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Abstract
Vaccinia virus (VACV) is a large cytoplasmic DNA virus that causes dramatic alterations to

many cellular pathways including microRNA biogenesis. The virus encodes a poly(A) poly-

merase which was previously shown to add poly(A) tails to the 3’ end of cellular miRNAs,

resulting in their degradation by 24 hours post infection (hpi). Here we used small RNA

sequencing to quantify the impact of VACV infection on cellular miRNAs in human cells at

both early (6 h) and late (24 h) times post infection. A detailed quantitative analysis of indi-

vidual miRNAs revealed marked diversity in the extent of their modification and relative

change in abundance during infection. Some miRNAs became highly modified (e.g. miR-

29a-3p, miR-27b-3p) whereas others appeared resistant (e.g. miR-16-5p). Furthermore,

miRNAs that were highly tailed at 6 hpi were not necessarily among the most reduced at 24

hpi. These results suggest that intrinsic features of human cellular miRNAs cause them to

be differentially polyadenylated and altered in abundance during VACV infection. We also

demonstrate that intermediate and late VACV gene expression are required for optimal

repression of some miRNAs including miR-27-3p. Overall this work reveals complex and

varied consequences of VACV infection on host miRNAs and identifies miRNAs which are

largely resistant to VACV-induced polyadenylation and are therefore present at functional

levels during the initial stages of infection and replication.
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Introduction
MicroRNAs have emerged as important regulators of protein expression, influencing many
biological pathways including those associated with viral infection [1]. These small RNAs func-
tion by guiding the RNA-induced silencing complex (RISC) to messenger RNAs (mRNAs)
with base pair complementarity, resulting in inhibition of translation and/or mRNA destabili-
zation [2]. The biogenesis of a miRNA (reviewed in [3, 4]) begins in the nucleus with synthesis
of a primary miRNA transcript (pri-miRNA), generally by RNA polymerase II. In mammals
the Drosha nuclear RNase III endonuclease and DGCR8 process the pri-miRNA to a shorter
(approximately 70 nt) hairpin structure known as the precursor miRNA (pre-miRNA). This
structure is transported to the cytoplasm via exportin 5, where it is processed to a ~ 22 nt
duplex RNA by the RNase Dicer and its cofactor TRBP. The RNA duplex is loaded into the
Argonaute (Ago) proteins, where one strand (the passenger or star strand) is released and
degraded, and the other strand (the guide) retained. The guide strand then targets mRNAs pri-
marily through complementarity at positions 2–8 of the 50 end of the miRNA (termed the
“seed”) [5].

Several non-canonical miRNA biogenesis pathways have been described that include the
ability to bypass the need for processing in the nucleus [6]. Some viruses have evolved to
express their own miRNAs by these canonical or non-canonical pathways [7] and viruses can
also be engineered to produce miRNAs [8, 9]. Poxviruses are large cytoplasmic DNA viruses
with a complex life cycle that includes viral DNA replication and transcription occurring in
specialised cytoplasmic “viral factories” by virally-encoded polymerase enzymes [10]. VACV is
the prototypic orthopoxvirus which does not encode any viral miRNAs [1] but induces polya-
denylation of mature cellular miRNAs with a concurrent widespread reduction in abundance
by 24 h pi [11, 12].

Dysregulation of miRNA expression has been linked with numerous diseases [13] and there
is extensive interest in understanding how the levels of these molecules are naturally regulated.
While the steps leading to miRNA production and maturation are relatively well understood
[14] the mechanisms involved in the decay of miRNAs remain somewhat elusive [15, 16]. In
many cellular contexts mature miRNAs appear to be extremely stable with half-lives in the
range of days [17–19]. However some miRNAs exhibit rapid downregulation under certain
physiological conditions including cell cycle, neuronal activation, viral infection or in response
to growth factors [15]. This implies regulated mechanisms for miRNA decay. Several studies in
animals have suggested some exonucleases associated with degradation of the miRNAs,
reviewed in [15, 20]. Loss of Ago2 in mammals also results in a reduction in miRNA levels, sug-
gesting Ago2 provides a level of protection and stabilisation of the mature miRNAs [21, 22].

One mechanism for selectively degrading a specific miRNA involves recognition of the
mature sequence by another non-coding RNA; this has been termed “target mediated miRNA
degradation” (TMMD) and requires extensive complementarity between the two RNAs[23].
The mechanisms associated with TMMD are still emerging. For example in Drosophila and
human cell lines miRNA destabilisation is accompanied by the emergence of longer “tailed” or
shorter “trimmed” versions of the miRNA but relatively little is known about how the two
events are linked [23–25]. Sequencing analyses in a variety of systems have revealed the ubiq-
uity of miRNA isomers that vary in length and the extent of non-templated additions (NTAs)
at their 3’ end [26, 27]. The functional effect of these modifications appears to be context
dependent with examples of both stabilization and increased degradation as a result of modifi-
cations [15, 28]. In mammalian cells, for example, a single additional adenosine at the 3’ end of
miR-122 can have a stabilizing effect [29] whereas addition of uridines to miR-26 can acceler-
ate its decay [30].
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Here we aimed to analyse the changes occurring to endogenously expressed miRNAs (<40
nucleotides) in the face of VACV infection at both early (6 h) and late (24 h) times post infec-
tion. We found the extent of VACV-induced modification of cellular miRNAs was diverse, as
was the extent of reduction in their steady state levels, particularly at 6 hpi. Adenylation and
polyadenylation of the 3’ end of miRNAs was common but varied substantially across individ-
ual miRNAs and did not correlate with the observed reduction in abundance. Interruption of
the viral life cycle resulted in accumulation of some cellular miRNAs, indicating the possibility
of regulation of miRNA levels by intermediate and/or late VACV gene expression.

Materials and Methods

Cells, virus and antibodies
Human cervix carcinoma epithelial cells (HeLa) and Chinese Hamster Ovary K1 (CHO) cells
were grown in Dulbecco’s modified Eagle’s medium (DMEM) (Life Technologies) containing
50 IU/ml penicillin, 50 μg/ml streptomycin (Sigma) and 10% foetal bovine serum (FBS) (Life
Technologies). Cells were incubated at 37°C in a 5% CO2 incubator. The experiments pre-
sented here were carried out with sucrose gradient-purified IMV form of VACV strain West-
ern Reserve (WR) or a genetically modified Modified Vaccinia virus Ankara strain expressing a
protozoan Theileria parva TP2 antigen (MVA).

Preparation of RNA samples for sequencing analysis
Confluent 175cm2 flasks of HeLa cells were infected with VACV at an MOI of 10 for 1 h at
37°C. The inoculum was removed (time point 0 h), cells were washed and incubated with
DMEM with 2.5% FBS. At 6 and 24 hpi cells were washed once with ice cold PBS then collected
into an appropriate volume of QIAzol lysis reagent (Qiagen) and frozen at -80°C. Cytosine D-
arabinofuranoside (AraC) was added to a final concentration of 40μg/ml at time point 0 h to a
parallel set of samples. RNA was extracted using the miRNAeasy kit (Qiagen), the integrity of
the RNA measured as� 9.5 for all samples based on the Bioanalyzer (Agilent) and 10 μg of
RNA was gel purified (20–40 nt) by 15% UREA PAGE prior to library preparation with the
TrueSeq kit (Illumina).

Sequencing analysis
Libraries were pooled and sequenced on the Miseq Illumina platform yielding an average of
632,604 ± 94,061 reads per sample. Total reads were assessed for quality using fastQC version
0.10.1 and processed using cutadapt v1.1 (parameters:-O 9-m 16-n 4-q 20). Fasta sequences of
16 or more nts were extracted from the primer-trimmed reads and collapsed to generate a non-
redundant set of sequences within each sample. A minimum threshold of 2 identical reads
within a given sample was applied for collapsing. Collapsed sequences were assessed for
human genome (hg19) matches using the mirDeep2 mapper.pl script [31], filtered to require a
perfect match along the entire read length (full length perfect match (FLPM)). Those reads that
perfectly aligned were then assessed for ncRNA content by similarity searches (using BLASTN)
against the Rfam database allowing up to 2 mismatches. Unclassified sequences and “miRNA”
classified sequences from the Rfam scan were subsequently analysed for miRNA content using
bowtie (v0.12.5, parameters:-p 20-f-n 0-e 80-l 50-a-m 500—norc—chunkmbs 256—best—
strata) with a list of mature miRNA sequences from mirBase v19, extended to the 26 nt tem-
plated sequence “26-base mature”. Those exhibiting FLPM were retained. Sequencing data was
deposited in GEO database (GSE54235).
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Differential expression analysis and identification of modifications
Analysis of miRNA differential expression was carried out in R/Bioconductor using the bowtie
alignments as input. Only miRNAs identified to be present at an abundance level of greater
than 0.01% (100 reads per million) in at least one of the samples were analysed. Differential
expression was assessed using the limma Bioconductor package, after conversion of abun-
dances to log2-based tag counts. Pair-wise comparisons of sample groups were performed as
appropriate, with p value adjustment for multiple testing. In two cases the input sequences
exhibited perfect alignment to 2 or more full length (22 nt) mature miRNAs: let-7f-5p and
miR-196a-5p; these were excluded from further analysis to avoid complication in mapping
total reads to each miRNA, given the presence of both short (ambiguous) and long (locus-spe-
cific) isoforms.

The reads that did not align perfectly over their full length to the human genome were con-
sidered candidates for 3’ end modification. These were first subsetted by the requirement that
the first 19 nt had to align perfectly to the first 19 nt of the mature sequence (with no restriction
on subsequent mismatches). Sequences meeting this criterion, i.e. they aligned to at least the
first 19 nt of a known miRNA but contained at least one mismatch after this position were
deemed "modified reads" and were then further classified based on the identity of their modifi-
cations and incidence of sequential A residues.

Northern blot analysis
Northern blot analysis was carried out as described in[32]. Briefly, 7.5 ug of total RNA was
loaded onto 15% polyacrylamide gels, run in 0.5% TBE for 2 hours, after which total RNA lev-
els were visualized by staining with ethidium bromide to check for equal loading. An example
of an image of an ethidium bromide-stained gel is provided in S5 Fig. The gels were then trans-
ferred to Hybond N (Amersham) membrane for 1 hr at 4°C, 80 V and crosslinking carried out
as described in [33]. Membranes were pre-hybridized in PerfectHyb (Sigma) prior to incuba-
tion with P32-labeled probes. The DNA probes were perfectly complementary to the mature
miRNA sequence and were labelled with T4 PNK (Invitrogen) following manufacturer's
instructions.

Results

VACV infection causes widespread reduction of cellular miRNAs at 24
hpi but has varied effects at 6 hpi
VACV has previously been shown to degrade both exogenous and endogenous miRNAs in
human cells via addition of a 3’ polyadenosine (polyA) tail catalysed by the VACV polymerase
VP55 [11]. This previous study analysed miRNA abundance at a late time point post infection
(24 h) when most cellular processes are dramatically altered, the cell contains abundant mature
and immature virions and is near death. We therefore sought to extend this work to an earlier
time point during infection (6 h) to understand whether miRNAs can indeed be rapidly modi-
fied and reduced during the initial stages of viral replication. Samples were collected at both
early (6 h) and late (24 h) time points post infection as well as in the presence or absence of
Cytosine D-arabinofuranoside (AraC), a drug that inhibits the VACV replication cascade after
early viral gene expression by blocking DNA replication and thus dramatically reducing the
amount of template for intermediate and late RNA expression. This comparison enables us to
examine whether intermediate and late viral gene products influence the extent to which miR-
NAs are suppressed.
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Small RNA populations from three biological replicates were sequenced for each of the fol-
lowing treatments: (i) mock infection, (ii) mock infection in the presence of AraC, (iii) infection
with VACV or (iv) infection with VACV in the presence of AraC. The majority of reads in each
sample perfectly matched the human genome (57–82%; S1 Fig and S1 Table) and aligned to
human miRNAs. These were classified into two categories: “unmodified”, which perfectly
matched the genomic sequence (accounting for length heterogeneity but excluding non-tem-
plated additions to the 3’ end) and “modified”, which contained at least 1 non-templated nucle-
otide (nt) at the 3’ end of the mature sequence (defined here as after nt position 19). At both 6
and 24 hpi there was a marked decrease in the abundance of unmodified miRNAs in VACV-
infected compared to uninfected cells, with a 2.3 fold reduction at 6 hpi and 7.3 fold reduction
at 24 hpi (Fig 1). The reduction was significantly less in cells treated with AraC, with 1.8 and 5.0
fold decreases in unmodified miRNAs at 6 and 24 hpi, respectively. Similar to previous observa-
tions in human cells [24, 26, 27] we found that a fraction of miRNA reads (12%) contained non-
templated nts at their 3’ ends in uninfected cells (Fig 1 and S2 Table). Consistent with the report
by Backes et al., 2012, this proportion increased in response to VACV infection (Fig 1).

Using the replicate data we further analyzed changes in individual miRNAs present at suffi-
cient abundance levels to enable statistical analysis. The miRNAs analysed here for differential
expression were present at a relative level of> 100 reads per million reads sequenced (counting
only those that aligned to the human genome). Out of the 526 human miRNAs in HeLa cells
that were detected, 107 miRNAs fit these criteria. These 107 miRNAs were analysed for differ-
ential expression and the results displayed on a volcano plot (Fig 2) which shows the fold
change in abundance of the unmodified miRNA (x axis) compared to the p value associated
with this change (y axis). As shown in Fig 2, at 6 hpi VACV infection caused a significant
reduction (False Discovery Rate p< 0.01) in 82% of these miRNAs, with 67% reduced at least
2 fold. This was not a global phenomenon, however, as the levels of 17% of the miRNAs were
not significantly changed at 6 hpi (FDR p>0.01 in Fig 2a; S3 Table), revealing that individual
miRNAs exhibit differing responses to VACV infection. One miRNA, miR-27a-5p, was signifi-
cantly up-regulated in response to VACV infection. Further examples of miRNAs which
increased at 6 hpi within the entire dataset of 526 miRNAs included miR-92a-5p, miR-501-3p,
miR-132-3p, miR-132-5p, and miR-203-5p (S2 Fig and S4 Table). Less variation in the
response to VACV infection was observed at 24 hpi, when 97% of the miRNAs were signifi-
cantly reduced (Fig 2b) however miR-27a-5p remains present at levels comparable to unin-
fected cells even at this time point. This miRNA was previously annotated as a passenger
strand and, although in the top 107 most abundant miRNAs, is relatively lowly expressed (135
reads per million in uninfected cells). The annotation of a “passenger strand” is complex since
recent reports have shown that the proportions of guide and passenger strands are cell and tis-
sue-specific and many passenger strands are conserved and functional [34]. Here we use “5p
and 3p” nomenclature to avoid confusion. Backes et al. found that the passenger strand of
exogenously over-expressed miR-124 was not polyadenylated in VACV-infected cells [11],
however in our dataset we find examples of modification and polyadenylation of both 5p and
3p strands of some miRNAs, including some which have been annotated as “mature” and “pas-
senger” based on the historical definition (where there is>6 fold difference in the abundance
level of 5p and 3p strands), for example miR-21-3p and miR-30a-3p (S5 and S6 Tables). As
another example, we see comparable levels of infection-induced tailing on 5p and 3p arms of
miR-28 (S5 Table), even though the 3p arm is present at a> 8 fold higher abundance com-
pared to the 5p arm (S6 Table). Overall there is no obvious correlation between abundance
level in the uninfected cells and extent of modification at 6 hpi (data not shown).
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Limiting VACV replication with AraC significantly alters the extent of
virus-induced miRNA reduction
In order to probe the potential contributions of viral factors in the reduction of cellular miR-
NAs induced by VACV we compared miRNA levels in cells infected with VACV in the absence
or presence of the DNA replication inhibitor AraC. VACV gene expression is temporally regu-
lated and can be divided into early, intermediate and late phases. AraC arrests the replication
cycle of the virus at the end of the early phase, dramatically reducing intermediate and late

Fig 1. VACV causes amarked reduction in unmodifiedmiRNA reads and an increase in modified
miRNA reads in HeLa cells at (A) 6 and (B) 24 hpi. The miRNA content of HeLa cells infected with VACV or
mock infected, with and without addition of AraC, at 6 and 24 hpi. The proportion of reads is displayed as the
percentage of total read sequences (that passed quality control criteria) in each condition (average of three
replicates). Modified reads are defined as those containing a non-templated nucleotide after position 19 in the
mature sequence. Error bars represent SD (n = 3 biological replicates). The increase in unmodified miRNAs
in infected cells in response to AraC treatment at 6 and 24 hpi is statistically significant as shown (Student’s t-
Test, p value <0.01). The data graphed in this figure are detailed in S2 Table.

doi:10.1371/journal.pone.0131787.g001
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VACV gene expression [35]. As shown in Fig 2c, in cells treated with AraC there was a signifi-
cant increase in 20 out of the 107 (19%) most highly expressed miRNAs at 6 hpi. This effect
was more prominent at 24 hpi, with 47 miRNAs (44%) at significantly higher levels in the pres-
ence of AraC (Fig 2d), indicating a complete VACV replication cycle is required to achieve
optimal reductions in miRNAs. Treatment of uninfected cells with AraC did not affect the level

Fig 2. VACV causes variable effects on the levels of unmodifiedmiRNAs at 6 and 24 hpi. Four Volcano plots show the differential expression levels of
the 107 most highly expressed cellular miRNAs (“highly expressed” is based on a cut-off of >100 reads per million reads that aligned to the human genome).
The x axes represent the fold change of the miRNA and the y axis the FDR p value associated with the fold change. The plots portray the alteration in
abundance of unmodified miRNAs in VACV-infected cells compared to uninfected cells at (A) 6 hpi and (B) 24 hpi, and in VACV-infected cells with AraC
compared to VACV-infected cells without AraC at (C) 6 hpi and (D) 24 hpi. The horizontal dotted line delineates a FDR p value of 0.01. The vertical lines
delineate a fold change of ±log22. The miRNAs that are discussed in the manuscript are indicated.

doi:10.1371/journal.pone.0131787.g002
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of any miRNA, ruling out non-specific effects of drug treatment (S3 Fig). Furthermore, the
abundance of 3 miRNAs (miR-27a-5p, miR-769-5p and miR-30c-1-5p) significantly decreased
in response to AraC treatment of infected cells at 6 hpi (Fig 2c). Thus AraC does not globally
inhibit VACV-induced miRNA reduction but instead has specific effects on individual miR-
NAs in infected cells. Overall, these results suggest diversity in the susceptibility of miRNAs to
alterations in abundance associated with VACV infection and the temporal mechanisms
involved in this regulation.

Vaccinia virus early gene expression results in 3’ polyadenylation of the
majority of host miRNAs
In parallel with the reduction of unmodified miRNA reads we detected a marked increase in
modified miRNA reads in VACV infected cells (Fig 1). Modified reads were defined as contain-
ing a non-templated nt at position 19 or higher in the mature sequence (Materials and Meth-
ods); the reads were then categorised according to the number of adenosine residues present
(Fig 3a). In mock-infected cells at 6 hpi 12% of the reads mapping to miRNAs contained modi-
fications at the 3’ end, dominated by a single adenosine. Only 0.007% of the modified reads
contained 5 or more sequential adenosine nts. In comparison, 46% of the reads mapping to
miRNAs in cells infected with VACV were modified at the 3’ end, with 19% of the modifica-
tions consisting of polyA “tails” 5 nts or longer in length (Fig 3a). Treatment of cells with AraC
did not decrease the extent of miRNA polyadenylation (Fig 3a), consistent with the fact that
the enzyme responsible for polyadenylation is the RNA polymerase protein VP55 [11] encoded
by the VACV early viral gene E1L [36].

Analysis of the individual miRNAs (Fig 3b) revealed that the number of miRNAs with any
type of 3’modification did not vary greatly in response to either VACV infection or AraC treat-
ment. However the type and extent of modification varied dramatically, with modifications
consisting of sequential adenosine residues (a polyA tail) being rare in uninfected but common
in VACV infected cells. At 6 hpi 147 miRNAs (28%) in VACV infected cells had reads detected
with a polyA tails of at least 5 adenosines and 119 (23%) had longer tails of 10 nts or more.
AraC treatment alone caused a small increase in the number of miRNAs detected with a polyA
tail of at least 5 adenosines or 10 adenosines however the number of reads mapping to these
miRNAs was very low

Interruption of VACV replication after early viral transcription does not
impact tailing but arrests the reduction of modified and unmodified miR-
27b-3p
Quantitative analyses of over a hundred miRNAs in this study reveals striking differences in
both the extent of tailing and reduction of individual miRNAs upon infection (S5 Table).
When the 70 most abundant miRNAs were ranked according to extent of down-regulation at 6
hpi (Fig 4a, blue bars) the relative proportions of short and long polyA modifications (Fig 4a,
red and pink bars) can be seen to vary widely. Some miRNAs showed very high levels of modi-
fication (e.g. miR-125b-5p, miR-99b-5p, miR-29a-3p, miR-92a-3p, miR-148b-3p) whilst others
showed very low levels of modification (e.g. miR-16-5p, miR-411-5p, miR-410-5p, miR-30e-5p
and miR-125b-3p). Furthermore, the extent of modification at 6 hpi (Fig 4a) was not highly
predictive of abundance at 24 hpi (Fig 4b). For example, some highly modified miRNAs
observed at 6 hpi were still present at high levels at 24 hpi (e.g. miR-125b-5p, miR-99b-5p,
miR-29a-3p) and some miRNAs that appeared unmodified at 6 hpi were massively reduced by
24 hpi (e.g. miR-16-5p and miR-411-5p). Thus while there is an overall reduction in mature
miRNA levels following VACV infection, the degree of modification and reduction of
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individual miRNA species shows wide variability, and tailing at 6 hpi is not a clear indicator for
reduction by 24 hpi.

To visualize the polyadenylation of miRNAs we used northern blotting to examine three
highly abundant miRNAs (miR-16-5p, miR-29a-3p and miR-27b-3p) that displayed varying
responses to VACV infection. Both sequencing and northern blot showed that the unmodified
22 nt form of miR-16-5p (Fig 5a and 5b) was only modestly down-regulated (10%) in infected
compared to uninfected cells at 6 hpi, accompanied by< 1% increase in longer (>/ = 1 nt
nucleotide) modified reads (red bars in Fig 5a and 5c) which are visible as a faint lower-mobil-
ity smear on the northern blot. After 24 hpi there was a substantial reduction (87%) in abun-
dance of miR-16-5p accompanied by only a 7% increase in modified reads in infected cells (Fig

Fig 3. VACV generates long 3’ polyA extensions to endogenousmiRNAs. (A) The 3’modifications of
miRNAs (defined by a non-templated nucleotide after position 19 in the mature sequence) were classified by
the nucleotide identity (C, G or U) or A, which was then further classified by the number of sequential
adenosines: 1, 2, 3–4, 5–9 or 10+. The number of reads plotted on the Y axis are the average of 3 replicates
and error bars indicate standard deviation. The actual number of reads in each condition is noted above the
column. (B) The number of distinct miRNAs with at least 2 modified reads detected is indicated in green; of
these, the miRNAs showing modifications with at least 5 sequential adenosines are depicted in blue or
modified by at least 10 sequential adenosines in red.

doi:10.1371/journal.pone.0131787.g003
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5c). The reduction in abundance of miR-16-5p at 24 hpi can be partially rescued by AraC treat-
ment. In contrast, miR-29a-3p was extensively polyadenylated in response to VACV infection
by 6 hpi but appeared largely resistant to down-regulation (Fig 5d and 5f) with accumulation
of numerous polyadenylated species clearly visible in VACV-infected cells. In addition to the
modification of mature miR-29a-3p, VACV infection also appeared to result in an increase in
the pre-miR-29a-3p (arrow, Fig 5e), suggesting an increase in production or a block in the

Fig 4. Diversity in the extent of modification and reduction of individual miRNAs upon VACV infection. The proportion of unmodified or modified
miRNAs present at (A) 6 hpi and (B) 24 hpi, in relation to uninfected cells. Data for the most abundant 70 miRNAs are displayed, ranked from top to bottom
according to largest fold change of the unmodified form at 6 hpi. The top 5 most modified (open circles) or least modified (closed circles) miRNAs at 6 hpi are
indicated. The data graphed in this figure are provided in S5 Table.

doi:10.1371/journal.pone.0131787.g004
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processing of pri and/or pre-miRNA to mature forms (discussed further below). The third
miRNA selected for characterisation by northern blotting was miR-27b-3p (Fig 5g–5i).
Although it is likely that the probe used did not distinguish between miR-27a and miR-27b
(which differ by only 1 nt) we refer here to miR-27b as this is 16 fold more abundant in Hela
cells according to our sequencing analysis (S6 Table) and both family members showed the
same pattern of modification and reduction upon infection (S5 Table). VACV infection caused
a striking reduction in the amount of unmodified (22 nt) mature miR-27b-3p at 6 hpi, with
barely detectable levels at 24 hpi. Polyadenylated miR-27b-3p in virus-infected cells was visible
as a dark “smear” on the northern blot with a band at approximately 40 nt (Fig 5h), which
would indicate tail lengths of ~ 18 nt. It is important to note that the RNAs were size selected
prior to sequencing (Materials & Methods) such that tails longer than this would not be
detected, however we see no evidence for their existence by northern blot. Sequence analysis
(Fig 5i) detected the majority of miR-27b-3p modifications as 2–9 nt in length, most likely
reflecting the difficulty of long homopolymeric sequencing. An increase in abundance of a
band consistent with pre-miR-27b-3p was identified in response to VACV infection (arrow),
similar to miR-29a-3p. Most strikingly, treatment of VACV-infected cells with AraC had a dra-
matic effect on both unmodified and modified miR-27b-3p at 6 and 24 hpi, rescuing both

Fig 5. Individual miRNAs show varying susceptibility to VACV-induced polyadenylation and reduction in abundance. The top row shows the relative
abundance of unmodified or templated (blue) and modified (red) (a) miR-16-5p, (b) miR-29a-3p, and (c) and miR-27b-3p in uninfected and infected cells at 6
and 24 hpi, with and without AraC treatment. Data shown are the average number of reads for three replicates; error bars represent SD. The middle row
shows northern blot analyses of RNA extracted from HeLa cells under the same conditions as in a, d, g, using probes complementary to (b) miR-16-5p, (e)
miR-29a-3p, and (h) miR-27b-3p. The arrows in 5e and 5h indicate likely pre-miRNA. The bottom row compares the modifications to the miRNA read for (c)
miR-16-5p, (f) miR-29a-3p and (i) miR-27b-3p in uninfected and infected cells at 6 and 24 hpi, with and without AraC treatment.

doi:10.1371/journal.pone.0131787.g005
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forms in infected cells. Thus while miRNA tailing required only early viral gene expression, a
full replication cycle was necessary for efficient reduction of unmodified and modified forms of
miR-27b-3p.

To examine further the requirement of a full replication cycle on miR-27b-3p reduction, we
examined the levels of this miRNA in HeLa cells infected with Modified Vaccinia virus Ankara
(MVA), a replication deficient VACV strain lacking 15% of the parental genome. MVA
expresses early, intermediate and late genes but is unable to produce infectious progeny virus
[37, 38]. We also infected a non-permissive cell line (CHO) with VACV; CHO cells support
only early VACV gene expression [39]. In both experiments (Fig 6) polyadenylation occurred
but the reduction in abundance of both unmodified and modified species was partially rescued
compared to VACV-infected HeLa cells. This suggests that suppression of some host miRNAs
by VACVmay require the expression of a full complement of intermediate and late VACV
genes, many of which are lacking in MVA. Interestingly, in all three conditions where VACV
replication is suppressed (HeLa cells infected with VACV and treated with AraC, HeLa cells
infected with MVA, and CHO cells infected with VACV) the polyadenylation band has slightly
faster mobility compared to HeLa cells infected with VACV, indicating the modified forms are
shorter.

Unmodified miRNAs are shortened in VACV-infected cells
Tailing followed by trimming of the 3’ end of miRNAs has been identified as a precursor to
miRNA degradation. This has been mechanistically linked to the presence of a highly comple-
mentary target that may alter the conformation or accessibility of the 3’ end of the miRNA [23,
24], reviewed in [40]. We do not expect an RNA-mediated recognition mechanism to mediate
the widespread degradation in miRNAs observed in VACV-infected cells, however trimming is
likely to be a general feature of exonuclease-mediated degradation. It is not possible to infer
trimming of polyadenylated miRNAs, however we examined unmodified miRNA sequences
for evidence of trimming for ten miRNAs that exhibited either minimal reduction (fold change

Fig 6. The rapid VACV-induced reduction of modified and unmodified forms of miR-27b-3p is
inhibited by arrest of viral replication. Northern blot analysis of RNA extracted from HeLa or CHO cells
infected with VACV or MVA at an MOI of 10, or mock infected, in the absence or presence of AraC as
indicated. RNA was extracted at 0 or 6 hpi. The probe was a DNA oligonucleotide perfectly complementary to
miR-27b-3p.

doi:10.1371/journal.pone.0131787.g006
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less than 20%: miR-16-5p and miR-21-5p), intermediate levels of reduction (fold change 40–
65%: miR-22-3p and miR-191-5p) or extensive reduction (fold change greater than 70%: let-7b-
5p, let-7i-5p, miR-27b-30, miR-29a-3p, miR-31-5p and miR-143-3p) at 6 hpi. The read lengths
in uninfected and infected cells were compared and analysed, representative data are shown in
Fig 7a and 7b. Overall, a statistically significant increase in the proportion of shorter reads in
VACV-infected cells was detected for six of the ten miRNAs, spanning all three classes (miR-
21-5p, miR-22-3p, miR-191-5p, let-7b-5p, let-7i-5p and miR-143-3p) (Fig 7 and S4 Fig). Inter-
estingly, the reduction in length was not uniform, for example the proportion of miR-21-5p
reads that are 24 nt in length were not affected by VACV infection, however there was a loss in
the reads that were 23 nt in length, with concurrent accumulation of the 22 nt forms (Fig 7).
This might suggest that only reads of certain lengths are available for tailing, trimming or
removal, indicating that the mechanism of miRNAmodification employed by VACV is read
length dependent. AraC treatment did not affect read length of unmodified miRNAs in either
infected or uninfected cells (data not shown). It is worth noting that our analysis will only
include reads> 16 nt, therefore extensive trimming would not be detected. In summary, shorter
unmodified miRNAs accumulate in response to VACV infection but this feature is not uniform
across miRNAs and also not obviously associated with the extent of reduction observed.

Discussion
Many viruses exert subtle and targeted effects on individual miRNAs[28] however poxviruses
appear unique in their ability to directly polyadenylate cellular miRNAs and induce widespread

Fig 7. Unmodified miRNAs are shortened in VACV infected cells. (a) Logo images displaying the length of reads mapping to the indicated miRNAs in
uninfected cells (left column) and VACV-infected cells (right column). For comparison, a dotted black line has been placed on the images at the same position
for uninfected and infected samples in order to visualize the difference between 3’ end composition in uninfected and infected cells, (b) The average
proportion (n = 3) of miRNA reads of different lengths in uninfected and infected samples. Statistically significant differences (p<0.05, t-test) are indicated with
an asterisk.

doi:10.1371/journal.pone.0131787.g007
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reduction in their abundance[11]. Here we demonstrate substantial variation in the extent of
modification and reduction of individual miRNAs induced by VACV, based on a quantitative
sequencing analysis of small RNA species at both early (6 hpi) and late (24 hpi) time points.
The 6 hour time point is likely to represent a snapshot of the balance between the host anti-
viral response and VACV immune evasion mechanisms. At this time the majority of cellular
miRNAs are reduced however a subset remain unchanged, including highly abundant miRNAs
such as miR-16-5p which modulates the cell cycle [41], the pro-tumorigenic miRNA miR-21-
5p [42], and miR-125a-5p which activates the NF-κB pathway [43]. There were even some
miRNAs that were significantly up-regulated, including one miRNA, miR-27a-5p, which has
been identified as a tumour suppressor in other contexts [44]. The observed diversity in
response of the miRNAs to VACV suggests intrinsic differences in the properties of these small
RNAs within the cell. These could relate to sub-cellular localization, RISC occupancy, diversity
in RISC composition and extent of target binding to individual miRNAs, all of which may be
impacted by viral or host factors during infection. These findings also have relevance when
considering the potential impact of the cellular miRNAs on different aspects of the VACV life
cycle, since some miRNAs remain largely unchanged for at least the first 6h of infection and
could regulate genes involved in the viral-host interplay.

The molecular mechanisms underlying the VACV-induced reduction in cellular mature
miRNAs are assumed to relate largely to the adenylation of the mature forms, as proposed by
Backes et al [11]. Specifically they showed that a synthetic tailed miRNA mimic was absent fol-
lowing transfection into cells whereas a non-tailed version was present, suggesting that the 3’
modification of the synthetic RNA induced its degradation. The exonuclease(s) involved in the
degradation mechanism have not been defined and it is not known whether these observations
with synthetic RNA would translate to endogenous miRNAs loaded into RISC. We do not
observe a clear correlation between the extent of tailing and the extent of reduction of miRNAs.
In particular, miRNAs that are highly tailed at 6 hpi are not necessarily among the most
reduced at 24 hpi (Fig 4). Since the turn-over rates of miRNAs are known to vary this could
contribute to the differential reductions in miRNAs upon infection [18, 24, 45]. Overall our
results do not support a model whereby VACV-induced polyadenylation marks all miRNAs
for rapid degradation. Differences with the previous report [11] relate mainly to the analysis of
more miRNAs in this study and the comparison of both early and late time points. We also
demonstrate that some cellular miRNA levels are influenced by intermediate and/or late
VACV gene expression. Specifically, AraC treatment partially rescued the levels of modified
and unmodified forms of miR-27b-3p (Fig 5). Use of the non-permissive CHO cell line and
HeLa cells infected with the mutated VACV strain MVA further supported this result. The dif-
ference in miRNA reduction in MVA infected cells compared to wild type was particularly
intriguing since MVA does express intermediate and late genes, however it is missing six large
sections of genome plus additional smaller mutations when compared to VACVWR. Our
results suggest the required factor(s) for miRNA reduction are missing or mutated in MVA.
These results also highlight potential pitfalls in extrapolating directly from VACV to MVA
with regards to the impact of cellular miRNAs.

Adenosine tails have previously been shown to be added to miRNAs in human cells by the
VACV poly(A) polymerase protein VP55, which is expressed early in the viral life cycle [11].
An interesting question is how VP55 selects miRNAs for tailing. Based on sequencing and
northern blot analysis here we report a surprising degree of variation in the extent of tailing of
individual miRNAs by this protein. The majority of reads of some miRNAs (e.g miR-29a-3p)
were tailed whereas others (e.g. miR-16-5p) were largely unmodified. The factors determining
the extent of miRNA tailing are unclear but may include subcellular localization, RISC occu-
pancy, turnover rates, accessibility to VP55 and interactions with other effector proteins. Past

Quantification of the Impact of Vaccinia virus on Host MicroRNAs

PLOSONE | DOI:10.1371/journal.pone.0131787 July 10, 2015 14 / 19



studies into the specificity of VP55 for viral mRNAs reported that the protein required greater
than a 34 nt primer template length before binding to uridylate sequences and catalysing the
processive addition of 30 to 35 adenylate residues [46]. Binding of VP55 to various RNAs
shorter than 30 nts was not detected [47]. Given that all mature miRNAs are<30 nts, the rules
governing VP55 binding to, and polyadenylation of, miRNAs warrant further investigation.

It is unclear whether VACV contributes any factor that could specify the extent to which
miRNAs are differentially regulated. It is possible that specificity in this regard simply relates
to endogenous miRNA properties in the cell but given that some miRNAs can be advantageous
to viruses [48] while others broadly antiviral [49], it is hard to imagine the virus would not
evolve to elicit more control over these molecules. At the same time additional reports have
demonstrated that VACV also encodes mechanisms for inhibiting pre-miRNA processing [12,
50] which could also contribute to the increase in pre-miRNA forms and reduction of mature
miRNAs at late time points that we also observe. In summary this virus interfaces with host
small RNA biogenesis and turn over through multiple mechanisms and the functional conse-
quences of this merit further attention.

Supporting Information
S1 Fig. Average number of reads across the eight samples. Each sample is composed of three
biological replicates. Error bars represent the standard error of the mean.
(TIF)

S2 Fig. A subset of miRNAs increase in response to VACV infection. Comparison of the
average abundance of unmodified miRNA (normalised to the total number of high quality
reads) in uninfected and VACV-infected cells. N = 3, error bars represent SD, and statistical
significance of<0.05 (t-test) is indicated on the figure.
(TIF)

S3 Fig. AraC treatment alone does not produce significant changes to miRNA abundance
in HeLa cells. Differential expression levels are shown as volcano plots for the 107 most highly
expressed miRNAs (>100 reads per million) in HeLa cells with and without treatment with
AraC at (a) 6 hpi and (b) 24 hpi.
(TIF)

S4 Fig. VACV causes accumulation of shorter read lengths in some miRNAs. The average
proportion (n = 3) of miRNA reads of different lengths in uninfected and infected samples are
compared. Shorter read lengths of miR-22-3p, let-7i-5p and miR-191-5p accumulate in VACV-
infected cells. Statistically significant differences (p<0.05, t-test) are indicated with an asterisk.
(TIF)

S5 Fig. Equal loading of samples across gels used for all northern blot analyses was con-
firmed using ethidium bromide staining. An example of an ethidium bromide stained gel is
provided. This gel was used for the northern blots shown in Fig 5e and 5h.
(TIF)

S1 Table. Number of small non-coding RNA (sncRNA) reads per sample (three replicates
for each treatment). The total sncRNA reads and sncRNA reads matching the human genome
are given. Averages and SEM are on the right.
(XLSX)

S2 Table. Breakdown of miRNA sequencing reads.
(XLSX)
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S3 Table. Data used to construct volcano figures.
(XLSX)

S4 Table. Average read number (n = 3) and SD of six miRNAs which increase in amount in
response to VACV infection.
(XLSX)

S5 Table. Abundance and modifications of the 107 most abundant miRNAs at 6 and 24
hpi.
(XLSX)

S6 Table. Mean, median and standard deviation of unmodified and modified miRNA
reads, presented as reads or as abundance (% of total).
(XLSX)
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