
https://doi.org/10.1177/10600280221089007

Annals of Pharmacotherapy
2023, Vol. 57(2) 184 –192
© The Author(s) 2022

Article reuse guidelines: 
sagepub.com/journals-permissions
DOI: 10.1177/10600280221089007
journals.sagepub.com/home/aop

Review Article

1089007 AOPXXX10.1177/10600280221089007Annals of PharmacotherapyGarey et al
review-article2022

Omadacycline and Clostridioides difficile:  
A Systematic Review of Preclinical and 
Clinical Evidence

Kevin W. Garey, PharmD, MS1*, Warren Rose, PharmD, MPH2*,  
Kyle Gunter, PharmD, MBA3 , Alisa W. Serio, PhD3,  
and Mark H. Wilcox, MD4

Abstract
Objective: The objective of this systematic review is to summarize in vitro, preclinical, and human data related to omadacycline 
and Clostridioides difficile infection (CDI). Data Sources: PubMed and Google Scholar were searched for “omadacycline” 
AND (“Clostridium difficile” OR “C difficile” OR “Clostridioides difficile”) for any studies published before February 15, 2022. 
The US Food and Drug Administration (FDA) Adverse Events Reporting System (AERS) was searched for omadacycline 
(for reports including “C. difficile” or “CDI” or “gastrointestinal infection”). The publications list publicly available at Paratek 
Pharmaceuticals, Inc. Web site was reviewed. Study Selection and Data Extraction: Publications presenting primary 
data on omadacycline and C. difficile published in English were included. Data Synthesis: Preclinical and clinical evidence was 
extracted from 14 studies. No case reports in indexed literature and no reports on FDA AERS were found. Omadacycline has 
potent in vitro activity against many C. difficile clinical strains and diverse ribotypes. In phase 3 studies, there were no reports 
of CDI in patients who received omadacycline for either community-acquired bacterial pneumonia or acute bacterial skin and 
skin structure infection. Relevance to Patient Care and Clinical Practice: Omadacycline should be considered a low-
risk antibiotic regarding its propensity to cause CDI. Conclusions: Reducing the burden of CDI on patients and the health 
care system should be a priority. Patients with appropriate indications who are at heightened risk of CDI may be suitable 
candidates for omadacycline therapy. In these patients, omadacycline may be preferable to antibiotics with a high CDI risk. 
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Introduction

Clostridioides difficile infection (CDI) is a major world-
wide public health threat with an estimated 460 000 cases 
annually in the United States, and approximately 124 000 
cases or a cumulative incidence of 8 per 100 000 persons 
annually in Europe.1-3 Although a large spectrum of symp-
toms are possible, patients with CDI typically exhibit diar-
rhea ranging from mild to severe, which can be accompanied 
by abdominal pain.4 In addition to a significant clinical bur-
den of disease, the health care–related costs are also sub-
stantial, estimated at more than $5 billion annually in the 
United States.5,6 Patient health-related quality of life 
(HRQoL) also worsens with CDI, resulting in impaired 
daily activities and reduced work productivity.7 CDI recur-
rence, a significant driver of the clinical, economic, and 
HRQoL outcomes, occurs in approximately 25% of patients 
after an initial infection and in 50% of patients who have 
already experienced a recurrence of CDI.8-11

The pathophysiology of CDI involves the disruption of 
the human gut microbiota, usually from exposure to high-
risk antibiotics, which allows the C. difficile spores to ger-
minate, produce 2 endotoxins (toxins A and B), and cause 
disease. In general, antibiotics that substantially disrupt the 
normal host gut microbiota are considered to be high-risk 
antibiotics and the most significant factor for developing 
CDI.12-16

Emergence of epidemic strains with reduced antibiotic 
susceptibility, such as the clindamycin-resistant J strain or 
the fluoroquinolone-resistant ribotype 027, have made CDI 
increasingly difficult to prevent, manage, and treat.16,17 
Resistance to antibiotics commonly used to treat CDI also 
complicates treatment approaches and heightens the need 
for new drug development in this area.18,19

Based on these factors, antibiotics should be evaluated 
for 2 criteria as they relate to novel CDI therapeutics: mini-
mal disruption in the host gut microbiota and potent activity 
against C. difficile. Historically, tetracycline-class antibiot-
ics (eg, tetracycline, doxycycline, minocycline) have been 
associated with a low risk of developing CDI.14,20 However, 
the use of tetracyclines has decreased in recent decades, 
owing in part to the development of resistance by other 
pathogens to tetracycline-class agents.21,22 Newer tetracy-
cline analogs (omadacycline, eravacycline, and tigecycline) 
have been developed to overcome common mechanisms of 

resistance and, as such, they retain antibacterial activity 
against many pathogens that are considered nonsusceptible 
to earlier tetracyclines.23,24

Here we summarize and contextualize the breadth of evi-
dence related to C. difficile and omadacycline, an amino-
methylcycline antibiotic in the tetracycline class. 
Omadacycline overcomes the 2 main mechanisms of tetra-
cycline resistance: efflux and ribosomal protection.25 
Omadacycline is available in oral and intravenous (IV) for-
mulations and is approved in the United States to treat 
adults with community-acquired bacterial pneumonia 
(CABP) and acute bacterial skin and skin structure infec-
tions (ABSSSI). The purpose of this systematic review is to 
summarize in vitro, preclinical, and human data as they 
relate to omadacycline, C. difficile, and CDI.

Methods

PubMed and Google Scholar were searched for “omadacy-
cline” AND (“Clostridium difficile” OR “C. difficile” OR 
“Clostridioides difficile”) for any studies published before 
February 15, 2022. The US Food and Drug Administration 
(FDA) Adverse Events Reporting System (AERS) was 
searched for reports including omadacycline with mention 
of “C. difficile” or “CDI” or “gastrointestinal [GI] infec-
tion” through February 15, 2022.26 The bibliography pub-
licly available on the Paratek Pharmaceuticals, Inc. Web 
site was reviewed.27 We included all publications present-
ing primary data published in English on omadacycline in 
relation to C. difficile, including in vitro, in vivo, and clini-
cal data. Reports on a secondary analysis and review papers 
were excluded from this analysis. Likewise, data on C. dif-
ficile that did not also include omadacycline were excluded.

All authors reviewed the available studies to confirm 
inclusion in the review. In case of disagreement on study 
inclusion, authors were to conduct a scientific debate and 
vote on inclusion. Relevant preclinical and clinical evi-
dence was extracted from the studies following Preferred 
Reporting Items for Systematic Reviews and Meta-analyses 
(PRISMA) guidelines.28

Results

The PubMed search returned 7 results, 5 of which contained 
primary data on omadacycline and C. difficile; Google Scholar 
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search returned 606 results, 14 of which contained primary 
data on omadacycline and C. difficile (7 overlapping results 
with PubMed); there were no reports of omadacycline related 
to CDI or GI infection on the FDA AERS Web site. A total of 
14 studies of omadacycline and C. difficile were unanimously 
included covering in vitro activity, preclinical models, clinical 
trials, and health economics and outcomes research (HEOR); 
no case reports were found (Figure 1).29-43

In Vitro Activity

The in vitro activity of omadacycline and comparators was 
assessed in 4 studies (noted as Panels 1-4) and the results are 
summarized in Table 1. In the Panel 1 study, omadacycline 
had broth dilution MIC50/90 values of 0.25/0.5 mg/L against 21 
C. difficile isolates collected between 2006 and 2016 in the 

United States.29 Metronidazole had MIC50/90 values of 0.5/1 
mg/L. In the Panel 2 study, omadacycline had broth dilution 
MIC50/90 values of 0.12/0.12 mg/L and MIC values ranged 
from 0.06 to 0.12 mg/L against 27 C. difficile isolates.30

In the Panel 3 study, omadacycline had agar dilution 
MIC50/90 values of 0.25/1.0 mg/L, and an MIC range of 0.25 
to 16 mg/L against 65 C. difficile isolates collected between 
2015 and 2018 at Karolinska Hospital in Stockholm, 
Sweden.36 Against ribotype 027 (n = 1), omadacycline had 
an MIC value of 0.5 mg/L.

In the Panel 4 study, omadacycline demonstrated potent in 
vitro activity, with a broth dilution MIC50/90 value of 
0.031/0.031 mg/L and MIC values ranging from 0.016 to 0.13 
mg/L against 250 C. difficile isolates collected between 2015 
and 2018 from 13 hospitals in the Houston, TX, region.37 
Omadacycline displayed equally potent activity among the 7 
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Figure 1. PRISMA flow diagram.
Abbreviation: PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-analyses.
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different ribotypes in this collection and regardless of CDI 
disease severity or vancomycin susceptibility.37 In time-kill 
kinetic studies, bacterial killing was similar to (or more potent 
than) fidaxomicin, metronidazole, and vancomycin, with 
omadacycline demonstrating bactericidal effects by 24 hours 
(>3 log10 colony-forming units [CFU]/mL killing).

Although selection of the comparator antibiotics differed 
among the 4 studies, the guideline-endorsed treatments for 
CDI had the following susceptibility ranges: metronidazole 
MIC50 values were 0.12 to 0.5 mg/L and MIC90 values were 
0.25 to 2 mg/L; and vancomycin MIC50 values were 0.5 to 
2 mg/L and the MIC90 value was 2 mg/L.

Another in vitro study examined the extent of C. difficile 
spore eradication when germinants were combined with 
omadacycline or vancomycin. Antibiotic concentrations 
chosen for both omadacycline and vancomycin reflected a 
midpoint between fecal concentration reached during clini-
cal dosing and the MIC values obtained for C. difficile 
strain used. There was >99% spore and vegetative cell 
eradication when germinants were combined with omada-
cycline, and >94% spore eradication when germinants 
were combined with vancomycin.38 Among the 4 strains in 
the study, the MIC range for omadacycline was 0.031 to 
0.125 mg/L, while the MIC range for vancomycin was 1 to 
4 mg/L when tested via broth microdilution. The combina-
tion of germinants with either omadacycline or vancomycin 
did not result in significant production of toxins A or B.

Preclinical Models

Efficacy of omadacycline was determined in a hamster 
model of C. difficile–associated diarrhea using the C. diffi-
cile American Type Culture Collection 43596 strain (oma-
dacycline, tigecycline, metronidazole, and vancomycin 
MIC values were all 0.06 mg/L).30 Hamsters were pre-
treated with subcutaneous clindamycin 24 hours before oral 
gavage of C. difficile; 24 hours after inoculation, hamsters 

received oral omadacycline (50 mg/kg), oral vancomycin 
(50 mg/kg), or vehicle for 5 days (n = 10 each treatment 
group). The median survival after inoculation was 12 days 
for omadacycline-treated animals, compared with 2 days 
for vancomycin-treated animals, and 4 days for vehicle-
treated animals (Figure 2).

A murine model of C. difficile relapse evaluated the in 
vivo efficacy of spore reservoir eradication.39 In this study, 
vancomycin or omadacycline alone was compared with 
either antibiotic combined with a germinant solution 
(sodium taurocholate, taurine, sodium docusate, and cal-
cium gluconate) following the establishment of CDI. Both 
omadacycline and vancomycin alone had 60% survival by 
Day 15, while omadacycline or vancomycin combined with 
germinant solution had 100% survival (P = 0.004 vs the 
respective antibiotic alone). The group receiving omadacy-
cline alone showed less severe clinical disease, less toxin 
production, and reduction in detectable spores after treat-
ment compared with the group receiving vancomycin alone 
(60% vs 100%, respectively; P = 0.087). Notably, no mice 
receiving germinants with either omadacycline or vanco-
mycin were spore or toxin positive.

Using a triple-stage chemostat human gut model, 
researchers investigated the effects of omadacycline instil-
lation on normal gut microbiome populations and the sub-
sequent potential for induction of CDI compared with 
moxifloxacin.40 The model was designed to reproduce the 
spatial, temporal, nutritional, and physicochemical charac-
teristics of the proximal-to-distal bowel, with 3 vessels of 
increasing pH that were continuously sparged with nitro-
gen.44 The model was inoculated with a pooled human fecal 
slurry from healthy volunteers that stabilized for 2 weeks, 
and was then challenged twice with 107 CFU/mL of C. dif-
ficile spores (ribotype 027). Omadacycline (430 mg/L) or 
moxifloxacin (43 mg/L) was instilled once per day for 7 
days to achieve desired exposures with oral dosing and 
model the observed antibacterial concentration in the 

Table 1. Summary of In Vitro Activity of Omadacycline and Select Comparators Against Clostridioides difficile Isolates.

MIC50/MIC90 (mg/L)
Panel 1

(n = 21)29,a
Panel 2

(n = 27)30,a
Panel 3

(n = 65)36,a
Panel 4

(n = 250)37,b

Omadacycline 0.25/0.5 0.12/0.12 0.25/1 0.031/0.031
Metronidazole 0.5/1 0.12/0.25 0.25/1 0.5/2
Vancomycin – – 0.5/2 2/2
Fidaxomicin – – 0.12/0.5 0.016/0.063
Tigecycline 0.25/0.25 – 0.03/0.12 –
Moxifloxacin 2/>16 – 2/4 –
Clindamycin 8/>32 8/>16 – –
Doxycycline – 0.03/1 – –

Source of C. difficile isolates: Panel 1: US, 2006-2016; Panel 2: Not described; Panel 3: Sweden, 2015-2018; Panel 4: Houston, TX, USA 2015-2018.
Abbreviations: MIC, minimum inhibitory concentration; – entries denote an antibiotic that was not tested in a panel of C. difficile isolates.
aMIC values determined by agar dilution.
bMIC values determined by broth dilution.
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human gut. Omadacycline concentrations in the gut model 
peaked at 242 to 48 mg/L in the modeled proximal-to-distal 
gut sections, respectively. Moxifloxacin concentrations 
peaked at 55 to 25 mg/L, respectively. Moxifloxacin instil-
lation caused a decline in enterococci and Bacteroides fra-
gilis populations (~4 log10 CFU/mL for both), a decline in 
bifidobacteria and lactobacilli (~3 log10 CFU/mL), followed 
by simulated CDI (vegetative cell proliferation and detect-
able toxin). Omadacycline instillation decreased popula-
tions of bifidobacteria (~8 log10 CFU/mL), B. fragilis group 
populations (7-8 log10 CFU/mL), lactobacilli (2-6 log10 
CFU/mL), and enterococci (4-6 log10 CFU/mL). Despite 
these microbial shifts, there was no evidence of C. difficile 
germination or toxin production in the omadacycline-
instilled model over the 3-week observation. In contrast to 
moxifloxacin, omadacycline exposure did not facilitate 
simulated CDI.

Clinical Trials

To date, there have been no reports of CDI in participants 
enrolled in clinical trials of omadacycline. In the phase 3 
OPTIC study in CABP (NCT02531438), 2.1% (8/388) of 
patients who received moxifloxacin developed CDI ver-
sus no patients receiving omadacycline (n = 386).41 In 

the IV-to-oral phase 3 OASIS-1 study in ABSSSI 
(NCT02378480), there were no reports of CDI in either 
the omadacycline treatment group (n = 323) or the line-
zolid group (n = 322).42 Likewise, in the oral-only 
OASIS-2 phase 3 study in ABSSSI (NCT02877927), 
there were no reports of CDI associated with omadacy-
cline (n = 368) or linezolid (n = 367).43 No cases of CDI 
were reported in the omadacycline treatment groups or in 
the comparator groups receiving levofloxacin or nitrofu-
rantoin in phase 1b/2 studies in acute pyelonephritis or 
cystitis (data on file).31-33

Health Economics and Outcomes Research

Taking the aforementioned data from clinical trials of oma-
dacycline and data on the health care burden of CDI, the 
estimated potential effects of omadacycline use on CDI-
related outcomes have been described. A conceptual health 
care–decision analytic model was created to estimate the 
incremental costs associated with treating 100 patients who 
are hospitalized for CABP with an initial 5-day inpatient 
regimen of omadacycline instead of moxifloxacin.34 The 
use of omadacycline had the potential to reduce the CDI-
related economic burden if it could avoid approximately 5 
to 10 cases of moxifloxacin-associated CDI per 100 
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Figure 2. Survival of hamsters infected by oral gavage with C. difficile after treatment with omadacycline or comparators.
All treatment groups received clindamycin pretreatment. N = 10 per group. Figure adapted from Kim et al.30
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hospitalized patients, assuming the attributable CDI cost 
was approximately $30,000 per episode.

A separate modeling study assessed the economic impact 
of substituting current guideline-concordant therapy for 
CABP (fluoroquinolones and third-generation cephalospo-
rins) with omadacycline in hospitalized patients at high risk 
of CDI, ie, with a Davis risk score ≥6 (calculated based on 
this scoring system: number of high-risk antibiotics received 
= 1 point each [maximum 5 points]; receipt of proton-
pump inhibitors = 1 point; age 40-55 years = 1 point; age 
>55 years = 2 points; and Charlson Comorbidity Index 
score [1 comorbidity = 1 point, >1 comorbidity = 2 
points]).35 In the phase 3 OPTIC CABP study, 14% of 
patients with a Davis risk score ≥6 who received moxi-
floxacin developed CDI versus 0% of patients who received 
omadacycline.41 As modeled, use of omadacycline in 
patients at high risk of CDI could result in cost savings to 
hospitals compared with use of guideline-concordant anti-
biotics, if omadacycline reduces excess CDI by 5 to 20 
cases per 100 treated patients with CABP.35

Discussion

The relationship between antibiotics and CDI is 2-fold. 
First, antibiotics that minimally disrupt the human gut 
microbiota will likely lower the risk of developing CDI 
relative to antibiotics that cause profound dysbiosis to the 
gut microbiota and allow C. difficile spores to germinate. 
This is an important consideration not only when choosing 
antibiotics to treat infections, but also for antimicrobial 
stewardship teams that wish to minimize CDI at their insti-
tution. Second, antibiotics that cause minimal dysbiosis and 
have activity against C. difficile may also be investigated as 
a potential treatment option for CDI. The purpose of this 
systematic review was to appraise the data on omadacy-
cline, a newer tetracycline analog, as it relates to these 2 
CDI concepts.

The compilation of in vitro activity data shows that oma-
dacycline has potent activity against many C. difficile clinical 
strains and diverse ribotypes. Omadacycline demonstrated 
similar or more potent in vitro activity than comparators, 
including current guideline-recommended therapies for CDI, 
and against hypervirulent strains (eg, ribotype 027).45 It is 
important to note that the FDA has not established breakpoint 
interpretive criteria for omadacycline against C. difficile, and 
that the clinical relevance of the MIC values presented here is 
therefore unknown. It is unclear why omadacycline in vitro 
activity differed between some of the panels; reasons may 
include the different testing methodologies used, ie, broth 
dilution compared with agar dilution, or the different strain 
collections assessed. It has been reported that a negative bias, 
ie, lower MIC values, for broth microdilution exists when 
compared with agar dilution when testing antimicrobials 
against C. difficile.46 While omadacycline was not tested in 

that report, the authors note that the 2 methodologies may not 
be equivalent, and that greater variability in MIC values was 
found when using broth dilution methods.46

From preclinical data, it appears that omadacycline 
achieves high enough concentrations in the gut to prevent 
C. difficile proliferation; GI concentrations were found to 
be 2 to 3 times higher than systemic concentrations, and 
approximately 81% of a single dose of oral omadacycline is 
excreted in the feces.47,48 For comparison, virtually all oral 
vancomycin is excreted in the feces, and approximately 
14% of oral metronidazole is excreted by the fecal route.49,50 
Preclinical models also demonstrated durable survival of 
omadacycline-treated animals that had CDI, as well as no 
evidence of simulated CDI development after omadacy-
cline exposure, indicating a favorable preclinical profile. 
The clinical data suggest that omadacycline may have a low 
propensity to induce CDI in patients.40 Results of the gut 
microbiota exposure to omadacycline were similar to those 
obtained with tigecycline.51 Given the lack of association of 
tigecycline with CDI, this provides further confidence that 
omadacycline truly has a low CDI risk propensity.52 Data 
from other newer tetracycline analogs (ie, tigecycline, 
eravacycline) show similar in vitro and in vivo results.46,53-56

Relevance to Patient Care and Clinical Practice

Based on available evidence, omadacycline should be consid-
ered a low-risk antibiotic regarding its propensity to cause CDI, 
similar to other tetracyclines.57-59 This should be considered 
when optimizing the selection of antibiotics in patients with 
susceptible infections. Omadacycline is currently indicated for 
adults with CABP or ABSSSI.60 In clinical trials of CABP, 
omadacycline was compared with moxifloxacin. Quinolones, 
including moxifloxacin, are considered high-risk CDI antibiot-
ics, and health care systems have targeted fluoroquinolone use 
in order to reduce CDI cases.14,15,61 There are no comparative 
data for ceftriaxone and omadacycline; however, ceftriaxone is 
the preferred antibiotic in hospitalized patients with CABP.62 
Ceftriaxone is also considered a high-risk antibiotic for devel-
oping CDI due to its broad spectrum, high fecal concentrations, 
and disruption of the gut microbiota. Notably, a systematic 
review and meta-analysis found no association of CDI risk with 
aminoglycosides, tetracyclines, or macrolides.58 For individuals 
especially prone to CDI (eg, those aged ≥65 years), CDI risk 
should be considered when choosing between agents for treat-
ment of a non-CDI infection. Current CABP and antibiotic 
stewardship guidelines recommend considering patient history 
of CDI (CABP) and reducing use of high-risk CDI antibiotics 
(stewardship), but neither make specific recommendations on 
which agents are preferred in these regards.62,63 In patients with 
preexposure to high-risk antibiotics, treatment with omadacy-
cline for a susceptible indicated infection may minimize further 
microbiota disruption that could potentiate CDI. Ongoing stud-
ies to specifically investigate microbiota disruption between 
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omadacycline and comparators should provide further evidence 
about its role and the risk of developing CDI.

In vitro susceptibility studies, an ex vivo model mimick-
ing the human GI tract, and an in vivo hamster model also 
provide support for further development of omadacycline 
as a therapeutic for CDI. This is especially appealing as an 
alternative to metronidazole when IV therapy is required.45 
Omadacycline is largely excreted as active drug via the 
feces regardless of route of administration.47 Thus, the abil-
ity for direct IV-to-oral conversion would also have appeal 
to stewardship teams. Omadacycline also likely results in 
less disruption to the human GI tract than oral vancomycin 
due to the latter’s activity against enterococci, but studies 
are needed to validate this hypothesis and provide guidance 
on its preference, if any, over vancomycin. There is evi-
dence that another newer tetracycline analog, tigecycline, is 
an effective therapeutic option for patients with CDI, espe-
cially those with severe disease, but this option is restricted 
by substantial tolerability issues.64 The promising charac-
teristics of omadacycline, including IV-to-oral possibility 
and a more favorable safety profile compared with tigecy-
cline, provide a solid basis to further evaluate this newer 
tetracycline analog in phase 2/3 studies of CDI to generate 
comparative clinical data before possible therapeutic use.

Limitations

Limitations of this review include the lack of clinical trials test-
ing omadacycline in CDI, and that there are no data on CDI-
related outcomes as endpoints in other clinical trials of 
omadacycline. Furthermore, in vitro potency of omadacycline 
against C. difficile may not translate into a clinical response. 
There are limited data on the HEOR implications of omadacy-
cline and few comparator scenarios that have been examined.

Conclusion

Clinicians should carefully consider first the need for anti-
biotics in general, and then the choice of specific antibiotic 
when warranted, especially in patients with risk factors for 
developing CDI. Based on this review, omadacycline 
should be considered in patients who have appropriate indi-
cations and are at heightened risk of CDI. Omadacycline 
may be preferable to antibiotics that are known to confer a 
higher risk of developing CDI (eg, fluoroquinolones, third-
generation cephalosporins, carbapenems, clindamycin). 
Further research should be pursued to investigate omadacy-
cline as a treatment option for CDI.
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