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Gas slip effect is an important mechanism that the gas flow is different from liquid flow in porous media. It is generally considered
that the lower the permeability in porous media is, the more severe slip effect of gas flow will be. We design and then carry out
experiments with the increase of backpressure at the outlet of the core samples based on the definition of gas slip effect and in
view of different levels of permeability of tight sandstone reservoir. This study inspects a limit pressure of the gas slip effect in tight
sandstones and analyzes the characteristic parameter of capillary pressure curves. The experimental results indicate that gas slip
effect can be eliminated when the backpressure reaches a limit pressure. When the backpressure exceeds the limit pressure, the
measured gas permeability is a relatively stable value whose range is less than 3% for a given core sample. It is also found that the
limit pressure increases with the decreasing in permeability and has close relation with pore structure of the core samples. The
results have an important influence on correlation study on gas flow in porous medium, and are beneficial to reduce the workload
of laboratory experiment.

1. Introduction

With the development of oil and gas exploration technol-
ogy, tight gas reservoirs, the most realistic unconventional
reservoirs, play and will continually play an increasingly
vital role in gas reserves and supply [1]. According to the
third resource assessment, tight sandstone gas resources in
China are about 20 × 1012m3. Tight sandstone reservoirs
face the huge difficulty of the exploitation because of slim
throat, low porosity, low permeability, high content of clay
mineral, and high capillary pressure. Gas slip effect, a phe-
nomenon that will occur when gas flowing through a thin
capillary tube or a fine porous medium, controls gas flow
behavior and severely affects the ability of gas flow in tight
sandstone gas reservoir. During this process, the velocity of
gas in velocity layer in the immediate vicinity of the solid
walls of the capillary or porous medium is not zero, which
will cause an increase in gas flow rate in porous media
[2–5].

Klinkenberg (1941) was the first to introduce the concept
of gas slip effect into gas permeability measurement; the
mathematical expression was given as [5]
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𝐾
𝑎
is gas permeability, 𝜇m2.
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∞

is Klinkenberg permeability, 𝜇m2.
𝑃
𝑚
is mean pressure, MPa.
𝑏 is gas slip factor, affected by pressure, temperature,
pore structure of porousmedium, and type of gas.The
expression was given as
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. (2)

𝜆 is mean free path of gas molecules, mm.
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𝑟 is radius of a capillary or a pore, mm.
𝐶 is constant.

It is indicated by (2) that gas slip factor is inversely
proportional to radius of capillary.

According to Darcy’s law, the expression of gas perme-
ability is given as
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. (3)

𝑄 is volumetric flow rate, cm3/s.
𝜇 is dynamic viscosity of the fluid, mPa⋅s.

𝐴 is cross-sectional area, cm2.
𝐿 is length of core sample, cm.

Transforming (3)
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From (4), the relationship between 𝑄𝜇 and (𝑝2
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is a straight line with increasing backpressure. (𝑝2
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composed of two items. One means the pressure drop across
core sample (𝑝
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are linear relationships and the gradient is a stable value, gas
permeability is equal to Klinkenberg permeability. And the
gas slip effect would be reduced with the increasing of inlet
pressure [6].

Both permeability and gas reservoir pressure determine
the extent of slippage effect impacting volumetric flow rate
[7–9]. The lower the permeability and gas pressure are, the
more prominent gas slip effect would be [10]. The influence
factors of gas slip effect include permeability, pore pressure,
and water saturation. Gas slip effect would be prominent
when the permeability is less than 0.1× 10−3 𝜇m2 and the pore
pressure is a low value, while the specific boundaries of water
saturation are not clear [11]. Gas slip factor is related to the
pore structure [12].

Slippage effect affects gas production. In laboratory, gas
permeability is usually measured at a succession of pressures
to obtain the Klinkenberg permeability by correcting because
of Slippage effect. Laboratory working is increased. Equation
(1) suggests that gas permeability is equal to Klinkenberg
permeabilitywhen 𝑏/𝑝

𝑚
= 0. Some researchers indicated that

gas slip effect can be prevented by increasing pore pressure
of high permeable core samples, but the study about tight
sandstone is rare, and the results of tight sandstone are very
different. Until Now there is no terminology to describe this
phenomenon. In the past, some researchers exerted a big
backpressure by rule of thumb to reduce Klinkenberg effect,
which increases the pressure-bearing demand of experimen-
tal cardholder.

When gas permeability was close to Klinkenberg perme-
ability by improvingmeanpressure to cause 𝑏/𝑝

𝑚
to approach
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Figure 1: Schematic diagram of the experimental apparatus.
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Figure 2: Relationships between porosity and permeability at 3MPa
for core samples.

to zero, we define the pore pressure or backpressure at the
outlet of the core sample as limit pressure.

If we know the limit pressure, we can measure perme-
ability by exerting a backpressure which is equal to or a
little greater than limit pressure to mitigate slippage effect on
experimental results, such as the effect of gas velocity on gas
permeability due to fine migration [13].

The impetus for this work was a concern that finding the
relation between limit pressure of eliminating gas slippage
effect and pore structure parameters can help obtain the limit
pressure of specific pore structure rock.

2. Experimental Samples and Procedures

2.1. Core Samples. In this study, the tight sandstone core
samples, from Permian in Upper Paleozoic in Ordos basin,
involve four permeability levels (<0.1 × 10−3 𝜇m2, (0.1∼0.3) ×
10−3 𝜇m2, (0.3∼1) × 10−3 𝜇m2, and >1 × 10−3 𝜇m2). Nitrogen
is regarded as displacing medium. The schematic diagram of
the experimental apparatus is shown in Figure 1. It mainly
consists of a high pressure core holder, a high pressure
nitrogen cylinder, a high pressure pump, a backpressure
regulator (BPR), and a gas flowmeter.

2.2. Procedure. (1) Seven samples of four permeability levels
(<0.1 × 10−3 𝜇m2, (0.1∼0.3) × 10−3 𝜇m2, (0.3∼1) × 10−3 𝜇m2,
and >1 × 10−3 𝜇m2) are selected in the experiments. SS-1 is an
outcrop sample that is different from others. Before conduct-
ing the porosity and permeability test, the core samples in this
work are dried for more than 48 hours at 60∘C. The basic
parameters of samples are listed in Table 1. Figure 2 shows
the relationship between porosity and permeability for core
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Table 1: Basic parameters of core samples.

Samples L (mm) D (mm) Φ (%) 𝐾
𝑎
(10−3𝜇m2)

SS-1 57.30 25.10 15.13 0.05
SS-2 77.66 25.02 6.689 0.074
SS-3 59.71 24.74 5.895 0.150
SS-4 63.95 24.73 1.106 0.226
SS-5 59.05 24.76 5.647 0.507
SS-6 62.85 24.73 10.099 1.090
SS-7 59.17 24.59 12.461 1.320

samples. The red ones are the samples in the experiments.
(2) After a core sample is installed into the core holder, a
confining pressure of 7MPa is applied. Before flow tests, the
core sample is needed to stay at this confining pressure for
at least four hours to make sure that the stress equilibrium is
reached. To start a test, the outlet pressure is set at a designed
backpressure. In this test, the backpressure increases from
0MPa and its differential ranges from 0.1MPa to 0.2MPa.
(3) When the backpressure is fixed, the inlet pressure is
increased by using the regulator of the nitrogen cylinder.
The pressure difference between inlet and outlet is 0.5MPa,
1.0MPa, 1.5MPa, 2.0MPa, and 2.5MPa, respectively. Once a
steady flow is reached, the gas flow rate at different pressures
is recorded and the permeability is calculated. (4) Increase
backpressure and repeat step (3). (5) Analyze the experiment
data and illustrate𝑄𝜇 versus (𝑝2

1
− 𝑝
2

2
)/𝐿 plots and𝐾

𝑎
versus

1/𝑝
𝑚
plots.

3. Results

3.1. Relationship between the Product of Flow Rate and Viscos-
ity and Pressure Gradient. 𝑄𝜇 and (𝑝2

1
− 𝑝
2

2
)/𝐿 are plotted

in Figures 3 and 4. It can be seen from Figures 3 and 4 that
with the increasing of backpressure the slopes of the curves
gradually reduce and the intercepts gradually approach to
zero.When the backpressure reaches a specific level, the slope
of the curve does not change with the pressure and intercept
is equal to zero. The regression coefficient 𝑅2 is more than
0.999. Equation (4) demonstrates that the gas slip effect can
be eliminated when the permeability does not change with
pressure. As shown in Figure 4, the relationship between 𝑄𝜇
and (𝑝2

1
− 𝑝
2

2
)/𝐿 is linear relation and the intercept is equal

to zero when the backpressure at outlet reaches 0.9MPa. The
regression coefficient 𝑅2 = 0.9999. When the outlet pressure
of the sample exceeds 1MPa, the curve is also fit for the law.

3.2. Relationship between Permeability and Reciprocal ofMean
Pressure. Relationship between 𝐾

𝑎
and 1/𝑝

𝑚
is presented

in Figures 5 and 6. Figures 5 and 6 show that slip effect
is obvious and permeability decreases with the increasing
of mean pressure when the outlet pressure is atmospheric
pressure.When the outlet pressure increases to a certain level,
the relationship between 𝐾

𝑎
and 1/𝑝

𝑚
is nearly horizontal

and the gas permeability tested at different pressure drops
is almost a stable value whose range is less than 3% and
slip factor is less than 0.05 for a given sample (Table 2). The
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backpressure at outlet of the core sample is defined as limit
pressure and the permeability is equal to liquid permeability.

Gas slip factor 𝑏 for sample SS-2 at different backpressure
calculated from (1) is shown in Table 3. It can be seen from
Table 3 that gas slip factor significantly reduced the increasing
of backpressure and gas slip factor is less than 0.05 when the
backpressure exceeds 0.9MPa. At this case, gas slip effect can
be eliminated.

4. Discussion

(1) Gas Flow State in Tight Sandstone under Backpressure.
Microstructure of tight sandstone is complicated, thereby
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Table 2: Basic parameters of core samples.

Samples 𝐾
𝑎

(10−3𝜇m2) Φ (%) 𝑅
35
(𝜇m) 𝑝

𝑑
(MPa) 𝑝limit

(MPa)
Relationships between 1/𝑝

𝑚
and 𝐾

𝑎
for

samples 𝑏
𝐾
𝑎
range
(%)

SS-1 0.05 15.130 0.023 1.8 1.42 𝑦 = 0.0001𝑥 + 0.0032 = 0.0032 (1 + 0.031𝑥) 0.031 1.83
SS-2 0.074 6.689 0.226 2.38 0.9 𝑦 = 0.0002𝑥 + 0.0231 = 0.0231 (1 + 0.008𝑥) 0.008 0.62
SS-3 0.150 5.895 0.382 2.15 0.6 𝑦 = 0.0004𝑥 + 0.0382 = 0.0382 (1 + 0.010𝑥) 0.010 0.64
SS-4 0.226 1.106 2.061 1.47 0.5 𝑦 = 0.0006𝑥 + 0.0771 = 0.0771 (1 + 0.008𝑥) 0.008 0.60
SS-5 0.507 5.647 0.811 0.912 0.45 𝑦 = 0.0007𝑥 + 0.1534 = 0.1534 (1 + 0.005𝑥) 0.005 2.50
SS-6 1.090 10.099 0.769 0.85 0.4 𝑦 = 0.0019𝑥 + 0.4162 = 0.4162 (1 + 0.005𝑥) 0.005 0.45
SS-7 1.320 12.461 0.718 0.62 0.35 𝑦 = 0.0108𝑥 + 0.7911 = 0.7911 (1 + 0.013𝑥) 0.013 2.06
𝑅35: mean pore throat radius; 𝑝𝑑: displacement pressure; 𝑝limit: limit pressure.

Table 3: The influence of backpressure on gas slip factor for sample SS-2.

Backpressure (MPa) Relationships between 1/𝑝
𝑚
and 𝐾

𝑎
for sample SS-2 𝑏

0.1 𝑦 = 0.0072𝑥 + 0.0232 = 0.0232 (1 + 0.3103𝑥) 0.3103
0.3 𝑦 = 0.0068𝑥 + 0.023 = 0.023 (1 + 0.2957𝑥) 0.2957
0.5 𝑦 = 0.0061𝑥 + 0.0206 = 0.0206 (1 + 0.2961𝑥) 0.2961
0.7 𝑦 = 0.0052𝑥 + 0.0205 = 0.0205 (1 + 0.2537𝑥) 0.2537
0.9 𝑦 = 0.0002𝑥 + 0.0231 = 0.0231 (1 + 0.0086𝑥) 0.0086
1 𝑦 = 0.0001𝑥 + 0.0227 = 0.0227 (1 + 0.0044𝑥) 0.0044
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Darcy’s law only is not enough to describe the process of
gas flow in micropore [14]. Gas flows in the different porous
medium. Based on differentmean free paths of gasmolecules,
the gas flow in micropore has different regions [15].

Knudsen (1934) introduced the concept of Knudsen
number Kn, as is given by

Kn = 𝜆
𝐷

, (5)
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where 𝜆 is mean free path of gas molecules and 𝐷 is pore
throat diameter

𝜆 =

𝐾𝑇

√2𝜋𝑑
2
𝑃

. (6)

Gas flow condition in micropore medium is decided by
petrophysical property of the medium and mean free path
of gas molecules [16, 17]. From the study of Liepmann, Stahl,
and Kaviany et al. gas flow in tight sandstone is divided into
three regions according to Knudsen number. It includes flow
region, transition flow region, and viscous flow region.
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Table 4: Knudsen number at different pressure for sample SS-3.

𝑝
2
= 0.1MPa 𝑝

2
= 0.6MPa

𝑝
𝑚
(MPa) Kn 𝑝

𝑚
(MPa) Kn

0.35 0.00376 0.85 0.00155
0.625 0.00211 1.1 0.00120
0.85 0.00155 1.35 0.00098
1.1 0.00120 1.6 0.00082
1.35 0.00098 1.85 0.00071
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Figure 7: Relationships between𝐾
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Based on the results of Roy et al., gas flow in tight
sandstone reservoir is divided by Knudsen number [18].

Ortega and Aguilera (2012) indicated that 𝑅
35

in tight
sandstonewas the throat radius when the saturationwas 35%.
It can be defined as mean throat radius. Empirical formula is
given as [19]

log𝑅
35
= 0.732 + 0.588 log𝐾 − 0.864 log𝜙. (7)

Based on the porosity and permeability of core samples,
𝑅
35
for SS-3 was calculated by (7), as shown in Table 2.
When the throat radius 𝑅

35
= 0.382 𝜇m, the Knudsen

number Kn at different outlet pressure was calculated by (5)
and (6) as shown in Table 5.

From Table 4, Knudsen number Kn is greater than 0.001
and the gas slip effect is obvious when the pressure at outlet of
core samples is atmospheric pressure. As the outlet pressure
exceeds 0.6MPa, Knudsen number Kn is less than 0.001 and
the slip effect is negligible, which belongs to Darcy flow.Thus
the gas slip effect can be neglected when the backpressure at
outlet equals or exceeds the limit pressure.
(2) Limit Pressure and Pore Structure. The experimental
results of different permeability indicate that the limit pres-
sure of tight sandstone decreases logarithmically with the
increasing in permeability as well as in mean throat radius.
The greater the permeability is, the smaller the range of limit
pressure will reduce (Table 2, Figures 7 and 8).

For the experimented by Li et al. (2009), the limit pressure
was confirmed as 0.68∼7.16MPa by increasing backpressure
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at outlet of core samples. The Empirical formula is given as
[20]

𝑝min = −1.893𝐿𝑛𝐾∞ − 2.079. (8)

The limit pressure from researchers has significant differ-
ence as shown in Table 5 [20–23]. The experimental results
indicate that limit pressure is 0.35∼1.5MPa. It is close to
the results of Zhu et al. (2007) [24] whose experiments also
sampled from Permian in Upper Paleozoic in Ordos basin.
The test results of this paper are validated by his result. It
has been observed experimentally that pore structure has
influence on gas slippage. In Figure 8, limit pressure and
mean pore throat radius have logarithmic relation. The limit
pressure reduced in logarithm with an increase in mean pore
throat radius. From Figure 9, limit pressure of tight samples
in Ordos basin is directly proportional to displacement
pressure, and it is a quarter of displacement pressure. But the
relations between limit pressure and displacement pressure
are different from the other samples because of diverse pore
structures. The limit pressure need quantitative study since it
is an approximate value. The relation between pore structure
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Table 5: Experimental results of limit pressure

Time Author 𝐾
𝑎
(10−3𝜇m2) Gas 𝑝limit (MPa)

2009 Li et al. [20] 0.0053∼0.25 N2 0.68∼7.16
2007 Zhu et al. [24] 0.01∼1 N2 0.5
2010 Gao et al. [23] 0.001∼2 N2 1
2011 Ye et al. [21] 0.024∼0.244 N2 <7

parameters and limit pressure can be developed by fractal
theory in porous medium [25, 26]. It is worth caring that,
as limit pressure is associated with pore structure, the limit
pressure of samples at different area needs to be tested by
laboratory experiment.

5. Conclusions

(1) Limit Pressure. There exists gas slip effect in gas flow
through tight sandstone, and exerting a certain backpressure
can effectively reduce the gas slip effect. We define this
backpressure as limit pressure.

(2) The Gas Slip Effect Is Negligible. When the backpressure
equals or exceeds limit pressure, the gas permeability tested
at different pressure drop is a stable value whose range is less
than 3%and slip factor is less than 0.05 for a given sample.The
gas slip effect is negligible and the permeability is equivalent
to liquid permeability.

(3) There Are Close Relationship between the Limit Pressure
and Pore Structure. The limit pressure of tight sandstone
decreases logarithmically with the increasing of permeability
and mean throat radius and is directly proportional to
displacement pressure.
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