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Abstract

Background: African American women have the highest risk of breast cancer mortality compared to other racial
groups. Differences in tumor characteristics have been implicated as a possible cause; however, the tumor
microenvironment may also contribute to this disparity in mortality. Hepatocyte growth factor (HGF) is a stroma-
derived marker of the tumor microenvironment that may affect tumor progression differentially by race.

Objective: To examine whether an HGF gene expression signature is differentially expressed by race and tumor
characteristics.

Methods: Invasive breast tumors from 1957 patients were assessed for a 38-gene RNA-based HGF gene expression
signature. Participants were black (n = 1033) and non-black (n = 924) women from the population-based Carolina
Breast Cancer Study (1993–2013). Generalized linear models were used to estimate the relative frequency
differences (RFD) in HGF status by race, clinical, and demographic factors.

Results: Thirty-two percent of tumors were positive for the HGF signature. Black women were more likely [42% vs.
21%; RFD = + 19.93% (95% CI 16.00, 23.87)] to have HGF-positive tumors compared to non-black women. Triple-
negative patients had a higher frequency of HGF positivity [82% vs. 13% in non-triple-negative; RFD = + 65.85%
(95% CI 61.71, 69.98)], and HGF positivity was a defining feature of basal-like subtype [92% vs. 8% in non-basal; RFD
= + 81.84% (95% CI 78.84, 84.83)]. HGF positivity was associated with younger age, stage, higher grade, and high
genomic risk of recurrence (ROR-PT) score.

Conclusion: HGF expression is a defining feature of basal-like tumors, and its association with black race and young
women suggests it may be a candidate pathway for understanding breast cancer disparities.
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Introduction
The tumor microenvironment can promote carcinogen-
esis by secretion of stroma-derived factors that are mas-
ter regulators of cell division, growth, motility, and
morphology [1]. Hepatocyte growth factor (HGF) is one
of the major components secreted by the tumor stroma
that drives tumorigenesis [1–5]. Takayama et al. con-
ducted an in vivo study in transgenic mice and found
that overexpression of HGF in mammary cells led to
neoplasms [5]. In breast cancer cell lines, activation of
the HGF pathway via binding of HGF to its receptor c-
MET can lead to increased cell survival, proliferation,
and resistance to cancer inhibitors [1]. In breast tumors,
clinical studies have correlated activation of the HGF
pathway (as defined by c-MET over-expression) with in-
creased tumor size, high tumor grade, and distant metas-
tasis [6]. In addition, a meta-analysis indicated that c-
MET overexpression was associated with overall and
disease-free survival in breast cancer patients [6]. How-
ever, in clinical trials that target the HGF-c-MET path-
way, there is a lack of biomarkers for HGF expression
that accurately identify patients prone to respond to tar-
geted therapy [7].
The HGF pathway may also play a role in breast can-

cer disparities by race. HGF germline variations that dif-
fer by race have been found to modulate the expression
of HGF in blood, normal tissue, and breast cancer tumor
samples [8]. Ma et al. found that African American
breast cancer patients had a higher frequency of truncat-
ing mutations (51%) in the promoter region of HGF
compared to Caucasian breast cancer patients (15%),
and these mutations were shown to result in increased
expression of HGF in breast cancer tissue. The truncat-
ing mutations were also discovered in the germline (nor-
mal breast and normal blood tissue) and were found to
be associated with case vs. non-case status [8]. We previ-
ously published an HGF gene expression signature that
was associated with poorer survival in a small study [9],
but our study population had insufficient racial diversity
to evaluate the role of HGF gene expression by race.
Black women experience 40% higher mortality from

breast cancer compared to white women [10]. It is
important to identify biological pathways that may
contribute to these disparities, and due to its role in
cancer progression and differences in its expression,
HGF is a plausible contributor. To evaluate the role
of HGF pathway activation in breast cancer dispar-
ities, we assessed a 38-gene HGF gene expression
signature in invasive breast cancer cases in a
population-based resource, the Carolina Breast Cancer
Study. We sought to understand associations between
the HGF pathway and demographic characteristics,
clinical features, and tumor subtypes within this ra-
cially diverse population.

Methods
Study population
The Carolina Breast Cancer study population has been
described in previous publications [11, 12]. In brief,
CBCS is a population-based study that utilized rapid
case ascertainment to identify breast cancer cases from
the North Carolina Cancer registry. Phases 1 and 2 of
CBCS were conducted between 1993 and 2001 in 24
counties, and phase 3 subsequently expanded the study
to a total of 44 counties in 2008–2013. Inclusion criteria
included women who were North Carolina residents,
ages 20–74 years old. Black and younger women (age <
50) were oversampled using randomized recruitment
methods. Informed consent was obtained from each par-
ticipant. This study was approved by the University of
North Carolina at Chapel Hill Office of Human Ethics
and Institutional Review Board. In total, there are 4806
invasive breast cancer cases who were enrolled in the
Carolina Breast Cancer Study (phases 1–3). Within this
population, 1188 participants were removed due to inad-
equate tissue for analysis. Quality control analysis re-
moved 241 participants for low-quality RNA. Of the
3377 participants, 1957 were analyzed on the HGF gene
expression assay. Participants that were not included in
the study did differ on certain clinical variables including
smaller tumor size lower grade and lower stage. How-
ever, the clinical and demographic features of the ana-
lysis set were similar to the distribution of the Carolina
Breast Cancer Study as a whole, except tumors with a
higher grade were more likely to be sampled. For the
purposes of this analysis, 1957 invasive breast cancer
cases with expression data for the HGF signature from
all 3 CBCS phases (phase 1: n = 252, phase 2: n = 454,
phase 3: n = 1251) were included.

Demographic and clinical characteristics
Home interviews were conducted by a trained nurse,
and all demographic and lifestyle information was self-
reported, except body mass index (BMI), which was cal-
culated from body measurements obtained by the nurse.
Clinical tumor characteristics (estrogen receptor status,
progesterone receptor status, HER2 receptor status,
combined tumor grade and AJCC stage) were obtained
from medical records, pathology reports, and immuno-
histochemical staining analysis at the University of
North Carolina at Chapel Hill. Combined tumor grade
was only available for CBCS phase 1 and phase 3 tumors
and was assigned by a single pathologist to respective
grading categories using the Nottingham breast cancer
grading system [13]. Similar distributions for grade were
observed within CBCS phase 1 and phase 3 (chi-square
p value = 0.07). Phase 2 participants were excluded from
analyses of the association of HGF with tumor grade.

Jones et al. Breast Cancer Research           (2021) 23:80 Page 2 of 10



Gene expression data
Gene expression analysis for CBCS was described in
prior publications [14]. Briefly, formalin-fixed paraffin-
embedded (FFPE) tumor specimens were used (n = 2 (1
mm) cores; n = 2(10 μm) FFPE slides). RNA was isolated
from FFPEs using the Qiagen FFPE RNeasy isolation kit
(Germantown, MD) and counted using Nanostring
nCounter technology (Seattle, Washington). A custom
code set used to measure the genes used in the PAM50
predictor (to characterize RNA-based intrinsic breast
cancer subtypes, namely luminal A, luminal B, HER2-
enriched, basal-like and normal-like), risk of recurrence
score (ROR-PT), and the HGF 38-gene signature [14,
15]. The ROR-PT score predicts the risk of distant re-
currence incorporating information on subtype, prolifer-
ation score, and tumor size [15, 16]. After quantification
of the RNA targets, NanoString gene expression values
were normalized as previously described with remove
unwanted variation (RUV), using the RUVg function
from the RUVSeq Bioconductor package [17, 18]. We
controlled for unwanted technical variation using the set
of housekeeping genes that had expression above back-
ground in > 98% of samples and the highest correlation
with expression of other housekeeping genes (Spearman
coefficient ≥ 0.85). Six out of eleven housekeeping genes
on our codeset met this criterion, namely GUSB, ACTB,
GAPDH, PGK1, RPLP0, and SF3A1. Ultimately, we re-
moved 2 dimensions of unwanted variation with RUVg
(k = 2). Data was median centered across genes for heat-
map visualization in R studio 3.5.3.

HGF 38-gene signature
A 38-gene hepatocyte growth factor signature was derived
from a 280-gene HGF signature previously described by
our research group in Casbas-Hernandez et al. [9]. This
280-gene signature was mapped to three public gene ex-
pression datasets [NK1295 [19], UNC337 [20], and Naderi
and colleagues [21]], and 109 unique genes were identified
across all three datasets and used to classify tumors [9].
Using the shrunken centroid method [22], we identified
38 genes that could recapitulate the classification of sam-
ples based on the 109-gene set. The 38-gene HGF classi-
fier includes the following genes: TMEM45B, AKR7L,
AQP5, C1QTNF3, C2ORF27A, C4ORF31, C9ORF98,
CAPN13, CASKIN1, CMYA5, DTX3, EFHD1, F7, FMNL2,
FUT8, GCNT2, HRC, INPP4B, ISLR2, KCNMA1, KCNN4,
KIF3A, MAGI2, MARVELD2, NME5, PKIB, PRRG2,
PRRT2, PVRL2, REEP6, RIMS4, SCUBE2, SHROOM3,
SKAP1, SYBU, TFF3, and TMSB15B.
To classify each sample as HGF-positive or HGF-

negative, the 38 gene signature was applied using a
weighted sum score, created by summing the magnitude
of the normalized, log2 transformed values of the 38
genes within the consolidated HGF signature, and

multiplying upregulated genes by 1 and downregulated
genes by − 1 to preserve the directionality of each gene
in the reference signature from our training cohort (Eq.
1).

X
Wg�Zg ð1Þ

� W = weight of gene (− 1 or 1 based off prior
knowledge of upregulation or downregulation in
HGF signature)

� g = gene in HGF expression signature
� Z = gene expression of g in known HGF signature

Within the original HGF signature [9], there were 6
genes upregulated (FMNL2, KCNN4, AQP5, GCNT2,
TMSB15B, and DOCK3), and 32 were downregulated by
HGF. The HGF weighted sum score was dichotomized
using the mclust R package version 5.4.5, which deter-
mines cutpoints for classification based on Gaussian
mixture analysis [23]. For this analysis, HGF positivity
was defined as having the directional expression profile
of tumors that are responsive to HGF protein treatment
in breast cancer cells as assessed in Casbas-Hernandez
et al. [9]. The modified HGF expression signature was
concordant with the original signature trained on TCGA
data (data not shown, 86% agreement, p value < 0.001).

Statistical analysis
Demographic variables including age at diagnosis (< 40,
40–49, 50+ years old), race (black, non-black), parity
and breastfeeding (nulliparous, parous and never breast-
fed, parous and breastfed), and family history of breast
cancer (yes or no) were defined as categorical variables.
Body mass index (BMI) was a continuous variable but
was stratified by menopausal status and defined as a cat-
egorical variable (BMI: normal/underweight [BMI < 25],
overweight [30 > BMI > 25], obese [BMI > 30]). Clinical
characteristics and tumor subtypes were defined as fol-
lows, based on the clinical record: estrogen receptor sta-
tus [positive (> 10% positivity), negative (0% positivity),
borderline (1–10% positivity—was not included in this
analysis; set to missing (n = 43))], progesterone receptor
status [positive (> 10% positivity), negative (0% positiv-
ity), borderline (1–10% positivity—was not included in
this analysis; set to missing (n = 100))], HER2 receptor
status (positive or negative), hormone receptor tumor
type (hormone receptor-positive/HER2 negative, triple-
negative breast cancer, hormone receptor-negative/
HER2 positive), triple-negative status (non-triple-nega-
tive breast cancer, triple-negative breast cancer), and
clinical stage (AJCC: stage I, stage II, stage III/IV).
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RNA-based variables were defined as follows: PAM50
intrinsic subtypes [luminal A, luminal B, HER2-enriched,
basal-like, and normal-like, basal-like status (basal vs.
non-basal), ROR-PT score (high, medium/low), and
HGF (positive, negative). Normal-like samples were as-
sumed to have insufficient tumor cellularity to produce
a tumor call and therefore were removed from analysis
(n = 67).
The HGF gene signature was assessed for associations

with demographic and clinical data using generalized
linear models to determine relative frequency difference
estimates for univariate and multivariable models [24].
The generalized linear models used an identity link func-
tion with a binomial distribution to calculate the relative
frequency differences. Multivariable models were ad-
justed for either age, race, or both. Covariates (age and
race) were based on literature review and directed acyc-
lic graph analysis. Race stratified analyses were defined
as black vs. non-black. However, sensitivity analysis con-
ducted between black women (n = 1033) vs. white
women (n = 879) did not statistically differ from white
vs. non-black associations with the HGF signature. To
retain power to examine associations of the HGF signa-
ture with breast cancer features, all subsequent analysis
combined white and “other” racial groups into the non-
black category (“other race” n = 45). To address multiple
hypothesis testing for associations of HGF with patient

and clinical features, we used the Benjamini-Hochberg
false discovery rate (FDR) method to test for multiple
comparisons for all RFD models [25]. Statistical analysis
was completed in both Stata 15 SE and R statistical en-
vironment version 3.5.3.

Results
In the Carolina Breast Cancer Study, 32% of participants
were classified as HGF-positive by our 38-gene assay.
Clustering the HGF signature genes across all of the
CBCS patients, we found two main gene clusters that
corresponded well with expression patterns from the ori-
ginal reference signature [9]. Specifically, HGF-positive
tumors had few (n = 6) genes highly expressed, while
most genes had a characteristic pattern of lower expres-
sion (Fig. 1). TNBC samples were enriched in the HGF-
positive cluster.
To identify demographic characteristics associated

with HGF-positive tumors, we evaluated relative fre-
quency differences by race, age, and other variables.
Table 1 shows that HGF positivity was more common
among black women (compared to non-black women)
[42% vs. 21%; RFD = + 19.93%, 95% CI (16.00, 23.87)].
Compared to women over 50, women under the age of
40 had the highest frequency of HGF-positive tumors
[47% vs. 26%; RFD = + 20.33%, 95% CI (14.05, 26.61)],
followed by women between the ages of 40–49 [[34% vs.

Fig. 1 Heatmap of the 38-gene HGF gene signature in the Carolina Breast Cancer Study. Expression of genes in the HGF (hepatocyte growth
factor) classifier clustered by gene and sample in CBCS, with indicators for race and triple- negative breast cancer (TNBC) subtype
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26%; RFD = + 8.51%, 95% CI (4.29, 15.98)]. Tumor grade
III was strongly associated with HGF positivity [53% vs.
9%; RFD = + 41.11%, 95% CI (36.68, 45.55)] Higher
breast cancer stage was also associated with increased
prevalence of HGF positivity when compared to stage
I [36% for stage II vs. 24%; RFD = + 6.16%, 95% CI
(0.21, 12.11), and 37% for stage III/IV vs. 24%, RFD =
+ 7.89%, 95% CI (3.54, 12.22)]; however, after adjust-
ment for multiple comparisons, associations with
HGF and stage III/IV were no longer statistically sig-
nificant (FDR p value = 0.068).
Most breast cancer risk factors showed little associ-

ation with HGF positivity. Body mass index and family

history of breast cancer were not associated with HGF-
positive tumors (Table 1). However, there was an inverse
relationship between HGF-positive tumors and repro-
ductive history factors. Specifically, nulliparous women
and parous women with a history of breastfeeding had a
lower frequency of HGF-positive tumors compared to
parous women who have never breastfed.
Breast cancer subtypes are defined by tumor markers,

clinically based on IHC or molecularly based on RNA
expression, and both have been shown to have prognos-
tic value. We considered both IHC-based and RNA-
based subtypes in association with the HGF signature
(Table 2). Among IHC-based subtypes, HGF positivity

Table 1 Participant characteristics according to 38-gene HGF signature expression, Carolina Breast Cancer Study, 1993–2013

HGF negative, N (%) HGF positive, N (%) Univariate RFD (95% CI) Multivariable RFD (95% CI)

Total 1329 (68%) 628 (32%)

Agea

< 40 years old 1522 (53%) 100 (47%) 21.25% (14.81, 27.68) 20.33% (14.05, 26.61)

40–49 years old 498 (66%) 257 (34%) 8.25% (3.84, 12.66) 8.51% (4.29, 15.98)

≥ 50 years 679 (74%) 236 (26%) Referent Referent

Raceb

Black 603 (58%) 430 (42%) 20.20% (16.19, 24.20) 19.93% (16.00, 23.87)

Non-black 726 (79%) 198 (21%) Referent Referent

Gradec

III 337 (47%) 384 (53%) 43.94% (39.76, 48.13) 41.11% (36.68, 45.55)

I/II 691 (91%) 71 (9%) Referent Referent

Stagec

Stage III/IV 208 (64%) 115 (36) 11.56% (5.39, 17.71) 6.16% (0.21, 12.11)

Stage II 605 (63%) 349 (37%) 12.53% (8.06, 17.01) 7.89% (3.54, 12.22)

Stage I 499 (76%) 158 (24%) Referent Referent

Postmenopausal BMIc

Obese 356 (73%) 132 (27%) − 1.97 (− 9.10, 5.16), − 6.23 (− 13.38, 0.92)

Overweight 209 (73%) 76 (27%) − 2.35 (− 10.20, 5.50) − 3.71 (− 11.24, 3.83)

Underweight/normal 159 (71%) 65 (29%) Referent Referent

Premenopausal BMIc

Obese 225 (56%) 176 (44%) 16.07 (8.95, 23.20) 5.70% (− 1.68, 13.09)

Overweight 162 (65%) 86 (35%) 6.86 (− 1.02, 14.75) 2.62% (− 4.87, 10.11)

Underweight/normal 205 (72%) 79 (28%) Referent Referent

Reproductive historyc

Nulliparous 213 (71%) 85 (29%) − 9.04% (− 15.07, − 3.02) − 7.18% (− 12.91, − 1.46)

Parous, breastfed 551 (73%) 203 (27%) − 10.64% (− 15.11, − 6.18) − 6.77% (− 11.09, − 2.45)

Parous, never breastfed 565 (62%) 340 (38%) Referent Referent

Family history of breast cancerc

Yes 235 (68%) 110 (32%) − 0.18% (− 5.62, 5.26) 1.14.% (− 3.96, 6.25)

No 1053 (68%) 497 (32%) Referent Referent
aRelative frequency differences (RFDs) adjusted for race
bAdjusted for age
cAdjusted for race and age
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was strongly associated with triple-negative breast
cancer, with 82% of these tumors having HGF positiv-
ity compared to 13% in non-TNBC [RFD = + 65.85,
95% CI (61.71, 69.98). When molecular subtypes were
defined by PAM50, HGF positivity is a defining fea-
ture of basal-like subtypes. HGF positivity was present
in 92% of basal-like, 32% in HER2-enriched, and only
6% or less in luminal subtypes (Table 2). HGF posi-
tivity was also significantly associated with high risk
of recurrence scores (ROR-PT) in CBCS [71% vs.
19%; RFD = + 48.20%, 95% CI (43.42, 52.99)]. Given
that HGF positivity was highly expressed in basal-like
tumors, and basal-like status could be a mediator of
the associations between HGF status and tumor ag-
gressiveness, we performed a sensitivity analysis
among non-basal tumors to see if the associations
with HGF positivity and clinical characteristics
remained. HGF positivity was still significantly associ-
ated with race, age, grade, and risk of recurrence
scores within non-basal tumors, despite much lower
prevalence of HGF positivity among these tumors
(Table 3).

Discussion
This paper presents a novel biomarker of HGF positivity,
a 38-gene signature developed through experimental
methods and fine-tuned through application in breast
tumor data. Using this signature, HGF positivity is asso-
ciated with aggressive breast cancer subtypes and is
strongly associated with basal-like subtype. In non-basal-

like tumors, HGF positivity is less common; however,
significant associations with many aggressive clinical fea-
tures remained. Given that HGF positivity may ultim-
ately be clinically targetable and is correlated with a
number of poor prognosis clinical characteristics in both
basal-like and non-basal-like tumors (including tumor
stage, hormone receptor-negative markers, stage, tumor
grade, and higher risk of recurrence scores), it is import-
ant to understand its distribution and contribution to
outcomes. The distribution of HGF also highlights some
long-standing breast cancer outcome disparities; HGF
positivity is more prevalent among black participants
and among women under the age of 50 (and especially
those under 40). Taken together, this population-based
study contributes important information on the distribu-
tion of HGF-positive tumors in breast cancer.
Our findings on the relationship between HGF and pa-

tient characteristics are consistent with previous litera-
ture on HGF, notably associations with black race, high
stage, high grade, and younger age, but our findings ex-
tend the literature in several ways. First, previous studies
focused mainly on germline genetic sequence and with
relatively small patient numbers. Ma et al. observed that
51% of African American women had a higher frequency
of mutations in the HGF promoter region when com-
pared to 15% of Caucasian women. Our findings showed
that not only does HGF positivity coincide with race at
the somatic tumor gene expression level, but that HGF
positivity is also associated with other features such as
increased risk of recurrence (ROR) score and basal-like

Table 2 Association of 38-gene HGF signature with breast cancer clinical and genomic subtypes and risk of recurrence (ROR)
genomic score

HGF negative, N (%) HGF positive, N (%) Multivariable RFDa (95% CI)

Total (N) 1329 (68%) 628 (32%)

IHC-based

HR−/HER2+ 62 (57%) 46 (43%) 29.42% (19.91, 38.93)

TNBC 86 (18%) 391 (82%) 69.04% (64.95, 73.14)

HR+/HER2− 1053 (89%) 125 (11%) Referent

TNBC 86 (18%) 391 (82%) 65.85%. (61.71, 69.98)

Non-TNBC 1115 (87%) 171 (13%) Referent

RNA-based-PAM50

Luminal B 288 (94%) 19 (6%) 1.31% (− 1.51, 4.12)

HER2-enriched 122 (68%) 58 (32%) 27.29% (20.32, 34.27)

Basal-like 45 (8%) 493 (92%) 86.64% (83.73, 89.55)

Luminal A 820 (96%) 31 (4%) Referent

Basal 45 (8%) 493 (92%) 81.84% (78.84, 84.83)

Non-basal 1230 (92%) 108 (8%) Referent

High ROR-PT 145 (29%) 352 (71%) 48.20% (43.42, 52.99)

Low/medium ROR-PT 1133 (81%) 259 (19%) Referent
aRelative frequency differences (RFDs) adjusted for age and race
IHC, immunohistochemistry; ROR-PT, risk of recurrence score incorporating subtype, proliferation, and tumor size
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phenotype, providing a plausible link between HGF and
racial disparities in breast cancer. In our study, we
recognize that race is a social construct and understand
this variable may encompass effects of environment, so-
cial inequities, and discrimination that are not captured
in this analysis. However, we also note that self-reported
race and ancestry are highly concordant in the CBCS
population [26].
In our assessment of the association of age and HGF

expression, women under the age of 50 had a higher fre-
quency of HGF-positive tumors. Ma et al. also observed
a statistically significant association with age, where
younger breast cancer patients were more likely to have
the HGF promoter mutation [8]. However, a recent
meta-analysis of c-MET expression by Zhao et al. found
no association between age and HGF expression [6]. The
meta-analysis combined studies that used different
methods to detect c-MET expression including pro-
tein(75% of studies) and RNA-based techniques(25% of
studies) [6, 27], which could have contributed to

between-study differences. Our analysis was concordant
with a number of clinical studies [28–32], showing that
higher stage and tumor grade were associated with
HGF-positive tumors.
The HGF/c-MET axis is an attractive pathway in

breast cancer research because it is targetable with exist-
ing therapeutics [1, 7, 30, 33]. Moreover, HGF positivity
appears to be a feature of triple-negative/basal subtype
[9, 31, 34–37], which does not currently have any tar-
geted therapies [38]. However, the lack of an established
HGF biomarker has been problematic. There are mul-
tiple biomarkers representing the HGF pathway in the
literature including c-MET RNA expression, c-MET-
exon skipping, c-MET protein expression, c-MET ampli-
fication, c-MET receptor, and/or HGF protein expres-
sion; however, they have not been validated and efficacy
has only been proven in the C-MET exon skipping
marker in clinical trials, where the demonstrated pre-
dictive benefit was minimal [7, 39]. Here we demon-
strate a multi-gene HGF signature that can retain

Table 3 Distribution of 38-gene HGF signature expression within non-basal-like tumors (N = 1338), Carolina Breast Cancer Study,
1993–2013

Non-basal-like HGF-negative,
N (%)

Non-basal-like HGF-positive,
N (%)

Non-basal-like multivariable
RFD (95% CI)

Total 1230 108 1338

Agea

< 40 years old 141 (88%) 20 (13%) 5.40% (0.12, 10.67)

40–49 years old 458 (91%) 43 (9%) 2.06% (− 0.86, 4.98)

≥ 50 years old 631 (93%) 45 (7%) Referent

Raceb

Black 561 (89%) 69 (11%) 5.35% (2.45, 8.26)

Non-black 669 (94%) 39 (6%) Referent

Gradec

III 296 (85%) 53 (15%) 10.37% (6.31, 14.42)

I/II 655 (96%) 25 (4%) Referent

Stagec

Stage III/IV 193 (86%) 31 (14%) 7.12% (2.25, 1.00)

Stage II 562 (92%) 52 (8%) 2.24% (− 0.60, 5.10)

Stage I 458 (95%) 24 (5%) Referent

Reproductive historyc

Nulliparous 198 (93%) 14 (7%) − 2.45% (− 6.32, 1.42)

Parous, breastfed 515 (90%) 39 (7%) − 1.64% (− 4.7, 1.42)

Parous, never breastfed 517 (90%) 55 (10%) Referent

Risk of recurrence scorec

High ROR-PT 128 (79%) 34 (21%) 13.56% (7.09, 20.02)

Low/medium ROR-PT 1063 (94%) 70 (6%) Referent
aRelative frequency differences (RFDs) adjusted for race
bAdjusted for age
cAdjusted for race and age
ROR-PT, risk of recurrence score incorporating subtype, proliferation, and tumor size
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complex biological information on the pathway. This
pathway could be targetable in both Basal-like and non-
basal tumors. Although HGF-positive tumors were
highly prevalent among triple-negative breast cancer; it
was a defining feature among Basal-like tumors. Basal-
like and triple-negative breast cancer subtypes are often
used interchangeably, but there is heterogeneity in gene
expression within triple-negative breast cancers [40, 41].
The associations with clinical characteristics and HGF
positivity that we observed may have partially been me-
diated by the aggressive phenotype of the basal-like
subtype.
HGF positivity also occurs in non-basal-like tumors.

HGF positivity was present among 8% of non-basal-like
tumors and was associated with more aggressive fea-
tures, suggesting the pathway may also affect some of
these tumors. Rahgav et al. examined the relationship
between c-MET expression, as measured by reverse pro-
tein phase array, and breast cancer recurrence among
257 invasive breast cancers [42]. The study found that
total c-MET levels in hormone receptor-positive and
phosphorylated c-MET levels in HER2 subtypes were as-
sociated with recurrence [42]. This suggests that our
findings that HGF positivity is associated with aggressive
tumor phenotypes may have consequences for recur-
rence. Others have suggested that HGF c/MET expres-
sion may also influence prognosis specifically in HER2
overexpressing tumors via resistance to HER2-targeted
therapies [43, 44]. These associations between HGF
positivity and outcome should be assessed in future
studies using the 38-gene assay developed here.
A strength of this analysis was the use of a novel 38-

gene biomarker and a pathway-based approach, rather
than classifying tumors based on a single gene. The sig-
nature was developed to be concordant with a larger sig-
nature in The Cancer Genome Atlas Project.
Furthermore, the Nanostring technology has increased
sensitivity and reproducibility when compared to trad-
itional methods such as qPCR [45], particularly when
using FFPE specimens. Another strength includes the
large, racially diverse population-based study design.
The large sample size lent itself to statistical power for
the current analysis.
Some limitations also affect this work. While we de-

scribe the distribution of a novel signature for HGF, we
lacked data to assess whether this signature predicted re-
sponse to HGF therapy. We also do not have data on
specific HGF-pathway proteins, impairing our ability to
directly compare RNA vs. protein-based biomarkers.
While we assayed RNA and did not specifically evaluate
whether protein levels of HGF were concordant with
RNA in this population, our previous research suggests
that RNA-based findings were concordant with protein-
based findings [9]. Therefore, the concordance of our

findings with patterns in previous literature mitigates
this concern somewhat. We were also unable to fully
disentangle the role of basal-like subtype in driving HGF
associations with tumor aggressiveness. The proportion
of HGF positivity was so high among basal-likes and
relatively uncommon among non-basal-likes, leaving
these assessments somewhat underpowered, though
even in these small strata, the associations with tumor
aggressiveness appear consistent.
Currently, one of the leading challenges with targeting

c-MET in clinical trials is the lack of selection of appro-
priate patient populations for targeted therapy [46].
There is a need for biomarkers to improve efficacy to
target the c-MET/HGF signaling pathway, especially
within breast cancer. Further validation of this novel bio-
marker could influence the use of the gene signature in
identification for high-risk populations or for targeted
treatment options.

Conclusion
This study observed that the novel HGF gene expression
signature was a defining feature in basal-like breast can-
cer tumors. This signature was also found to be more
prevalent in women under 50 and black women, popula-
tions most severely affected by breast cancer outcome
disparities. The prevalence of this signature among pop-
ulations adversely affected by breast cancer suggests this
pathway may be a candidate for targetable molecular
therapy that influences breast cancer disparities.
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