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Abstract

Circular RNAs (circRNAs) are a novel class of noncoding RNAs that back-splice from 50 donor site and 30 acceptor sites to
form a circular structure. A number of circRNAs have been discovered in model organisms including human, mouse,
Drosophila, among other organisms. There are a few candidate-based studies on circRNAs in rat, a well-studied model organ-
ism as well. A number of pipelines have been published to identify the back splice junctions for the discovery of circRNAs
but studies comparing these tools have suggested that a combination of tools would be a better approach to identify high-
confidence circRNAs. The availability of a recent dataset of transcriptomes encompassing 11 tissues, 4 developmental
stages, and 2 genders motivated us to explore the landscape of circRNAs in the organism in this context. In order to under-
stand the difference among different pipelines, we employed five different combinations of tools to identify circular RNAs
from the dataset. We compared the results of the different combination of tools/pipelines with respect to alignment, total
number of circRNAs identified and read-coverage. In addition, we identified tissue-specific, development-stage specific and
gender-specific circRNAs and further independently validated 16 circRNA junctions out of 24 selected candidates in 5 tissue
samples and estimated the quantitative expression of five circRNA candidates using real-time polymerase chain reaction
and our analysis suggests three candidates as tissue-enriched. This study is one of the most comprehensive studies which
provides a map of circRNAs transcriptome as well as to understand the difference among different computational pipelines
in rat.
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Introduction

The last decade has witnessed tremendous advances in technol-
ogy, which has enabled an unprecedented opportunity to under-
stand genomes. RNA-sequencing (RNA-Seq) is one of the
approaches which have tremendously improved our depth and
breadth of understanding transcripts and transcript isoforms at
resolutions previously few could fathom. This, consequently, has
helped in the identification of a new isoform of RNA known as cir-

cular RNAs (circRNAs), which have been rediscovered recently and
found to express ubiquitously in all cellular organisms [1, 2].
These isoforms are produced by unique back-splicing and there-
fore could be classified as a splice isoform. Although earlier con-
sidered as splicing errors, three major studies including Memczak
et al. (1900 transcripts from the exonic, intronic, and intergenic re-
gion) [3], Jeck et al. (reported identified exonuclease-treated tran-
scripts >25 000) [3, 4] and Salzman et al. (identified circRNA from
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different human cell types) [5] showed the abundance of circRNAs
and established it as emerging class of noncoding RNAs. Till now,
circ are identified in a number of organisms including model
organisms like humans [3, 6–9], worms [10], Drosophila [10, 11],
mouse [12–14], chicken [15, 16], and pig [17–19]. Circs are known to
exist as cell-line specific and tissue-specific isoforms [20, 21] and
are also known to have conserved splice sites. Recent studies have
also suggested that circular RNAs might have a role in regulation
of gene expression of protein-coding genes [22]. Circs have also
been shown to have multiple miRNA binding sites, suggesting
their role as miRNA sponges [22–25]. Different reports have also
suggested the role of circ RNAs in disease and their potential as
disease biomarkers [26–28].

Humans, mice, and rats share high levels of genetic conserva-
tion among each other. Rat, first mammalian species domesticated
for research purposes [29], is the most widely studied experimental
model so far in medical research and an excellent model for cardio-
vascular disease, stroke [30, 31], and hypertension [32–37]. In many
cases, rats were preferred to the mouse to model learning, mem-
ory, and cognitive research [38]. Rat is also a primary model for
mechanistic studies in the field of human reproduction and a stan-
dard model for physiological and toxicological studies [38, 39]. Yu et
al. [40] have provided an rRNA depleted rat RNA-Seq transcriptome
map for 11 tissues and 4 developmental stages (2-, 6-, 21-, and 104-
week olds). Subsequent studies on rat circ RNA transcriptome have
used this dataset to identify circ RNAs using CIRI [41].

Till now, several computational methods for the detection of
back-splice events from RNA-Seq data have been developed, such
as CIRCexplorer [42, 43], testrealign/segemehl [42, 44],
circRNA_finder [11], find_circ [3, 11], CIRI [45], UROBORUS [45, 46],
NCLscan [47], PTESFinder [48], KNIFE [48, 49], Pcirc_finder [50], and
Acfs [51]. Each of the algorithms for circRNA identification relies
on different approaches including different read aligners, require-
ment of genome annotations, and also in many cases in the out-
put formats. In a study by Hansen et al. [52], five circular RNA
identification tools including CIRCexplorer [42, 52], circRNA_finder
[11], CIRI [45], find_circ [3], and MapSplice [3, 53] were compared
for the levels of false positives and sensitivity. The comparison
suggested that the high number of circRNAs from a pipeline does
not necessarily mean true positive candidates and one single
method is not reliable. This study also concluded that it is perhaps
better to use a combination of two or more methods to increase
the robustness of circRNA detection, increase sensitivity, and re-
duce false negative and false-positive predictions. CirComPara is
one such pipeline that helps in using four circRNA prediction tools
including CIRCexplorer2, CIRI, find_circ, and test-realign with dif-
ferent combinations for different aligners including STAR,
TopHat2, Bowtie2, HISAT2, and segemehl [30].

In this study, we took the opportunity to compare different
combinations of aligners and the annotation tools/pipelines for
circ RNA using publicly available dataset of total RNA sequenc-
ing from Yu et al. [40]. This has led to a comprehensive map of
circ RNAs in rats. A subset of candidates were further indepen-
dently validated using experimental approaches. This is by far
the most comprehensive circ RNA transcriptome of the rat with
respect to tissues, developmental stages, and gender using mul-
tiple combinations of tools.

Materials and methods
Datasets

A total of 320 datasets were downloaded from the Gene
Expression Omnibus, a publicly available database with the

accession ID GSE53960. These datasets encompass study by Yu
et al. report the transcriptome from different tissues and devel-
opmental stages of the rat [40]. We downloaded ribosomal RNA-
depleted RNA-Seq datasets for different organs including liver,
heart, kidney, brain, lung, muscle, spleen, thymus, adrenal
gland, uterus, and testis. These samples were further catego-
rized as male and female, the age of 2, 6, 21, and 104 weeks and
4 biological replicates each [GEO: GSE53960]. We have converted
Sequence Read Archive (SRA) files to FASTQ format using SRA
toolkit for further mapping and analysis. The SRA IDs for the
datasets used in the present analysis have been summarized in
Supplementary Table S1.

Identification of circular RNAs from rat samples using
CirComPara

We downloaded Rattus norvegicus reference genome (version
rn6) from UCSC genome browser and annotation file from
Ensembl [54] database. CirComPara [30, 54] is an automated
pipeline to detect, quantify, and annotate circ RNA junctions
from RNA-Seq data and can be used for four different pipelines
to identify back-splice junctions. This pipeline also helps in
quantifying the expression of linear RNA and their gene expres-
sion which can be compared and correlated with circRNAs.
CirComPara uses four different detection tools including CIRI,
testrealign, CIRCexplorer, and find_circ. CirComPara can be
used in any pair of pipelines or alignment tools with customized
cutoffs for read coverage and filters for alignment scores.
We used Segemehl, STAR, Tophat, and Bowtie2 aligners,
creating a total of 4 combinations—Segemehl_CIRCexplorer2,
Star_CIRCexplorer2, tophat_CIRCexplorer2, and Bowtie2_Find
Circ. The first step to identify back-splice junctions is to align
the RNA-Seq reads. CirComPara aligns the RNA-Seq reads over
the reference genome using HISAT2 to discard reads aligning
over linear transcripts and uses only the discarded reads to
identify circ-junctions. After discarding the mapped reads that
were possibly mapping with the linear transcriptome, we took
the unmapped reads to identify circRNA junctions. We aligned
our data using different aligners including HISAT2, Bowtie2,
segemehl, STAR, and Tophat2. Figure 1 shows a schematic
representation for identification of circ RNAs.

Identification of circular RNAs from rat samples using
FindCirc

In addition to CirComPara, we have also added find-circ with
Bowtie2 as the aligner (the standard pipeline mentioned in
Memzak et al. [3]) as an additional pipeline without using
HISATt2 to discard unmapped reads which is default feature in
CirComPara. The datasets downloaded were aligned over the
indexed reference genome rn6 using Bowtie2. In this approach,
after alignment using Bowtie2, unmapped reads were seg-
mented and mapped from the terminals head and tails to
form anchor sequences. We mapped the FASTQ file over
the reference genome and discarded the mapped reads. The
mapped reads were discarded to avoid any ambiguity with
linear transcripts. Next, using the customized scripts from
the reference study, we took 20 mers from the head and tail
of unmapped reads for unique alignment and extended the
read to form an anchor sequence. Certain filters were applied
including unique anchor alignment, maximum of two mis-
matches in extended sequences and alignment score above 35,
a splice site of GU/AG to avoid false-positives candidates as
mentioned in the reference study. The reads that fulfilled the
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criteria to form putative circ RNAs were saved as output bed
files.

Genome-wide annotation and distribution of circular
RNA junctions

We downloaded the annotation GTF file for Rattus norvegicus
from ensemble (Rnor_6.0.93). The annotation file has 32 624
genes, 27 780 50UTR, 22 322 30UTR, 40 807 transcripts, 26 224 start
codon and 25 926 stop codon coordinates. We overlapped the
circRNA junctions identified from each sample over the annota-
tion file to understand the genome-wide distribution pattern, if
any, for circRNA coordinates.

Tissue-specific, gender-specific, and developmental-
stage-specific circular RNAs

We further analyzed the identified circRNA junctions for tissue
specificity. For each tissue, we also analyzed the data with re-
spect to developmental stage and gender. We also identified
candidates with read coverage >2, >2 to <10, >10 to <100, 100–
200, and >200 to study the relation of function with their ex-
pression level in the tissue.

Splice-site identification

We extracted the splice site nucleotides for each circRNA junc-
tion to analyze any pattern in the splice site of circ RNA and to
spot any difference from the linear counterpart. We have stud-
ied three conditions as shown in Supplementary Fig. S1.

Experimental validation

In order to validate the predicted circRNA junctions from
Bowtie2_FindCirc pipeline, we used a polymerase chain reaction
(PCR)-based approach. We randomly selected candidates based
on the significance of genes in the tissue and expression of cir-
cular RNA junction that should be expressed in at least 30 out of
32 samples for each tissue. In our study we have obtained RNA
of different rat tissues (Clontech, USA). In order to validate the
circRNA junctions, PCR amplification was performed on com-
plementary DNAs (cDNAs) of corresponding tissues and geno-
mic DNA of the rat using divergent primers. We designed
divergent primers of �20 bp length across the predicted back-
spliced junction for different circRNAs in six rat tissues (brain,
heart, lungs, liver, kidney, and thymus). First, stranded cDNA

was prepared from 500 ng of RNA from individual tissues using
random hexamers and superscript II reverse transcriptase
(Invitrogen, USA). PCR amplification was performed using diver-
gent primers designed for a total 24 candidates across 6 tissues
using respective cDNAs.

Expression analysis using quantitative real-time PCR

Expression analysis was performed for selected circular RNA
candidates, predicted for their tissue-specific expression pat-
terns. RNAs from six different tissues (brain, heart, lungs, liver,
kidney, and thymus) were used to synthesize cDNA as previ-
ously described. Circ RNA levels were quantified by quantitative
real-time PCR (qRT-PCR), using Sybr Green mix (dssTakara,
Japan) and detected by Lightcycler LC 480 (Roche). Primer
sequences for qRT-PCR have been summarized in
Supplementary Table S2. The data in the form of cycle of
threshold (Ct) were obtained and analyzed using the DDCt
method [55].

RNase R treatment to validate circular RNAs

RNA from each of the six tissues was treated with RNase R as
described previously [56]. In order to validate circ RNAs candi-
dates, 5 lg of RNA from individual tissues were treated with 15
units of RNAse R (Epicentre, Illumina, USA) for 15 min at 37�C.
LiCl was used to precipitate the RNAse R treated (RNaseRþ) and
untreated RNA (RNaseR�). After the purification, cDNA was
synthesized from 1 lg of the untreated RNA and from the same
amount of RNAse R treated RNA using random hexamer and
Superscript II reverse transcriptase (Invitrogen, USA). PCR am-
plification was attempted using divergent primers for selected
circular RNA candidates. Beta-actin was used as a control, for
which convergent primers were used in the experiment. Primer
sequences for PCR have been summarized in Supplementary
Table S2.

Results
Summary of RNA-Seq data

The RNA-Seq dataset used in the study was obtained from a
previous publication which sequenced 11 tissues. The data for
320 samples encompassing 11 tissues, 4 developmental stages,
both gender (male and female) were retrieved from NCBI SRA.
Each of the datasets had four replicates each and had an

Figure 1: The schematic representation of the pipeline followed for the identification of circular RNAs. In this study five different combinations of tools including

Segemehl_CIRCexplorer2, STAR_CIRCexplorer2, Tophat2_CIRCexplorer2, Bowtie2_FindCirc, and Bowtie2_FindCirc (not prealigned on HISAT2).
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average of 40 million reads each. The samples and the read
counts are summarized in Supplementary Table S1. The aver-
age read count is 41 million reads for which Lvr_21_M_1 had the
minimum number of reads, 16038547 and Kdn_104_M_2 had the
maximum number of reads, that is, 82590785. Figure 2 shows
the total number of reads for each sample.

Combination of tools used to identify circular RNA
junctions

After alignment of RNA-Seq reads over HISAT2, the average align-
ment percentage was 87.78%. Supplementary Table S1 shows the
alignment details for each sample using HISAT2. The minimum
alignment was 68.75% in the liver tissue and maximum alignment
was 90.53% in the kidney tissue. The unmapped reads were proc-
essed through Segemehl, Tophat, STAR, and Bowtie2 aligners to
identify back-splice junctions. The alignment details for each
aligner have been summarized in Supplementary Table S1. The
mean alignment in case of Bowtie2_findcirc (noHisat2) was 85%.
Similarly, in other cases including Bowtie2, STAR, Segemehl, and
Tophat2, the mean alignment percentage was 66.7, 38.7, 73.37,
and 61.5%, respectively. From the unmapped reads, we observed
an alignment of 30–75% from Bowtie2, 42–85% from Segemehl, 20–
57% from STAR, 32–75% from Tophat, and 15–76% from
Bowtie2_FindCirc. Figure 3 shows the alignment percentage for
each sample for each pipeline.

Identification of circular RNAs

Our analysis identified a total of 57 022 unique back-splice junc-
tions in the rat genome from Segemehl_CIRCexplorer2, 21 375
from STAR_CIRCexplorer2, 30 943 from Tophat_CIRCexplorer2,
244 511 from Bowtie2_FindCirc and 9109 from Bowtie2_FindCirc
(no HISAT2). Out of the total 5 358 249 unique cirRNA junctions
from these 5 combinations, we found 490 were common among
all the five combinations (Supplementary Table S3).

Genome-wide distribution of circ-junctions

Different studies have shown that circ RNAs loci in the genome
could map to exons, introns, 50UTR as well as 30UTR. We
mapped the circular RNAs identified from each combination to
the refseq annotations to analyze the overall genome-wide

Figure 2: The total read count statistics in the different tissue sample datasets. Each tissue had 32 samples for 4 developmental stages each with replicates.

Figure 3: The alignment details of the samples in the different combinations of

tools. X-axis of the plot represents different tissues and Y-axis represents percent

of total reads. Different aligner conditions are shown in different shapes and colors

to represent the tissues. Hisat2: linear aligned reads alignment, Hisat2 unmapped

represents the alignment percentage of unmapped reads, Bowtie2 is the alignment

percentage for unmapped reads from HISAT2 aligned to Bowtie2, Bowtie2 (no

Hisat2) is alignment percentage for reads no prealigned using HISAT2.
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distribution of circ-junctions. For the circ RNAs identified by
Bowtie2_FindCirc (no. HISAT2), our analysis revealed 1111
circRNAs mapping (from start to stop) to the 50UTR, 506
circRNAs to the 30UTR, 1361 overlapped with the start codon,
and 730 overlapped with the stop codon. In addition to this, we
found 86 and 83 circRNAs that had start and stop boundaries
upstream 1000 from gene start and downstream 1000 bps
gene end, respectively. In the case of Bowtie2_FindCirc
(after HISAT2), we found 3093 and 3062 circRNA junctions
from upstream and downstream 1000 base pairs from gene
boundaries. Similarly, the circular RNAs identified by the
STARþCIRCexplorer2 approach, 1994 mapped to the 50UTR and
369 to the 30UTR. We could not find intergenic regions in
CIRCexplorer2 as it uses existing gene models for annotation by
default and we would need to select the “–low-confidence” op-
tion. We did not want to increase false positives in our analysis.
The numbers overlapping the genome features have been
shown in Supplementary Table S4.

Tissue-specific circRNA junctions

Since the dataset encompassed 11 tissues, we further explored
the tissue specific circ RNA junctions. Out of the total circ RNAs
identified from 11 tissues, the brain was found to have the max-
imum number of circRNA junctions, and the liver was found to
have the least number of circRNA junctions. Supplementary
Table S5 shows the total number of circ RNAs identified from

each tissue. Out of the total circRNA-junctions, the unique
number of circRNAs specific to each tissue is also mentioned in
Supplementary Table S6. The data clearly show tissue-enriched
and tissue-specific circular RNAs. We have shown the number
of circ-junctions identified from each pipeline specific to tissues
in Supplementary Table S1. Figure 4 summarizes the number of
circRNA junctions with respect to tissues and pipelines used.
While comparing all the combinations, we found that 130 from
adrenal, 806 from brain, 208 from heart, 326 from kidney, 308
from lungs, 80 from liver, 111 from MSC, 312 from thymus, 244
from spleen, 299 from testis, and 135 from uterus were common
in all 5 combinations. From these total circRNAs among 5 pipe-
lines, we found 11 from adrenal, 407 from brain, 37 from heart,
10 from liver, 49 from lungs, 83 from kidney, 61 from thymus, 26
from spleen, 13 from MSC, 97 from testis, and 13 from uterus
tissue-specific circ-junctions Supplementary Fig. S2.

We performed gene-ontology (GO) analysis for coordinates
associated with these common circular RNAs using DAVID.
From our analysis, we found that the genes from 18 circ RNAs
common between all the tissues were involved in general cellu-
lar processes, such as the gamma-signaling pathway, extra-
cellular matrix organization, and transcription. In the case of
adrenal tissue, we found two genes (Cyp11a1 and Pcsk5) associ-
ated with response to gonadotropin with significant P-value.
We found the highest number of common circ RNAs in brain tis-
sue and GO analysis of these genes associated with these junc-
tions showed gamma-aminobutyric acid signaling pathway,

Figure 4: The plot showing the total versus unique tissue-specific number of circular RNAs for each pipeline(MSC ¼mesenchymal stem cells). The colors show total cir-

cular RNAs for five different combinations of tools. The darker color shows total circular RNAs and lighter color shows unique circular RNAs. Hisat2_Findcirc is a combi-

nation of unmapped reads from HISAT2 mapped on Bowtie2 and annotated with FindCirc. FindCirc_Bowtie2_noHisat2 is the combination where total reads are aligned

directly on Bowtie2 followed by FindCirc.
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synapse assembly, and nervous development pathways as most
significant. Genes associated with memory and learning, axo-
nogenesis, GTPase activity, and endocytosis were also found
significant. In the case of heart, we found actin filament net-
work formation and TOR signaling pathways associated with
unique circ RNAs. Genes from circRNA junctions of lungs were
significantly involved in cellular response to hypoxia and blood
vessel modeling. Runx2 and Picalm are hematopoietic genes that
are associated with spleen circular RNAs. We have shown the
GO analysis for these tissue-enriched circ RNAs in
Supplementary Table S16.

Development-stage specific circRNA junctions

The RNA-Seq dataset utilized in this analysis encompassed four
developmental stages of rats that are 2-, 6-, 21-, and 108-week
olds. Out of the total circ-junctions identified from
Segemehl_CIRCexplorer2, we found 10 060 circ-junctions
uniquely belonged to 2-week-old stage, 10 852 to 6week-old
stage, 10 420 to 21-week-old stage and 10 753 to 108-week-old
stage of the rat. In the case of Bowtie2_FindCirc, we found 1093
uniquely from week 2, 1241 from week 6, 1580 from week 21,

and 1674 from week 104. Supplementary Fig. S3 shows the
development-stage-specific circRNAs. With respect to tissues,
we found a maximum number of 2-week-old stage-specific
circRNAs in brain tissue and least in uterus tissue. Similarly, in
6-week-old stage, we found maximum circRNAs in brain tissue
and least in liver tissue followed by 21-week-old stage where we
found circRNAs in brain tissue and least from liver tissue and
108-week-old stage where we found circRNAs in brain tissue
and least in mesenchymal cell tissue. Supplementary Fig. S4
shows the tissue-wise development-stage specific circRNAs in
rat. Our analysis suggests the maximum number of circular
RNAs are identified in 104 weeks stage and least from 2 weeks
stage (Supplementary Table S7–S12). Among all five combina-
tions, we found 537 circRNA junctions common at 2 weeks
stage, 655 circRNA-junctions at 6 weeks stage, 776 at 21 weeks
stage, and 833 circ-junctions at 104 weeks stage. Out of these
common junctions expressing among all pipeline combinations,
we found 102 uniquely expressing at 2 weeks stage, 130 at
6 weeks stage, 193 at 21 weeks stage, and 247 at 104 weeks stage,
and 258 were common among these stages. Figure 5 shows the
number of circular RNAs identified from each pipeline for each
development stage. The Venn diagram is shown in

Figure 5: The figure shows a Venn diagram comparing total circular RNAs count for each pipeline in all development stages.
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Supplementary Fig. S5 which shows the common circ RNAs
from all the combinations of tools.

Genes associated with the development stages were in-
volved in pathways, such as GTPase activity, intracellular signal
transduction, and activation of MAPK activity. GO analysis for
different developmental stages circular RNAs did not give any
specific pathways but we saw few interesting patterns. For ex-
ample, with age, we observed the highest number of circular
RNAs, and we found the highest number of circular RNAs at the
most active phase of testis. We have also added GO analysis for
each development-stage specific circ RNAs in Supplementary
Table S17.

Gender-specific circRNA junctions

We further categorized the circ-junctions based on gender. We
identified 5517 circRNA junctions from female samples of
Bowtie2_Findcirc (no HISAT2) and 6524 circ-junctions from
male samples. Out of these 9109 total unique candidates,
32.18% junctions were common among both genders. We found
46.86 and 55.06% unique circ-junctions from females and males,
respectively. Similarly, in the case of Bowtie2_FindCirc, we
found 79.68% unique circ-junctions from females and 80.23%
from males. In the case of Segemehl_CIRCexplorer2, we found
21% unique common junctions. We identified 23.6% common
circ-junctions, 40% unique male and 37.72% unique female
junctions from Star_CIRCexplorer2. Out of total circRNAs junc-
tions from male, we found �89% unique circRNA junctions from
male and female both with 11.9% common circ-junctions.
Figure 6 shows the distribution of circular RNAs in both genders.
Among the common circ-junctions from five combinations, we
found 683 circRNA junctions common among all 5 pipelines.
We found 59 circ-junctions unique to the male gender and 25
circ-junctions unique to the female gender common in all 5
pipelines (data shown in Supplementary Tables S13–S14).

GO analysis of female-specific genes showed circ RNAs
were involved in memory gland duct morphogenesis and
mitotic cytokinesis. GO-analysis of male-specific circRNA genes
showed pathways such as sperm axoneme assembly, mRNA
splicing, and signal transduction. We have also added GO analy-
sis for gender-specific circular RNAs in Supplementary Table
S18.

Circ-junctions based on read coverage

We have shortlisted circ-junctions with cutoff of read coverage
at splice junctions with cutoff >2, >2, and <10; >10 and <100;
100–200 and >200 to study the relation of function with their ex-
pression level in the tissue. Among five different combinations,
we found that maximum number of circRNAs with circ-count
26 094 fall with >200 cutoff is from Segemehl_CIRCexplorer2
and minimum circRNAs with 3 from >200 cutoff is from
Bowtie2_FindCirc combination. Segemehl_CIRCexplorer2 has a
maximum number of reads in the range 100–200 reads.
Supplementary Table S15 shows the read counts from each
range for each combination and Fig. 7 shows the overall
distribution of reads by coverage cutoff.

Splice-sites involve in the formation of circRNA junction

We identified the splice sites for all the three cases from start
and stop sites for each pipeline combination and interestingly
we found that splice sites used to identify back-splice junctions
for each pipeline were conserved. We found conserved AG and
AC splice sites at the start position (case 2) and GG, CC splice

sites at stop position. We also found that there is conserved T/C
at one site before the splice site (TA and CA at start sites in case
1) and G/A at one site after stop position (CC, GG, GA at stop site
in case 3). Similarly, at the stop position, we found conserved C/
G right before the splice site (case 1 with CT/GT splice sites at
stop site) and A nucleotide one position after the splice site.

Experimental validation

We selected 24 circRNA candidates based on literature signifi-
cance using divergent primers approach with PCR in tissues in-
cluding brain, thymus, liver, lung, and kidney that were
expressed in minimum 30 samples out of 32 samples with more
than 3 reads at the junction. We could validate 16 circ-junctions
out of 24 candidates. The list of selected candidates is given in
Supplementary Table S2 with the primer sequences. Divergent
sets of primers of length �20 nucleotides were designed over-
lapping the back-splice junction to obtain the amplicon product
of around 200–300 base pairs. The selected candidates were am-
plified from cDNA of respective tissues and genomic DNA as
control. The genomic DNA was used to negate the possibility
that the sequence of circRNA junctions could be a part of DNA
itself as cases of repetitive exons and trans-splicing are
reported. The results of experimental validation have been
summarized in Fig. 8.

Quantitative expression using qRT-PCR

The experimentally validated circRNA candidates were further
analyzed for their quantitative expression analysis using qRT-
PCR based approach in these tissues. Interestingly the expres-
sion of circRNA from brain specific gene ‘Anks1b’ has shown the
tissue-enriched expression in case of brain and the expression
of circRNA originating from thymus specific gene “Themis” has
shown the tissue-enriched expression in case of thymus. In the
case of the liver, Efemp1 showed tissue-enriched expression. We
also performed RT-PCR for 2 circRNAs originating from genes
“Ubr5” and “Ralgapa1”. These circRNAs did not show tissue-
enriched expression but showed differential expression among
different tissues. We have shown the quantitative expression of
the circRNAs in Supplementary Fig. S7. The figure clearly shows
the tissue-enriched expression of circ-Anks1b, circ-Efemp1, and
circ-Themis and differential expression of circ-Ubr5 and circ-
Ralgapa1. The validation of circular RNAs was also done using
RNaseR (shown in Fig. 9). We have also compared the expres-
sion with the bioinformatics data from Bowtie2_FindCirc (no
HISAT2) read-coverage and the RT-PCR expression was shown
to be in coherence with the bioinformatics data. The bioinfor-
matics data for these candidates have been shown in
Supplementary Fig. S6a and b.circ-themis shows tissue-specific
expression in the thymus. Host themis gene plays a regulatory
role in T-cell positive and negative selection during thymocyte
development [57, 58]. Another tissue-specific circular RNA circ-
anks1b is predominantly found in the brain and we also found
expression of Anks1b in brain tissue only. The Anks1b gene pro-
tein interacts with amyloid beta protein precursors and is in-
volved in brain development [59]. Role of Efemp1 has also been
reported in liver cancer and methylation of the promoter causes
decrease in expression of Efemp1 in hepatocellular carcinoma
(HCC) [60–62]. The gene is also shown to be involved in patho-
genesis of Alzheimer’s disease. Genes Ubr5 and Ralgapa1 are in-
volved in signaling pathways and we have observed circular
RNAs originating from these genes expressing in multiple tis-
sues but differentially expressed.
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Discussion

In this study, we have performed a comprehensive analysis of
circ RNAs in rat utilizing transcriptome profiling dataset made
available by Yu et al [40]. The dataset encompassed 320 samples
including 11 tissues, 4 developmental stages, and 2 genders
each with 4 replicates.

Different short-read aligners and circ RNA annotation tools
have used different algorithms which create variability in the
number of identified circular RNAs when used in combination
[63]. In this study, we took the opportunity to compare different
aligners and annotation tools and compared the differences in
the outputs. We have also compared genome-wide distribution
of circ RNAs as well as read-coverage preferences using differ-
ent aligners as some aligners are good for exonic region align-
ment whereas others perform better for introns and intergenic
regions and this could clearly impact the number of circ RNAs
identified. In addition, we provide a comprehensive circ RNA
transcriptome map of Rat using tools for both reference-based
as well as de novo-based strategies. The overlapping candidates
are close to 50% even for the popular tools, such as FindCirc and

Figure 6: The Venn diagram for gender-specific circRNAs in each pipeline. Bowtie2_findCirc (no HISAT2) includes circular RNAs identified from Memczak et al. [3] pipe-

line without aligning prior with HISAT2.

Figure 7: The classification of circular RNAs based on read coverage from each of

the pipelines considered. X-axis represents different combinations of algo-

rithms used and Y-axis represents different categories of count of circular RNAs

for different read-coverage categories.
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CIRI [45, 56], which have motivated us to use multiple combina-
tions of tools to identify “missed” circ RNAs.

Since no single computational approach is perfect to
detect circRNAs at high sensitivity and specificity, we used a
combination of tools to identify putative back-splice junctions
[52]. Our study focused on using five different pipeline combina-
tions to identify circRNA junctions. These pipelines include
Tophat2_CIRCexplorer2, STAR_CIRCexplorer2, Segemehl_CIR
Cexplorer2, Bowtie2_FindCirc, and Bowtie2_FindCirc (no
HISAT2). These pipelines use aligners including segemehl, STAR,
Bowtie2, and Tophat2 to identify the back-splice junctions and
then different algorithms including CIRCexplorer2, Find_Circ,
and segemehl to filter back-splice junctions. Our study shows
the (i) tissue-specific, (ii) development stage-specific, and (iii)
gender-specific circRNAs from each pipeline combination.

The RNA-Seq dataset was varying for read count from 16 to
82 millions. Liver samples had the lowest read count and kid-
ney, brain, and heart were among the samples with the most
number of reads with very good quality. The first step, in
CirComPara, is to trim the input RNA-Seq reads with phred cut-
off 30. Our analysis showed that the quality of reads was good
enough so no reads were removed. Next step is to align the data
over alignment tool to remove the reads aligning the linear
transcripts. This step is very critical as it removes the ambigu-
ous reads matching with both linear and back-splice junctions
and improves the sensitivity of the circRNA detection by reduc-
ing false positives. CirComPara uses HISAT2 (hierarchical index-
ing for spliced alignment of transcripts) as the alignment tool to
discard the reads aligning to the linear transcriptome [30].
HISAT2 uses two-way indexing, one is whole genome

Figure 8: Validation of circular RNAs using RT-PCR for six tissues panel. Agarose gel represents the amplification products obtained from cDNA synthesized from differ-

ent rat tissues and control rat DNA. Total 24 candidates were analyzed in 6 different rat tissues.

Figure 9: Validation of tissue-enriched circRNAs with RNaseR treatment using PCR based approach Agarose gel represents PCR amplified products in RNaseR treated

(þ) and RNaseR not treated (�) and no template control (NC).
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Ferragina–Manzini (FM) index to anchor each alignment and
multiple local FM indexes for rapid extension of the alignments.
HISAT2 uses only 4 GB memory to run and is one of the fastest
alignment tools available for large datasets. After alignment
with HISAT2, with average alignment of 87%, alignment per-
centage ranged from 68.75 to 90%. The lowest alignment per-
centage was for liver samples and kidney and heart were
samples that showed very high alignment.

CirComPara uses HISAT2 as default aligner to discard the
linear mapped reads but in case of Memczak et al. [3], the com-
plete pipeline includes Bowtie2 from the step to remove reads
mapping over the linear transcripts to the identification of
circRNA junctions using the anchor alignment method. So, we
added one more variation to the default procedure that is find-
circ with Bowtie2 aligner without aligning before with HISAT2.
In this case, Bowtie2 uses options like, –very-sensitivity, –score-
min¼C,-15,0, to use very stringent conditions to filter out reads
mapping contiguously and full length to the genomes. We ob-
served the minimum number of circRNAs from
Bowtie2_FindCirc (no HISAT2). The study describing
CirComPara also explained that testrealign predicts 86% of the
total circRNAs predicted and the difference with other methods
is at least �5 times more which is due to the reason that testrea-
lign does not perform any postprocessing specific for circRNAs
[30]. So not combining it with other methods can reduce the
loose predictions so we have not used testrealign in our pipe-
line. Hansen et al. compared five prediction tools including
circRNA_finder, find_circ, CIRCexplorer, CIRI, and MapSplice to
check the sensitivity and number of false positives [52]. The
data from the study clearly showed the problems with each
pipeline. In the case of top candidates, Find_circ performs badly
as it is very distracted by the highly expressed linear RNA spe-
cies. CIRCexplorer is the most reliable to predict top 100 candi-
dates. So, we did a further analysis using the individual pipeline
as well as the combination of pipelines. Comparing analysis be-
tween Bowtie2_FindCirc and Bowtie2_FindCirc (no HISAT2), we
found that default features of CirComPara do not use two read
cutoff and splice-site cutoff of 100 kb because of which we have
identified very high number of circular RNAs in
Bowtie2_FindCirc. Moreover, FindCirc is not dependent on exist-
ing models of genome whereas CIRCexplorer2 uses an anno-
tated GTF file to annotate circular RNAs. Because of these
reasons, Bowtie2_FindCirc has a relatively higher number of cir-
cular RNAs than CIRCexplorer2.

Next, we were interested in observing how every pipeline
differs on the level of read coverage and we found contrasting
patterns between CIRCexplorer2 and FindCirc as CIRCexplorer2
had most of the circRNAs fall in the range of <200 reads
whereas FindCirc pipeline had most circular RNAs in range of
2–10 reads. Studies have shown that circular RNAs are originat-
ing from exons, introns, 50UTR, and 30UTRs [64]. We were also
interested to observe the pattern in rat and found that there are
many circular RNAs originating from only 50UTR and from
30UTRs which could explain the regulatory role of circRNAs in
transcription. Even though we did not use arguments to identify
novel circ RNAs from CIRCexplorer2, we identified many circ
RNAs originating from intergenic regions from FindCirc and
CIRI.

While comparing tissue-specific circular RNAs, we found the
maximum number of circRNAs was expressed in the brain and
least in the liver. The high number of circRNAs in the brain is
quite expected from the previous studies and though the least
number of circRNAs in the liver could be because of the sample

read count also. We found �22–30% of unique candidates from
each tissue. Interestingly, out of number of circRNAs candidates
identified from each pipeline, our analysis showed that very
small of circ-junctions were common in all the five combina-
tions in each tissue ranging from 80 to 900 (maximum in brain),
out of which, 15–400 were unique to each tissue with maximum
from brain, that is, 400 which increase the depth of the problem.
In comparison to literature and existing databases such as
circAtlas [65] and circfunbase [66], we found only �7000
circRNAs common. Rest of the circular RNA junctions can be
considered novel.

Hansen recently compared 11 computational algorithms for
identification of circ RNAs and found that combination of two
or more predicted pipelines can eliminate the false positives
and increase the confidence for the identified candidates [67]. In
this study, the author observed that CIRCexplorer and
CIRCexplorer2 predicted least RNaseR sensitive species of circ
RNAs. Among the top 100 expressed circRNAs, CIRI predicted
the most RNaseR sensitive candidates which were from distinct
loci of the genome and most of the circRNA candidates were ex-
clusively identified by only one algorithm. Even though
CIRCexplorer2 can identify de novo circ RNAs, the probability of
these candidates to be true positives will be very less but it
behaves well in case of exonic circular RNAs as it uses anno-
tated gene model as reference. We also observed comparable
performance of CIRCexplorer2 with different aligners but inter-
estingly, we also found differences in read coverage of the iden-
tified circ RNAs between the outputs of different algorithms as
FindCirc included circ RNAs with read count toward the lower
end and CIRCexplorer2 had very high circ RNAs with read count
>200 with almost no contribution from Bowtie2-FindCirc com-
bination output in that category. The author also suggested us-
ing FindCirc with high mapping quality cutoff which also
decreases RNaseR sensitive species and falsely annotated can-
didates ultimately reducing overall numbers of circ RNAs.
CIRCexplorer2, overall, shows good performance in comparison
with the rest of the tools but it is highly recommended to use
with any other tool FindCirc or CIRI to increase stringency.

Our comparison of the development stage specific circ RNAs
revealed most of the circRNAs from 104-week-old stage fol-
lowed by 2-week-old stage. We found an interesting pattern for
each tissue over the development stage as the number of
circRNAs increases over the age in the brain which is also men-
tioned by Zhou et al. [41]. Adrenal circRNA count increases from
2- to 21-week-old stage then decreases with aging. Heart and
thymus have the most number of circRNAs at puberty, that is,
6-week-old stage followed by 2-week-old stage then reduce
with adult stage and aging. Lungs circRNAs are highest at im-
mature stage and aged stage. Interestingly the circRNAs in mes-
enchymal stem cells are reduced with aging and in testis,
circRNAs are highest in the adult stage and uterus circRNAs in-
crease with age (highest at 104-week-old stage). So clearly there
is pattern and tissue-specific behavior in circ RNAs. We also
identified gender-specific circRNAs and found only 59 circRNAs
that were common in all the circRNAs pipeline combinations
and yet unique to the male gender. Similarly, we found 25
circRNAs specific to females that were common in all 5 combi-
nations of tools.

Recent studies have also pointed at the coding potential of
circular RNAs as a large number of circ RNAs can be translated
into small peptides. CircPro [68] assigns translation potential
score for each circRNA using coding potential calculator based
on identification of open reading frame in the sequence but
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circular RNAs might not have a start codon so CircCode [68, 69]
uses a machine learning based approach to classify coding ver-
sus noncoding circRNAs. In our study, we identified three tis-
sue-enriched circ RNAs and two differentially expressed
candidates and analyzed the protein-coding potential of these
circ RNAs but could not find any such property (data not
shown).

Conclusions

We have created a comprehensive map of rat circular RNA tran-
scriptome from 320 samples from 11 tissues, 4 developmental
stages, and 2 genders. We have also validated a few circular
RNAs candidates. Out of these, three circular RNAs showed
tissue-enriched patterns and two are differentially expressed.
In the current scenario, a large number of circular RNAs have
been identified in most popular model organisms. It would be
interesting to understand the functional role of circular RNAs in
much more detail using experimental approaches.

Supplementary data

Supplementary data is available at Biology Methods and
Protocols online.
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