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Hyperradiance by a stream 
of phase‑correlated atomic dipole 
pairs traversing a high‑Q cavity
Junseok Han, Jinuk Kim, Seung‑hoon Oh, Gibeom Son, Junseo Ha & Kyungwon An*

Hyperradiance in which radiation rate exceeds that of superradiance has been theoretically 
investigated in various coherently-coupled emitter-field systems. In most cases, either proposed 
setups were experimentally challenging or the mean photon number in a cavity was limited. In 
this paper, with numerical simulations and analytic calculations, we demonstrate that significant 
hyperradiance with a large mean photon number can occur in a microlaser system, where pairs of 
two-level atoms prepared in quantum superposition states traverse a high-Q cavity in the presence of 
a pump field intersecting the cavity mode. Hyperradiance is induced when the intracavity-pump Rabi 
frequency is out of phase with respect to the atom-cavity coupling so that the reduction of atomic 
polarization by the atom-cavity coupling is compensated by the pump Rabi frequency in the steady 
state to maximize atomic photoemission.

Superradiance, first proposed by R. Dicke, refers to a quantum mechanical emission phenomenon where a special 
entangled state or Dicke state of N correlated atoms exhibits emission power proportional to N21, in contrast 
to ordinary spontaneous as well as stimulated emission just proportional to N2. Many studies have performed 
theoretical investigation of superradiance3–7 as well as experimental realization in various systems8–13. There 
are also studies to manipulate and engineer superradiance in order to boost superradiance behavior itself14–17. 
Superradiance as a cooperative emission process due to quantum correlation, is often considered to provide the 
highest emission enhancement that the quantum correlation can offer.

However, in recent years, several authors pointed out that under proper conditions the emission rate can 
exceed that of superradiance. Emission in such circumstances is called hyperradiance and it has been theoretically 
studied in various physical systems such as coupled linear Josephson junctions18–21 and atom-cavity systems22–24. 
In the former, the coupling between soliton oscillators can make the microwave emission exceeds that of super-
radiance. In the latter,  Pleinert et al. considered an atom-cavity system driven by a pump laser while the spatial 
phase of the atoms inside the cavity is manipulated to suppress the destructive interference between different 
transition processes and to obtain the emitted number of photons surpassing that of superradiance22.  Xu et al. 
and  Zhao et al. considered a similar atom-cavity system but introduced frequency detuning among the cavity, 
the atoms and a pump laser23,24. Their studies showed that nonzero atom-cavity or cavity-pump detuning can 
bring about hyperradiance, contrary to the usual expectation that the emission be the strongest on resonance.

These studies on hyperraidance are significant advancements showing that the quantum correlation can be 
manipulated to yield further enhancement beyond the superradiance’s N-squared dependence. However, the 
hyperradiance studies so far have focused mostly on the increased emission rate, quoting very low mean photon 
numbers in the cavity or not properly addressing available emission power.

In this paper, we propose a different approach to induce hyperradiance in the setting of a microlaser25, where 
a stream of coherent atomic dipole pairs traverses a high-Q cavity. Coherent single-atom superradiance as well 
as superabsorption have been experimentally realized in a similar setup26,27. It is thus natural to consider a 
possibility of hyperradiance in the microlaser. With numerical simulations and analytic calculations, we dem-
onstrate that significant hyperradiance can occur when a pump field intersecting the cavity mode is introduced 
with opposite phase to the atom-cavity coupling. Under this condition, the pump Rabi frequency counteracts 
the atom-cavity coupling and thus keeps the atomic polarization maximized during the atom-cavity interaction 
time, resulting in enhanced photoemission. We also discuss the feasibility of realizing hyperradiance experi-
mentally in the microlaser. Our microlaser setup is experimentally easier to access than the setups considered 
in the previous theoretical studies, namely a pair of atoms continuously trapped exactly at antinodes in a cavity. 
We confirm that the present scheme is robust to random fluctuations such as random arrival times of atoms and 
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atomic velocity distributions, which inevitably occur in actual experiments. With experimentally achievable 
parameters we observe a hyperradiance behavior 8.5 times stronger than superradiance for one pair of atoms 
on average in the cavity, resulting in an average photon number in the cavity up to �n̂� ∼ 31 , corresponding to 
an output photon flux of 1.6× 107 /s for a cavity decay rate of 82.5kHz. We expect that our study would serve as 
a stepping stone to future theoretical as well as experimental studies on hyperradiance and to the development 
of ultrahigh-efficient microlasers.

Results
Model system.  Figure 1 depicts a model system for numerical studies. A beam of two-level atoms in a pair 
traverses a high-Q cavity mode. The atoms are excited to a superposition state of the lower and upper levels with 
equal probabilities by the first pump laser before they enter the cavity. For a time duration τ , the atoms interact 
with the cavity field in the presence of the second pump laser, which goes through the cavity perpendicularly 
to both the cavity axis (x axis) and the atomic beam direction (z axis). The atoms go through the anti-nodes of 
the cavity mode so that they interact with the cavity field with the maximum coupling strength g. One way of 
achieving this arrangement is to employ a nanohole-array atomic beam aperture in front of the cavity28. After τ , 
the atoms leave the cavity and simultaneously a new pair of atoms enter the cavity. This process is repeated until 
the cavity field reaches a steady state.

Equations of motion.  Let us denote the atomic transition frequency as ωa , the cavity resonant frequency 
as ωc , the frequency of the first pump lasers as ωp1 and that of the second pump laser as ωp2 . We assume 
ωc = ωp1 = ωp2 �= ωa , so detuning � = ωa − ωc = ωa − ωp1 = ωa − ωp2 �= 0 in general. Because atoms 
interact with the off-resonant pump lasers, the initial atomic state entering the cavity at time t is given by 
1√
2

[

|g� + e−i(ωp1t+φ)|e�
]

 with φ a constant phase introduced by the first pump laser. The cavity decay rate κ is not 
neglected but the atomic decay rate γ is assumed to be negligible compared to the other rates(γ ≪ κ , g ). The 
Hamiltonian in the interaction picture can be written as29

where N is the number of atoms interacting with the cavity at the same time, � the Rabi frequency of the second 
pump laser, â ( ̂a† ) the annihilation (creation) operator for the cavity field, σ̂zi the Pauli z-matrix and σ̂+

i  ( ̂σ−
i  ) the 

raising (lowering) operator for the ith two-level atom, so σ̂zi = |e�i�e|i − |g�i�g|i , σ̂+
i = |e�i�g|i and σ̂−

i = |g�i�e|i . 
When N = 1 , we have ‘one-atom case’ in which only one atom interacts with the cavity at a time. We have ‘two-
atoms case’ when N = 2 with a pair of atoms interacting with the cavity at a time. The atomic initial state in the 
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Figure 1.   Our model system. M1, M2: cavity mirrors. A: a beam of atom pairs propagating in z direction. P1: 
the first pump laser (propagating in y direction) to prepare atoms in the superposition state. P2: the second 
pump beam (propagating in y direction) intersecting the cavity mode perpendicularly. AN: the anti nodes 
(denoted by red-filled ellipses) of the cavity field. NA: a nanohole array aperture allowing the atoms to move 
along the anti-nodes of the cavity field. The two pump lasers are resonant with the cavity, which is detuned from 
the atomic transition frequency in general.
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interaction picture becomes 1√
2

(

|g� + e−iφ |e�
)

 in the rotating frame of the first pump frequency. We use the 
following master equation to calculate the time evolution of the atom-cavity state30.

We solve Eqs. (2) and (3) numerically during the interaction time τ . We describe the atoms entering the cavity 
with a tensor product of the atomic density matrix and the cavity density matrix. When the atoms leave the 
cavity after τ , we take tracing out the atomic density matrix. The whole process is repeated until a steady state 
is reached. The time evolution of the average photon number �n̂� = �â†â� , proportional to the emission power, 
can be calculated this way.

Degree of hyperradiance is characterized by a normalized radiance witness R defined as22–24

where �n̂�1 is the average photon number in the steady state for the one-atom case ( N = 1 ) and �n̂�2 for the two-
atom case ( N = 2 ). In the classical limit without quantum correlation, the two-atom case would generate emis-
sion power two times more than the one-atom case. In this limit, we expect R = 0 . However, in superradiance, 
we expect the emission power to scale with N2 . We thus expect �n̂�2 = 4�n̂�1 , indicating R = 1 . In the same line 
of reasoning, we expect that R > 1 would indicate hyperradiance exceeding superradiance.

When the mean photon number is much larger than unity and the interaction time between atoms and the 
cavity remains brief ( g

√
nτ ≪ 1 ) in our consideration, we can apply a semiclassical analysis to obtain analytic 

expressions for the mean photon number31,32. The expectation values of quantum operators like â , σ̂−
i  and σ̂zi are 

approximated to be classical quantities α , σ and r, respectively. This way, we can construct a set of semiclassical 
equations, equivalent to the Maxwell–Schrödinger equations, as35 

 from which we can derive the following rate equation with identification n = |α|2

where N = 1 or 2 and the short-hand notation (� ←→ −�) represents a term same as the one above except for 
all � ’s replaced with −�.

The steady state solution of this rate equation can be solved analytically for � = 0 . For the initial atomic state 
1√
2

(

|g� − i|e�
)

 ( φ = π/2 ) corresponding to σ(0) = −N/2 , we obtain

where the series expansion is done up to the second order of βτ , where β stands for g ,�,� , or κ or the multi-
plicative combinations of them. The condition g ,�,�, κ < 1/τ is assumed for the expansion. Using this result, 
we can derive a formula describing the condition under which the radiance witness R is locally maximized for 
� = 0 as follows.

The detailed derivation of Eqs. (6)–(8) is presented in “Methods”.
Equation (7) clearly shows the terms responsible for hyperradiance, namely the higher order terms than N2 

terms. Without these higher-order terms, we just get superradiance with n being proportional to N2 . As long as 
the third term proportional to N (enhanced emission) in the second bracket in Eq. (7) is larger than the fourth 
term proportional to N2 (reabsorption) in the same bracket, which is the case when �/κ > (N/2)(g/κ)2 , the 
higher-order terms produce more photons than superradiance and thus we get hyperradiance. It is clear that 
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hyperradiance is not possible if � = 0 at least in the semiclassical limit with n ≫ 1 (significant mean photon 
number). More discussion on the physical origin of the higher-order terms will be given when we examine the 
dependence on the pump Rabi frequency below.

Dependence on the atom‑cavity detuning and the coupling for a fixed pump Rabi fre‑
quency.  Numerical simulation results are summarized in Fig. 2, where the average photon numbers �n̂�1 of 
one-atom case and �n̂�2 of two-atom case as well as the consequent radiance witness R are plotted as functions of 
the detuning � and the coupling strength g. The regions of hyperradiance ( R > 1 ) are enclosed by the dashed dot 
lines. The hatched red regions correspond to R > 7 , where R can be as high as 296. We can see there are various 
hyperradiance regions. Majority of these hyperradiance regions lie on a set of ellipsoidal curves shown in Fig. 2a 
(red dotted curves). These ellipsoidal curves can be described as

or alternatively,

What Eq. (9) or (10) means is as follows. First, note that the square-root expression in the parenthesis in Eq. (9) is 
the vacuum Rabi frequency in the presence of an atom-cavity detuning � (hereinafter the Rabi frequency in the 

(9)
(

√

(�/2)2 + g2
)

τ ≈ mπ(m = 1, 2, 3 . . .),
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(
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2

)2
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Figure 2.   Dependance of hyperradiance on g/κ and �/κ . (a) Average number of photons in the cavity of one-
atom case. Red dotted curves are the ellipsoidal curves given by Eq. (10). (b) The same for two-atom case. (c) 
Radiance witness R. The hatched red region indicates R > 7.0 . The Rabi frequency is �/κ = 10 , the interaction 
time τ = 0.052/κ , the cavity decay time 1/κ = 1.93 µ s and φ = π/2 . Hyperradiance region is inside the black 
dashed curves.
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presence of a detuning is referred to as ‘full Rabi frequency’). In one-atom case, for the atoms initially prepared 
on the equator in the Bloch sphere, a half or a full Rabi oscillation during the interaction time τ would then 
bring the Bloch vector of the exiting atoms to the equator again, resulting no net emission to the cavity. Since the 
emitted photons are re-absorbed by the atoms, the number of photons becomes relatively low in the one-atom 
case. We confirm that in Fig. 2a, the average photon number �n̂�1 is much less than unity around the ellipsoidal 
curves. The approximation g

√

�n̂�1 + 1 ≈ g holds there and thus Eq. (9) describes a half or a full Rabi rotation 
in the region around the ellipsoidal curves. The Rabi frequency of the second pump laser � is not present in the 
above equations; its effect is reflected in the mean photon number �n̂�1 of negligible magnitude.

The condition for suppression of the photon number is different for two-atoms case. Unlike the one-atom case, 
the full Rabi frequency of two-atom case is not simple. We even cannot apply the low photon number approxi-
mation because as we can check in Fig. 2b,c, the average photon number �n̂�2 of two-atom case is comparable or 
larger than unity around the ellipsoidal curves. However, we can at least be sure that the full Rabi frequency of 
two-atom case is very different with that of one-atom case. The detailed arguments on the two-atom full Rabi 
frequency is presented in “Methods”.

The hyperradiance occurring around the elliptical curves given by Eq. (10) is of a quantum-mechanical origin 
(coherent Rabi oscillation), giving very low mean photon numbers and thus having little practical importance. 
Unlike the hyperradiance explained by the semiclassical theory of Eqs. (5), (6), and (7), requiring � > 0 at least, 
this type of hyperradiance can occur even when � = 0 , as long as the condition by Eq. (10) is satisfied.

Dependence on the pump Rabi frequency and the coupling on resonance.  It is noted that the 
mean photon numbers �n̂�1 and �n̂�2 are mostly significant for small g in Fig. 2. Moreover, they are maximized 
when � = 0 . Since we are interested in large photon numbers, we rather consider � = 0 and vary � and g in this 

Figure 3.   Dependance of hyperradiance on g/κ and �/κ . (a) Average number of photons in the cavity of one-
atom case. (b) The same for two-atom case. (c) Radiance witness R. The hatched red regions indicates R > 7.0 . 
We consider a resonance case(� = 0 ) with the interaction time τ = 0.052/κ , the cavity decay time 1/κ = 1.93 
µ s and φ = π/2 . The red dash-dot curve for small g/κ is the plot of Eq. (8). Hyperradiance region is inside the 
black dashed curves.
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section. For the resonance case with � = 0 , Fig. 3 depicts the same quantities as Fig. 2. The maximum radiance 
witness reaches up to approximately 100 in the hatched red region. There are hyperradiance regions with low g 
( < 10κ ) and with high g ( > 30κ ). The low g region can be explained analytically using Eqs. (7) and (8) because 
they satisfy gτ < 1 condition. The red dash-dot line in Fig. 3c represents the curve given by Eq. (8). We can see 
that the numerical result agrees well with the analytic formula in the low g regions.

It is interesting that the mean photon numbers are much larger for � > 0 than � < 0 . We can understand 
this as follows. When � > 0 , the Rabi frequency of the second pump laser is out of phase with the vacuum Rabi 
frequency g. While the pump Rabi frequency tends to rotate the Bloch vector of the atoms upward, the vacuum 
Rabi frequency g tends to rotate it downward. As a result, atomic states can remain close to the equator during 
the interaction time and can produce more photons, which is then balanced by the cavity decay, resulting in a 
larger mean photon number. This behavior can be seen in Fig. 4 as well as in Eq. (5), where � > 0 ensures the 
slow change of σ ∼ σ(0) = −N/2 (maximized polarization) and thus larger |α| in the steady state than the case 
with � = 0 . Such maximized polarization during the interaction time makes the average photon number higher 
in low g region and even higher in the two-atom case, resulting in hyperradiance in the low g region. On the 
other hand, when � < 0 , both the vacuum Rabi frequency and the pump Rabi frequency work together to rotate 
the Bloch vector downward faster, making the time-averaged value of |σ | less and thus |α| smaller in the steady 
state than the case with � = 0 . As a result we observe very low average photon numbers and no hyperradiance.

The hyperradiance in the low g region ( g < 10κ ) for � = 0 has a potential to be utilized in various applica-
tions, such as in efficient light sources for lighting33 and visible light communication34, owing to its large mean 
photon number with a modest coupling constant easily achievable in experiments. Compared to other hyperradi-
ance regions as well as the results in the previous studies, the low g region in the resonance case shows relatively 
large mean photon numbers in one-atom case, and even more in two-atom cases. We can obtain the mean photon 
number up to ∼ 40 as can be seen in Fig. 6b, a magnified version of Fig. 3b.

There are much wider and bigger hyperradiance regions with high g around g/κ ≈ 60, 120, and 180. The 
average photon numbers in these regions are very low compared to the that of low g regions, but radiance witness 
R is much higher than that of low g regions regardless of the sign of � . We can employ the similar argument we 

Figure 4.   Origin of hyperradiance on resonance. (a) Evolution of α, σ and r during the atom-cavity interaction 
time τ with κτ = 0.052 when � = 0, g/κ = 3.5 and N = 2 . The solution α corresponds to the steady-state 
solution of Eq. (5), satisfying α(0) = α(τ) . (b) The same for �/κ = 19 . This condition corresponds to the 
yellow points in Fig. 6. (c) The same for �/κ = −19 . For � > 0 , the variation of σ is minimized, staying close to 
its initial value and thus the atomic polarization is maximized, leading to a large |α| . When � < 0 , on the other 
hand, σ varies more than that for � = 0 , minimizing the polarization and making |α| stay low.
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used for the off-resonance case in order to explain the hyperradiance in the high g regions. For � = 0 , Eq. (9) 
is simplified as

or alternatively,

for κτ = 0.052 in Fig. 3, well accounting for the location of the high g regions of hyperradiance.

Discussion
Random injection case.  So far, we have assumed an ideal situation where the atoms are injected into the 
cavity with an identical velocity at a regular time interval equal to τ . We call this situation ‘regular injection case’. 
In real experiments, atomic velocities follow a distribution with a finite width. Moreover, atoms are injected into 
the cavity at random times while the average injection rate is constant. In order to account for such experimental 
randomness, we assume a Gaussian velocity distribution with a velocity deviation equal to 0.2 of the mean veloc-
ity in our simulation and keep the average injection rate of either individual atoms (one-atom case) or pairs of 
atoms (two-atom case) equal to 1/τ . This situation is called ‘random injection case’.

In Fig. 5, the time evolution of the average photon number in the regular-injection case is compared with that 
of the random-injection case for a few sets of parameters. Due to the randomness, the random injection cases 
show fluctuating mean photon numbers, but their long-time averages exhibit a similar tendency of the mean 
photon numbers in the regular injection cases. The long-time average values in the random injection cases are 
compared with the expectation values of the photon number operator in the steady state in the regular injection 
cases in Table 1. These values are not much different, i.e., the random injection case does not deviate much from 
the regular injection case. This result suggests that the highly-idealized regular-injection case can be used as a 
guideline for designing actual experiments.

Feasibility of experimental realization.  Let us now examine the feasibility of experimental realiza-
tion of the hyperradiance analyzed in the preceding sections. We first quote the experimental parameters in 
the coherent superradiance experiment reported in Ref.26. There we have τ = 100 ns, g/2π = 290 kHz and 
κ/2π = 150 kHz for a cavity with an 1.0 mm length and a finesse of 106 . The atomic transition is the 1S0 ↔3P1 

(11)gτ ≈ mπ , (m = 1, 2, 3 . . .)

(12)g/κ ≈ mπ

κτ
≈ 60×m, (m = 1, 2, 3 . . .)

Figure 5.   Time evolution of the average photon number inside the cavity. (a,b) One atom case (a) and two 
atoms case (b) with g/κ = 2 , �/κ = 2 and �/κ = 10 . (c,d) One atom case (c) and two atoms case (d) with 
g/κ = 3 , �/κ = 0 and �/κ = 15 . Black curves indicate the regular injection cases, and the red curves indicate 
the random injection cases. We assume the interaction time τ = 0.052/κ , the cavity decay rate 1/κ = 1.93µ s 
and φ = π/2 . The unit time for the time scale is 1/κ = 1.93µs.
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transition of atomic barium at 791 nm with 50 kHz decay rate and the mean velocity is 755 m/s. These param-
eters give g/κ ≃ 1.94 and κτ ≃ 0.094.

The coupling constant g and the cavity decay rate κ depend on the cavity length. The mode waist also depends 
on the length. In order to get κτ ≃ 0.052, the same value as used in Figs. 2, 3, 4 and 5, we need a cavity length of 
2.18mm, which gives the coupling constant g/2π = 163 kHz, the cavity decay rate κ/2π = 68.8 kHz, τ = 120 ns 
and thus g/κ ≃ 2.35. This set of parameters is considered for a representative pump Rabi frequency �/κ = 10 
in Fig. 6 (marked by white dots), corresponding to the low g region in the resonance case ( � = 0 ). It gives a 
reasonably high mean photon number �n̂�2 ≃ 22.0 and a modest R ≃ 1.13.

The mean photon number can reach up to �n̂�2 ≃ 43 when g/κ ≃ 3.5 and �/κ = 19 (yellow dots). The neces-
sary parameters for this can be obtained by choosing a cavity length of 1.0 mm, a radius of curvature of 5.0 cm 
for the mirrors and a finesse of 1,500,000 (the finesse in Refs.26,28 is (1.0 ∼ 1.4)× 106 ). Since it is desirable to 
obtained both high R and �n̂�2 , we define a figure of merit M as M ≡ R × �n̂�2 and plot it in Fig. 6d. The largest 
M is obtained when g/κ ≃3.5 and �/κ=29 with �n̂�2 ≃ 31 and R ≃ 16(indicated by red dots). This corresponds 
to hyperradiance stronger than superradiance by 8.5 times. The parameters considered here are not difficult to 
achieve and thus the experimental realization is within reach of the current experimental capability. One can 
further optimize the cavity length, the mirror radius of curvature and the atomic velocity for both more increased 
radiance witness and mean photon numbers.

To summarize, we have theoretically shown that hyperradiance can occur in the setting of a microlaser where 
a stream of coherent superposition-state of atom pairs traverses a high-Q cavity. Numerical simulations as well 
as analytic calculations are employed to find that hyperradiance occurs when the reabsorption of the cavity field 
by individual atoms is maximized but suppressed by pairs of atoms. The radiation is greatly enhanced by intro-
ducing an additional pump field intersecting the cavity mode with a phase opposite to that of the atom-cavity 
coupling so that the atomic polarization is kept maximized during the atom-cavity interaction time. We also 
examine the feasibility of realizing hyperradiance in experiments. We find that random injection of atom pairs 
does not affect the result when time averages are considered and that a significant degree of hyperradiance can 
be observed with the experimental parameters reported in the literature. The present study can be utilized to 
achieve efficient light sources in the visible region, which would useful in areas like lighting applications33 and 
visible light communication34.

Methods
Derivation of Eqs. (5)–(7) by using semiclassical calculations.  We follow the calculation procedures 
of Ref.35. First, we normalize the electric field as α , the atomic polarization as σ and the atomic population inver-
sion as r. We can write a set of equations for these variables as follows. 

 where σ and r are the summations of individual atomic polarizations and population inversions, respectively, 
so σ =

∑N
i=1 σi and r =

∑N
i=1 ri for N atoms in the cavity at the same time. The variables in the above equa-

tions are slowly varying variables with respect to the frequency ωp2 . Now we apply the resonance condition 
ωc = ωp1 = ωp2 �= ωa and define the detuning as � = ωa − ωc . Additionally, we assume that we can ignore 
the atomic decay rate γ due to the very short interaction time τ such that γ τ ≪ 1 . Under these conditions, the 
above equations become 

(13a)α̇ + κ

2
α + i

(

ωc − ωp2

)

α = − gσ

(13b)σ̇ + γ σ + i
(

ωa − ωp2

)

σ = − (gα −�)r

(13c)ṙ + 2γ (r + 1) = 4Re
[

(gα∗ −�∗)σ
]

,

(14a)α̇ + κ

2
α = − gσ

(14b)σ̇ + i�σ = − (gα −�)r

Table 1.   Random vs. regular injection cases. The comparison of mean photon numbers in the random- and 
regular injection cases under two different conditions of Fig. 5. The percentage difference is defined as the 
quantity in the random injection divided by that in the regular injection minus 1.

�n̂�1 �n̂�2 R

g/κ = 2,�/κ = 2,�/κ = 10
Random injection 3.32 14.5 1.19

Regular injection 3.54 15.8 1.23

(corresponding to Fig. 5a,b) Difference (%) −6.36 −8.11 −3.38

g/κ = 3,�/κ = 0,�/κ = 15
Random injection 6.81 32.3 1.38

Regular injection 7.78 35.0 1.25

(corresponding to Fig. 5c,d) Difference (%) −12.6 −7.55 +10.3
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 from which we can obtain the following relation. 

For the atomic initial state 
(

|g� + e−iφ |e�
)

/
√
2 and the field initial state as a vacuum state |0� , we obtain the 

initial values of those variables as σ(0) = −N
2 e

i(−φ+ π
2 ) , r(0) = 0 and α(0) = α0 , where α0 is the semiclassical 

field strength right after the previous atom-cavity interaction. Using Eq. (15), we can write σ(t) and r(t) in terms 
of new variables β(t) and θ(t) . 

(14c)ṙ = 4Re
[

(gα∗ −�∗)σ
]

,

(15a)
d

dt

(

4σ ∗σ + r2
)

= 0,

(15b)
(

4σ ∗σ + r2
)

=N2

(16a)σ(t) = − N

2
cos θ(t)eiβ(t)

(16b)r(t) =N sin θ(t),

Figure 6.   Magnified view of the low g region. (a) Average number of photons in the cavity for one-atom 
case. (b) The same for two-atom case. (c) Radiance witness R. Parameters are τ = 0.052/κ , 1/κ = 1.93µ s and 
φ = π/2 . Hyperradiance region is inside the black dashed lines. We obtained the maximum mean photon 
number �n̂�2 ≃ 43 in two-atom case at around �/κ = 19 and g/κ = 3.5 with �n̂�1 = 9.78 and R = 1.19 
(indicated by yellow dots). The white dots correspond to g/κ = 2.35 (experimentally more easier to access) and 
�/κ = 10 , resulting in �n̂�1 = 5.19, �n̂�2 = 22.0 and R = 1.13 . The red dots are associated with the largest figure 
of merit M = R × �n̂�2 with g/κ = 3.5 and �/κ = 29 , giving rise to �n̂�2 = 30.7 and R = 16.2.
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 with initial conditions β(0) = −φ + π
2  and θ(0) = 0 . Substituting Eqs. (16a) and  (16b) into Eq. (14b), We 

obtain following equation.

Using Eq. (17) and its complex conjugate form, we can derive the following equations. 

 Since α, θ and β do not change much during the short interaction time τ , we can substitute their initial values 
in Eq. (18). We then obtain the approximated time evolution of θ and β as follows: 

 for 0 ≤ t ≤ τ . Since the interaction time is very short, we can consider the change of the field variable α as being 
continuous. In the steady state, α ≃ α0 , so α0 in Eq. (19a) can be replaced with α . Substituting Eqs. (19) and  (16) 
into Eq. (14a) with expression of α as α = √

neiξ . we obtain ṅ and ξ̇ equations by satisfying the real and imaginary 
parts of Eq. (14a). For a steady state solution of n, we require n to be slowly varying but ξ̇ = 0 , from which we 
obtain the steady-state phase of the cavity field ξst as

where τ is the atom-cavity interaction time. In the remaining ṅ equation, ξ(t) is replaced with ξst and the time 
dependence between time 0 and τ in the equation is averaged out by introducing the following integral

The result is

We now calculate the steady state solution ( ̇n = 0 ) on resonance ( � = 0 ). We assume the initial state of atom as 
1√
2

(

|g� − i|e�
)

 so that φ = π
2  and we can treat � as a real number without loss of generality. We also assume both 

coupling g and Rabi frequency � are not so large that they satisfy g
√
nτ ,�τ ≪ 1 . Then, we can expand sine and 

cosine functions to the order of O
(

τ 3
)

—hyperradiance is not seen up to the 2nd order and it appears only when 
we expand the terms to the 3rd order—and obtain a solvable second-order equation for 

√
n . The result is 

 Equation (23b) is a quadratic equation for 
√
n . The solution is

In order to obtain the condition for the maximum radiance witness R, we differentiate Eq. (24) with respect to 
(

gτ
)

 with �/κ fixed. We denote n for N = 1 and N = 2 as n1 and n2 , respectively. From ∂R/∂(gτ) = 0 , we can 
obtain the condition for maximizing R as

which can be rewritten as

(17)θ̇ sin θ − iβ̇ cos θ − i� cos θ = −2
(

gα −�
)

sin θe−iβ

(18a)θ̇ =
(

�− gα
)

e−iβ + c.c.

(18b)2iβ̇ cos θ + 2i� cos θ =
(

gα −�
)

sin θe−iβ − c.c.

(19a)θ(t) ≈(�− gα0)e
i(φ− π

2 )t + c.c.

(19b)β(t) ≈− φ + π

2
−�t,

(20)ξst ≈ −φ + π

2
−�τ ,

(21)n ≡ 1

τ

∫ τ

0
n(t′)dt′.

(22)
ṅ+ κn = Ng

√
n

2τ

sin 2(g
√
n cos�τ + I[�e−iφ])τ + sin�τ

�+ 2g
√
n cos�τ + 2I[�e−iφ]

+ (� ←→ −�).

(23a)κn =Ng
√
n
sin 2

(

g
√
n−�

)

τ

2
(

g
√
n−�

)

τ

(23b)≈Ng
√
n

{

1− 1

3!
[

2
(

g
√
n−�

)

τ
]2
}

(24)
n ≈

[

−3+ 4N(�/κ)(gτ)2 +
√

9− 24N(�/κ)(gτ)2 + 24N2(g/κ)2(gτ)2

4N(g/κ)(gτ)2

]2

≈
(

gN

κ

)2[

1− 2

3
(�τ)2 + 4

3
N(�/κ)(gτ)2 − 2

3
N2(g/κ)2(gτ)2

]2

.

(25)�τ =
3
(

gτ
)2

κτ
,
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Another partial differential ∂R/∂(�τ) produces the condition for minimizing R, which has little significance to 
us and is thus not explicated here.

Detailed consideration of the two‑atom full Rabi frequencies.  Consider two atoms interacting 
with a very weak cavity field. The Hamiltonian is given by

where we keep the interaction between the atoms and the cavity field and neglect the interaction with the 
pump 

(

� ≪ �, g
)

 . We consider only the triplet states |1, 1� = |ee, n� , |1, 0� =
(

|eg, n+ 1� + |ge, n+ 1�
)

/
√
2 and 

|1,−1� = |gg, n+ 2� coupled to the cavity field and exclude the singlet state |0, 0� =
(

|eg, n+ 1� − |ge, n+ 1�
)

/
√
2 

because the singlet state is uncoupled from both the triplet states and the cavity field. Then, we can represent the 
wave function |�� = c1|1, 1� + c0|1, 0� + c−1|1,−1� as a three-dimensional vector

and the Hamiltonian as a three-by-three matrix.

Solving the eigenvalue equation, we obtain a cubic equation

The solutions �1 , �2 and �3 correspond to the full Rabi frequencies of the two-atom case. The exact form of �1 , �2 
and �3 can be obtained by applying Cardano’s formula. The resulting form is not reproduced here because it is 
complicated, and thus it is obviously very distinct from the form of the full Rabi frequency of the one-atom case.

Data availability 
The datasets generated during the current study are available from the corresponding author on reasonable 
request.

Code availability 
The code that supports the findings of this study are available from the corresponding author upon reasonable 
request.
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