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RUNX1/RUNX1T1 is the most common fusion gene found in acute myeloid leukemia.

Seminal contributions by many different research groups have revealed a complex

regulatory network promoting leukemic self-renewal and propagation. Perturbation of

RUNX1/RUNX1T1 levels and its DNA binding affects chromatin accessibility and tran-

scription factor occupation at multiple gene loci associated with changes in gene

expression levels. Exploration of this transcriptional program by targeted RNAi screens

uncovered a crucial role of RUNX1/RUNX1T1 in cell cycle progression by regulating

CCND2. This dependency results in a high vulnerability toward inhibitors of CDK4

and CDK6 and suggests new avenues for therapeutic intervention against acute myeloid

leukemia. © 2020 ISEH – Society for Hematology and Stem Cells. Published by Elsevier

Inc. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/)
Fusion genes and their underlying chromosomal alterations

are a hallmark of acute myeloid leukemia (AML). They

are particularly prevalent in pediatric AML, where more

than 50% of all cases harbor a fusion gene [1,2]. As fusion

genes predict clinical outcome, they are used for patient

stratification in the World Health Organization (WHO)

2016 classification of AML [3]. More than 60% of all

rearrangements found in pediatric AML target only five

different protein complexes: the core binding factor (CBF),

the epigenetic regulator MLL, the nuclear receptor RARA,

and the nuclear pore component NUP98 [1,2]. Interest-

ingly, all five complexes including NUP98 directly regu-

late transcription. The rearrangements replace a functional,

transactivating or repressing domain with parts of the

second fusion partner, thereby generating transcriptional

modulators with novel functionalities.

Most of these translocations are initiating events in the

process of leukemogenesis and are expressed in all leuke-

mic cells of a patient. The generation of fully transformed

leukemic cells usually requires the acquisition of several
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mutations that act in concert to drive self-renewal and

proliferation, sustain viability, and avoid differentiation

and immune surveillance [4]. Classically, these muta-

tions are divided into two classes. While class 1 com-

prises mutated kinase genes such as BCR/ABL1 or

FLT3-ITD and is thought to promote proliferation and

survival, fusion genes encoding transcription factors

such as MLL/AF9, PML/RARA or RUNX1/RUNX1T1

(AML1/ETO, AML1/MTG8) have been classified as type

2 mutations that drive self-renewal and interfere with

differentiation. Recently, a third class has been sug-

gested that separates mutated epigenetic modifiers and

readers from class 2. However, more recent investiga-

tions of transcriptional networks underlying the leuke-

mic phenotypes have blurred this clear distinction, with

type 2 members also promoting proliferation by control-

ling growth factor and cell cycle genes such as FLT3,

CDK6, and CCND2 [5−7]. As preleukemic and leuke-

mic self-renewal is dependent on cell cycle progression,

it is not really surprising that class 2 mutations also

drive proliferation as part of their program.

Importantly, perturbation studies have revealed that

human leukemic cells are dependent on continuing
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expression of their respective type 2 fusion gene, with

its transient loss leading to impaired proliferation and

increased senescence [8]. This dependence of leukemia

on continuing expression of fusion genes is based on

the leukemic programs and their underlying transcrip-

tional networks linked to the corresponding fusion pro-

tein. Fusion proteins such as RUNX1/RUNX1T1 and

CBFB/MYH11 are linked by unique transcription factor

networks and are subject to posttranslational modifications

regulating their activities [9]. These networks are com-

posed of nodes common to all AML types such as the

AP-1 and Kr€uppel-like factor (KLF) nodes and those being

characteristic of a given AML subtype such as the HOXA,

NFIL3, and POU4F1 nodes. For instance, the HOXA node

separates AML into two classes: those that activate the

HOXA cluster (e.g., AMLs with MLL or NUP98 rearrange-

ments) and those that do not (e.g., AMLs with RARA or

core binding factor rearrangements) [9,10]. Thus, the dif-

ferent fusion proteins employ distinct transcription factor

networks to establish and drive the corresponding AML

subtype.

Dissecting transcriptional programs of leukemic

fusion proteins

Because of their biological significance and exclusive

expression in preleukemic and leukemic cells, fusion

genes are highly attractive targets for any precision

medicine approach. However, their direct targeting by

more conventional drug discovery approaches, such as

small molecules and monoclonal antibodies, has proven

to be challenging, CBFB/MYH11 being so far the only

example of a truly fusion protein-specific targeting

[11,12]. An alternative way to specifically target fusion

genes is by RNA interference (RNAi)−based approaches.

RNAi is a naturally occurring mechanism that allows

sequence-specific gene silencing. Discovery of this pathway

opened the way for many, previously, unreachable targets

as RNAi can be triggered by exogenous introduction of

dsRNA or constructs [13]. This approach, however, requires

complex lipid or polymeric formulations for efficient drug

delivery because of the unfavorable pharmacokinetic (PK)

properties of siRNAs [14−16].
Alternatively, the leukemic programs and transcrip-

tional networks associated with fusion gene-encoded

transcriptional regulators offer new options for targeted

therapeutic interventions. Pathways under the direct

control of the corresponding fusion protein are likely to

contain elements amenable to pharmacologic interfer-

ence. The challenge here is to have sufficient insight

into the composition of these fusion protein-driven pro-

grams and the relevance of its components for leukemic

maintenance. These programs can be unraveled by

fusion protein knockdown or inhibition of its function,

followed by analysis of changes in chromatin occupation

and gene expression. Integration of RNA-seq, ChIP-seq,
and DHS-seq data revealed the compositions of several

AML networks including those for RUNX1/RUNX1T1,

CBFB/MYH9, and CBFA2T3/GLIS2 [11,17,18]. Com-

pared with the whole genome or transcriptome, such

well-characterized networks have a substantially lower

complexity, thus facilitating further functional character-

ization by targeted RNAi or CRISPR screens.

These transcription factor nodes add additional lev-

els of complexity with respect to the transcriptional

regulation of the whole network. Fusion proteins may

affect transcription directly by physical interaction with

promoters, enhancers, or silencers, indirectly via regulation

of expression and activity of transcription factors, or

even in a mixed mode involving both direct binding of

the fusion protein and recruitment of downstream tran-

scription factors, consequently exacerbating the identifi-

cation of direct target genes. Generally, direct target

genes are defined by changes in transcript levels upon

perturbation of the transcription factor in combination

with binding of the transcription factor to the gene

locus or to a more distant regulatory element such as an

enhancer or silencer [6]. Consequently, integration of

three-dimensional interaction analyses provides more

detailed insights into fusion protein-exerted control of

transcriptional networks and a more comprehensive list

of direct target genes [19].

The RUNX1/RUNX1T1 interactome
The chromosomal translocation t(8;21)(q22;q22), generating

the RUNX1/RUNX1T1 fusion gene, is the most prevalent

chromosomal rearrangement, with an incidence of 15% in

children and young adults [20]. While RUNX1 is a key

transcription factor in the early stages of hematopoiesis

[21], the role of RUNX1T1 (ETO, MTG8, CBFA2T1) is

less well understood [22]. Like its other family members,

RUNX1T1 is a transcriptional co-repressor [23,24]. In con-

trast to its paralogues, RUNX1T1 is only more prominently

expressed in the megakaryocytic and erythrocytic lineages,

basophiles and eosinophiles, and B progenitors. It is, how-

ever, hardly expressed in the hematopoietic stem and pro-

genitor cell (HSPC) compartment. The translocation

juxtaposes the DNA-binding Runt domain of RUNX1 and

the almost complete open reading frame of RUNX1T1,

with chromosomal breakpoints clustering within RUNX1

intron 5 and RUNX1T1 intron 1 (Figure 1A) [25,26]. A

paralogue of RUNX1/RUNX1T1, CBFA2T3 is part of an

alternative fusion with RUNX1 in the translocation t

(16;21)(q24;q22) associated with a phenotypically very

similar AML [27].

The transcriptional network established and main-

tained by RUNX1/RUNX1T1 is one of the best charac-

terized leukemic networks. RUNX1/RUNX1T1-exerted

control is modulated by several posttranslational modi-

fications including acetylation and ubiquitylation by

EP300 and UBE2L6, respectively, and depends on the

https://doi.org/10.1016/j.exphem.2020.11.005


Figure 1. Structure of the RUNX1/RUNX1T1 fusion gene and protein. (A) Organization of the fusion gene. The breakpoints cluster within

RUNX1T1 exon 1a−2 and RUNX1 exon 5−6. (B) Structure of the fusion protein. Transcription factors and epigenetic regulators that are form-

ing complexes with RUNX1/RUNX1T1 are indicated below the regions with which they are interacting.
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recruitment of epigenetic modifiers, in particular class I

histone deacetylases via SIN3A and NCOR via its

RUNX1T1 moiety (Figure 1B) [28−34].

Similar to wild-type RUNX1, RUNX1/RUNX1T1 heter-

odimerizes with CBFb, increasing its DNA binding affin-

ity, although the relevance of this interaction for the

function of RUNX1/RUNX1T1 has remained a matter of

debate [35,36]. Furthermore, several hematopoietic tran-

scription factors, including GATA1, CEBPA, and PU.1,

have been found to interact with the Runt domain of both

wild-type and fusion protein [37]. RUNX1/RUNX1T1

forms a complex consisting of CBFb, E proteins TCF3

and TCF12, LYL1, and bridging factors LMO2 and LDB1

and further cooperates with the ETS family members FLI1

and ERG [38]. In particular, the interaction with E proteins

has been investigated in greater detail, where RUNX1/

RUNX1T1 binds them through its NHR1 and NHR2

domains. Interestingly, this interaction prevents recruitment

of p300/CBF co-activators [39,40]. Nevertheless, p300 has

been reported to modulate RUNX1/RUNX1T1 activity by

acetylating several N-terminal lysine residues [33].
A main feature of RUNX1/RUNX1T1-mediated dys-

regulation of gene expression is its competition with

wild-type RUNX1 binding. RUNX1/RUNX1T1 shares

with RUNX1 about 75% of its binding sites. A basal

level of RUNX1 is required for RUNX1/RUNX1T1 to

maintain cell growth, and complete suppression of the

differentiation genes is not tolerated [41]. This compe-

tition also results in the recruitment protein complexes

with opposing activities (Figure 2). For instance, re-

chromatin immunoprecipitation (ChIP) experiments

revealed that RUNX1/RUNX1T1 recruits HDACs,

while RUNX1 cooperates with EP300 on genes

repressed by the fusion protein [42]. Both complexes

can bind to the same loci, suggesting either differential

occupation of alleles or co-occupation on the same

allele on sites with multiple binding sites [43]. Further-

more, while RUNX1/RUNX1T1 has been found to

interact with DNA methylases DNMT1 and DNMT3A,

RUNX1 is able to recruit TET histone demethylases,

highlighting again opposing activities associated with

wild-type and mutated protein [44,45].

https://doi.org/10.1016/j.exphem.2020.11.005


Figure 2. Dynamic interplay between RUNX1 and RUNX1/ETO binding partners. An equilibrium between RUNX1/ETO and RUNX1 is

required for leukemic propagation. Repression of C/EBPa and activation of expression of AP-1 subunits impairs myeloid differentiation and pro-

motes leukemic self-renewal and expansion.
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Loss of RUNX1/RUNX1T1 severely compromises

malignant self-renewal, but hardly affects viability of t

(8;21) AML cells, while depletion of RUNX1 induces

apoptosis in this leukemic context [46,47]. This finding

suggests that this leukemia is dependent on a balance

between RUNX1/RUNX1T1 and RUNX1 and agrees

with the clinical observation that mutations in the

nontranslocated RUNX1 allele are only rarely found in

t(8;21) AML. In addition, positive feedback loops com-

prise FOXO1, ERG, and AP-1, whose expression is

increased by RUNX1/RUNX1T1 and which co-occupy

sites and cooperate with RUNX1/RUNXT1T in driving

leukemic propagation (Figure 2) [19,48,49]. In contrast,

C/EBPa and RUNX1/RUNX1T1 form a negative feed-

back loop, with the latter directly interfering with the

expression of the former [37,42]. Increased expression

of differentiation-associated genes is associated with loss

of RUNX1/RUNX1T1 binding and dependent on concomi-

tant binding of CEBPa to these sites [42]. Consequently,

RUNX1/RUNXT1 employs a complex network of checks

and balances comprising binding site competition and

feedback loops for establishing and maintaining a leukemic

transcriptional program.

Control of gene expression by RUNX1/RUNX1T1:

transcription and beyond

Depletion of RUNX1/RUNX1T1 by fusion site-specific

siRNAs has provided some fundamental insights into

the transcriptomic program driven by this fusion pro-

tein [42,50]. RUNX1/RUNX1T1 knockdown in t(8;21)

AML cells causes a significant change in expression of
about 2,600 of 15,000 expressed genes showing that

RUNX1/RUNX1T1 controls 17% of the whole tran-

scriptome.

Consequently, RUNX1/RUNX1T1 reprograms a

massive transcriptional network to establish and main-

tain leukemia. In agreement with repressing gene func-

tion by recruiting class 1 HDACs, RUNX1/RUNX1T1

impairs expression of a set of about 1,400 genes that is

linked to myeloid and, in particular, neutrophil differentia-

tion. However, although RUNX1/RUNX1T1 is frequently

described as a transcriptional repressor, the vast majority

of these genes are rather modestly downregulated, suggest-

ing that a basal expression of these “repressed” genes may

not only be tolerated, but actually may be required for the

leukemic phenotype. Furthermore, almost 50% of all genes

affected are maintained or activated by RUNX1/ETO. This

upregulated gene expression signature is associated with

several “Hallmarks of Cancer” processes including cell

cycle progression at multiple stages, glycolysis and oxida-

tive phosphorylation, MTOR signalling, RNA processing,

and ribosome biogenesis [42,50].

In particular, the latter two processes emphasize addi-

tional mechanisms of gene expression control exerted by

leukemic fusion proteins. RUNX1/RUNX1T1 regulates the

generation of alternative transcripts both by affecting alter-

native splicing and by repressing the activity of alternative

promoters of genes such as RPS6KA1 or PARL, thus

adding an additional layer of complexity to the RUNX1/

RUNX1T1 transcriptional network [51]. Furthermore, and

similar to genetic deletion of Runx1 in murine HSCs,

RUNX1/RUNX1T1 depletion reduces the expression of

https://doi.org/10.1016/j.exphem.2020.11.005
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multiple ribosomal proteins and has been found to impair

the expression of rRNAs by binding together with the

RNA POL I factor UBF1 to rDNA repeats [42,52,53]. In

line with these findings, the leukemic potential of AML1/

ETO9a, a C-terminally truncated isoform of RUNX1/

RUNX1T1, depends on AES-driven induction of snoRNAs

that control 20-O-methylation of rRNAs [54]. However, it

remains unclear how these changes in expression affect

ribosome biogenesis, as knockdown of CBFB/MYH11

caused an increase of polysomes despite impaired rRNA

transcription [55].

Finally, RUNX1/RUNX1T1 also controls mRNA

translation and stability by perturbing the expression

of multiple miRNAs. Genome-wide analysis of AML

patient samples revealed that t(8;21) patients have a

distinct miRNA signature compared with other chromo-

somal translocations [56]. For instance, MIR126, which

reduces apoptosis and increases proliferation, is overex-

pressed in CBF AMLs [57]. It is an intronic miRNA

located in the EGFL7 gene, a direct target gene of

RUNX1/RUNX1T1. Furthermore, repression of MIR223

by RUNX1/RUNX1T1 impairs granulocytic differentiation

and activation of leukemic cells and may also support cell

cycle progression by enhanced expression of the MIR223

target E2F1 [56,58]. These combined findings establish a

model in which RUNX1/RUNX1T1 interferes with gene

expression at multiple layers: by dysregulation of Pol I

and Pol II transcription, by affecting RNA splicing and

by interfering with translation via miRNAs and ribosome

biogenesis (Figure 3).

Dissecting the RUNX1/RUNX1T1 network

This large and complex RUNX1/RUNX1T1 network

offers both challenges and opportunities for precision

medicine approaches. On the one hand, it is predicted

to comprise multiple potential targets amenable to con-

ventional drug discovery and development and also a

number of candidates for which already clinically

approved drugs or at least experimental substances at a

preclinical stage are available. On the other hand,

because its high complexity, it is challenging to iden-

tify those crucial targets whose modulation will lead to

a collapse of the net and a potential therapeutic effect.

Promising approaches here are RNA interference and

CRISPR screens for the functional identification of net-

work components.

To identify crucial components of the leukemic net-

work, we assumed that interference with target genes

of RUNX1/RUNX1T1 is less likely to be compensated

by altered expression of alternative genes than that of

indirect target genes. Direct target genes were selected

according to the “guilt by proximity” principle by

choosing genes with detectable RUNX1/RUNX1T1

binding within or in the neighborhood of their loci.

This approach is likely to underestimate the direct
impact of a fusion protein, as distances between gene

loci and their regulatory elements may span several

hundred kilobases. Furthermore, we focussed on genes

whose expression was significantly downregulated by

RUNX1/RUNX1T1 knockdown because of their potential

involvement in leukemic self-renewal.

Integration of RNA-seq, ChIP-seq, and DNase I

hypersensitive site (DHS)−seq experiments identified a

set of 133 genes [6]. To minimize counterselection

during the enrichment process, a doxycycline-inducible

expression system was chosen, where the siRNA

sequences were embedded in a MIR30 backbone. The

subsequent RNAi screen examined the relevance of

these putative self-renewal genes both in tissue culture

using serial replating and long-term culture and in vivo

after orthotopic transplantation of immunodeficient mice.

This study provided several key findings. Firstly, the

in vivo arm provided many more candidates than the in

vitro assays, a result that was also described in a simi-

lar RNAi screen in glioma [59]. A possible explanation

for this difference is that propagation in vivo requires

additional functionalities compared with growth in tis-

sue culture because of, for example, interaction with

stroma, migration and homing in new sites, and meta-

bolic restrictions. Secondly, the only gene that robustly

scored in all in vitro and in vivo arms of the screen

was CCND2. Validation experiments demonstrated a

strict dependency of leukemic clonogenicity and com-

petitiveness on CCND2 expression [6]. Notably, deple-

tion of either RUNX1/RUNX1 or CCND2, as well as

pharmacologic inhibition of CDK6, led to senescence

even in cell lines harboring mutated p53, suggesting a

p53-independent mechanism. Thirdly, RUNX1/RUNX1T1

was also found to bind to an intragenic element in the

CDK6 locus, and its loss was associated with reduced

CDK6 expression. Finally, RUNX1/RUNX1T1-positive

AML cell lines and patient cells are very sensitive toward

the CDK4/6 inhibitor Palbociclib, exhibiting half-maximal

responses at nanomolar concentrations. Thus, RUNX1/

RUNX1T1 drives cell cycle progression through the G1

phase by promoting the expression of both components of

the CDK6−CCND2 kinase complex.

Independent confirmation of the significance of CCND2

came from the Cancer Dependency Map project, where

genome-wide RNAi screens identified CCND2 as an

essential gene in the two 2 RUNX1/RUNX1T-expressing

AML cell lines within a total of 501 cancer cell lines [60].

Moreover, several studies identified CCND2 mutations in

3%−12% of all t(8;21) AMLs, with the majority of them

causing an increase in CCND2 protein stability [61−66].
These findings again highlight an dependence of t(8;21)

AMLs on CCND2 activity and suggests a genetic manifes-

tation and enhancement of the RUNX1/RUNX1T1-driven

expression of CCND2. Similarly, CCND1 was mutated in

about 2% of the t(8;21) cases examined, while CCND3

https://doi.org/10.1016/j.exphem.2020.11.005


Figure 3. RUNX1/RUNX1T1 regulates gene expression at multiple levels. The fusion protein can dysregulate transcription by binding to pro-

moter, enhancer, or silencer elements. RUNX1/RUNX1T1 also affects the ratios of RNA isoforms by regulating alternative promotor activity

and affecting RNA splicing. Lastly, RUNX1/RUNX1T1 has an impact on translation by controlling miRNA and rRNA transcription and ribo-

somal protein expression.
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mutations were found in MLL-rearranged AMLs, but not

in t(8;21) AML. Although RUNX1/RUNX1T1 occupies

the loci of all three D-cyclin genes, RUNX1/RUNX1T1

knockdown reduced CCND1 and CCND2, but not CCND3

transcript levels [42]. CCND1 is at least tenfold lower

expressed than CCND2 across AML subtypes and neither

scored in RNAi screens nor compensated for loss of

CCND2 in t(8;21) cells [6]. These data suggest non-over-

lapping functions of different D-cyclins in the leukemic

context.

It is also interesting to note that RUNX1/RUNX1T1

upregulates CDKN1A (p21) in a p53-independent fashion,

thereby interfering with the CDK2-mediated progression

from the G1 into the S phase of the cell cycle [67,68]. It

has been suggested that bypassing p21 functionality is one

mechanism by which RUNX1/RUNX1T1 induces and

drives leukemogenesis [68], with the activation of CCND2

expression possibly contributing to it. However, CDKN1A

has also been reported to support DNA repair and self-

renewal of leukemia stem cells upon DNA damage [69].

These on first sight contradictory observations suggest a

model in which RUNX1/RUNX1T1 exerts a balanced

regulation of cell cycle progression by integrating leuke-

mic proliferation with the necessity to maintain genomic

integrity.

Furthermore, the activation of direct target genes by

RUNX1/RUNX1T1 seems to be surprising, given that

the translocation replaces the RUNX1 transactivation

domain by several repressor domains of RUNX1T1.

However, detailed analysis of the impact of RUNX1/

RUNX1T1 depletion on chromatin accessibility, his-

tone modifications, and transcription factor occupation
of the CCND2 locus revealed that RUNX1/RUNX1T1

binds mainly to an element 30 kb upstream of CCND2’s

transcriptional start site (TSS) [6,19]. Hi-C chromatin con-

formation capture analysis indicated that both elements

interact with each other and that loss of RUNX1/

RUNX1T1 leads to a strengthening of this interaction.

These findings suggest that RUNX1/RUNX1T1 supports

CCND2 expression by modulating a three-dimensional

interaction between its promoter region and a silencing

element. Interestingly, the histone acetyl transferase EP300

binds to the promoter region of CCND2. As EP300-medi-

ated acetylation of lysines located at the N-terminus of

RUNX1/RUNX1T1 can support its self-renewal function,

it is tempting to speculate that this modification may be

involved in the activation of CCND2 transcription, similar

to what has been described for other upregulated genes

such as ID1 [33].

In addition, RUNX1/RUNX1T1 also maintained CCND2

transcription indirectly via the JUN-FOS heterodimer AP-1.

Knockdown of RUNX1/RUNX1T1 reduces expression

of both FOS and JUN members and blocks JUND bind-

ing to the CCND2 promoter. In line with these findings,

expression of transdominant negative FOS, which inter-

feres with all AP-1 isoforms, reduces CCND2 tran-

script levels and severely impairs proliferation of the

RUNX1/RUNX1T1-expressing AML cells [9]. These

combined data suggest a mixed-type regulation model

for CCND2, where loss of RUNX1/RUNX1T1 directly

changes chromatin accessibility and the three-dimen-

sional communication between promoter and distal

elements, and impairs chromatin occupation by AP-1

members.

https://doi.org/10.1016/j.exphem.2020.11.005


Figure 4. Dysregulation of CDK6 by leukemic mutations. Leukemic fusion proteins such as MLL/AF4, NUP98/NSD1, and RUNX1/ETO either

directly drive CDK6 expression or, in the case of RUNX1/ETO, enhance expression of CCND2. FLT3-ITD forms with CDK6 a positive feed-

back loop, where FLT3-ITD activates CDK6 expression via the SRC kinase HCK, while its own transcription is driven by CDK6.
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Therapeutic targeting of the cell cycle in AML

Facilitating cell cycle progression by supporting expression

and function of CDK6 or D-cyclins has also been observed

for other fusion genes and therewith associated mutations.

Several functional studies, including those employing

RNAi screens, have highlighted dependence of acute leu-

kemias to expression of CDK6 or D-cyclins [6,70−72].
Many of the corresponding gene loci are bound by leuke-

mic fusion proteins and may, thus, be directly controlled

by them. For instance, the CDK6 and CCND3 loci are

direct target genes of MLL/AF4, the most frequent fusion

protein found in infant leukemia, and several NUP98

fusion proteins drive CDK6 transcription by binding to its

promoter [5,7]. Thus, promotion of G1 cell cycle phase

progression by activation of CDK6 expression is a com-

mon theme for leukemic fusion proteins (Figure 4).
The CDK6/CCND complex is also targeted by sev-

eral kinases that are recurrently mutated in AML. In

particular, FLT3-ITD has been found to be linked to

CDK6 in a reciprocal manner. On the one hand, CDK6

binds to the FLT3 locus and drives its expression [71].

On the other hand, FLT3-ITD increases CDK6 tran-

scription by activating the Src kinase HCK [73]. This

positive feedback loop offers exciting opportunities for

drug combinations to combat drug resistance. In this

context it is interesting to see that FLT3-ITD frequently

co-occurs with the NUP98/NSD1 fusion protein, suggest-

ing a scenario in which two mutations may synergize to

drive CDK6 expression and cell cycle progression [10].

These combined data indicate that a significant por-

tion of AMLs are addicted to CDK6 activity, which

creates new therapeutic opportunities. The availability

https://doi.org/10.1016/j.exphem.2020.11.005
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of several clinically approved CDK4/6 inhibitors offers

new opportunities for translating the addiction of acute

leukemias on G1 CDK activity into treatment strate-

gies. Currently, the European Medicines agency (EMA)

and the U.S. Food and Drug Administration (FDA)

have approved palbociclib, ribociclib, and abemaciclib,

three different compounds with similar activities and

properties, for the treatment of breast cancer. In addi-

tion, nine trials testing palbociclib or ribociclib in

acute leukemias are listed in the ClinicalTrials.gov

database. This number does not consider trials such as

the European Proof-of-Concept Therapeutic Stratifica-

tion Trial (ESMART), in which leukemias are part of

the tumour portfolio examined. Recent data suggest

that all three inhibitors do not directly inhibit CDK4/6

activity but prevent the association of the CDKs with their

CCND partners [74]. This conclusion is also supported by a

comparison of gene expression patterns by gene set enrich-

ment analysis (GSEA), which revealed a high correlation

between CCND2 knockdown and palbociclib treatment in t

(8;21) cells [6].

However, high CCND2 expression is associated with a

better clinical outcome in AML, suggesting that CCND2

may contribute to the relatively high chemosensitivity of t

(8;21) AML. Interestingly, although neither CDK4, CDK6,

or CCND1 predict outcome, high levels of CCND3 indicate

worse outcome. The reason for this is currently unknown

but may possibly reflect distinct substrate preferences of the

different CDK−CCND complexes.

Because of their cytostatic action, CDK4/6 inhibitors

will be ineffective as single agents and, thus, need to

be applied as part of combination treatments with tar-

geted compounds such as MTOR inhibitors or as part

of a scheduled regimen with classic chemotherapeutics

[75]. Classically seen as a driver of cell cycle progres-

sion by phosphorylating and inactivating RB1, recent

findings point to a much more complex role by coordi-

nating multiple cellular processes ranging from metab-

olism over DNA integrity to antigen processing and

presentation [76−83]. Given this complexity it may not

be a surprise that leukemic fusion proteins do target

such central cellular relay stations. Future research will

indicate whether and how this intimate relationship can

be therapeutically exploited.
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