that no conclusive thesis about their specific role can be 
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formulated. Further studies are required in order to highlight the role of PLCs upon cell 
viability and the extensive cross-talk among the isoforms that probably contributes to 
regulate and network the PLC enzymes.
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