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Abstract

Deeper understanding of liver pathophysiology would benefit from
a comprehensive quantitative proteome resource at cell type reso-
lution to predict outcome and design therapy. Here, we quantify
more than 150,000 sequence-unique peptides aggregated into
10,000 proteins across total liver, the major liver cell types, time
course of primary cell cultures, and liver disease states. Bioinfor-
matic analysis reveals that half of hepatocyte protein mass is com-
prised of enzymes and 23% of mitochondrial proteins, twice the
proportion of other liver cell types. Using primary cell cultures, we
capture dynamic proteome remodeling from tissue states to cell
line states, providing useful information for biological or pharma-
ceutical research. Our extensive data serve as spectral library to
characterize a human cohort of non-alcoholic steatohepatitis and
cirrhosis. Dramatic proteome changes in liver tissue include signa-
tures of hepatic stellate cell activation resembling liver cirrhosis
and providing functional insights. We built a web-based dashboard
application for the interactive exploration of our resource (www.
liverproteome.org).
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Introduction

The liver is essential for the human body’s homeostasis and

maintains a well-orchestrated network of parenchymal and non-

parenchymal cell types, interconnecting the vascular and biliary

system. While hepatocytes perform key metabolic functions, detoxi-

fication, and protein synthesis, the non-parenchymal cells provide a

microenvironment for substance exchange and promote inflamma-

tory and immunological responses (Kmiec, 2001; Shetty et al, 2018).

The liver is constantly exposed to gut-derived dietary antigens,

microbial products and toxic substances such as alcohol, drugs, and

excess lipids, all of which can induce liver damage. Chronic liver

injury results in persistent hepatic inflammation, which can further

progress to fibrosis and eventually cirrhosis—the common end-

stage of chronic liver disease (CLD). CLD—including alcohol-related

and non-alcoholic fatty liver disease (ALD and NAFLD)—is a major

global health problem affecting approximately 1.5 billion people and

causing more than two million deaths annually due to complications

of cirrhosis and hepatocellular carcinoma (Loomba & Sanyal, 2013;

Asrani et al, 2019; Moon et al, 2020). Liver disease is also important

to study as a comorbidity, which limits or precludes effective treat-

ment of extrahepatic diseases such as malignancy (Mokdad et al,

2014; Gu et al, 2022). Combined with its typically silent progression,

there is an urgent need to implement screening programs in at-risk

populations for early diagnosis (Gin�es et al, 2016; Marcellin &

Kutala, 2018; Collaborators, 2020). Existing tests have limited per-

formance, especially at detecting early disease stages that are still

reversible. Thus, biomarker discovery is an active research area and

is ideally complemented by underlying biological mechanisms by

which markers indicate disease states. This requires knowledge of

the tissue and cellular origin of the detected abnormal protein levels
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and the biological pathways through which the protein plays a role

in disease. In this regard, we recently investigated paired plasma

and liver biopsies in a large ALD cohort, connecting circulating

markers to tissue proteome changes, providing additional validity

(preprint: Niu et al, 2020). However, we still lack information at the

cell type level which would greatly help interpret results from

plasma or bulk liver tissue proteomics analysis.

As the main parenchymal cells, hepatocytes, despite their great

regenerative capacity, may undergo fatty degeneration and release

damage-associated molecular patterns (DAMPs) to promote chronic

inflammation and even transform to malignant cells during CLD.

The resident hepatic macrophages (Kupffer cells) are crucial in the

pathogenesis of chronic and acute liver diseases, orchestrating both

the resolution and progression of inflammation and tissue repair

(Krenkel & Tacke, 2017; Lefere & Tacke, 2019; Wen et al, 2021).

Hepatic stellate cells (HSCs) play a key role in the subsequent devel-

opment of fibrosis (Mederacke et al, 2013). Upon liver injury, HSCs

transdifferentiate from vitamin A-storing and quiescent HSCs to pro-

liferative, fibrogenic, myofibroblast-like cells—a process termed

“HSC activation”. While it is often difficult to isolate activated HSCs

in patients, activation can also be induced in primary cell culture.

Characterizing the proteome dynamics of this process may lead to

new antifibrotic therapeutic options as most drug targets are pro-

teins. Furthermore, such proteome shift upon primary cell culture

reports the extent to which it reflects in vivo conditions (Pan et al,

2009; Azimifar et al, 2014; Heslop et al, 2017).

Mass spectrometry (MS)-based proteomics enables global and

targeted analysis of proteins in a systematic, systems-wide and

quantitative fashion (Aebersold & Mann, 2016). Although important

insights into human liver proteomes have been generated by inter-

national efforts (Sun et al, 2010; Kampf et al, 2014), due to the

nature of the technologies used, quantitative readout at the protein

level was not sufficient to capture biological or pathological prote-

ome dynamics.

Given the importance of liver pathophysiology, we reasoned that

dramatic advances in MS-based proteomics technologies could pro-

vide much more detailed insights into the quantitative human liver

proteome. In particular, we wished to use the “proteomic ruler”

approach to draw quantitative cellular proteome maps by estimating

copy numbers of individual proteins per cell, organelle or pathway

given the fixed relation of core histones to DNA in a cell

(Wisniewski et al, 2014). Here, we performed MS-based proteomics

with fractionation and label-free quantification on four major pri-

mary liver cell types derived from three individuals with normal

liver histology, as well as liver biopsy and paired extrahepatic ves-

sels (hepatic artery and portal vein) derived from six individuals

undergoing liver transplantation. In-depth proteomic profiling and

analysis revealed “cell-type specific” expression patterns as well as

fundamental differences in cellular proteomes which we interpret in

light of anticipated functional specialization. With our extensive

dataset, we built a spectral library for single-shot liver tissue proteo-

mics analysis. Taking advantage of the phased spectrum deconvolu-

tion method (ΦSDM; Grinfeld et al, 2017) and employing our MS-

interfacing software called MaxQuant.Live (Wichmann et al, 2019),

we developed an acquisition method which enabled us to achieve

deep proteome coverage in only 100 min measurement time. Apply-

ing this workflow to a human cohort of non-alcoholic steatohepatitis

(NASH) and liver cirrhosis revealed dramatic proteome changes

involving extracellular matrix remodeling, signaling, and metabolic

pathways in liver cirrhosis.

We also aimed to capture proteome dynamics during primary cell

culture. Time course measurements revealed proteome shifts over

time. When integrating results with the human study, we observed

that the proteomic signatures of HSC activation largely overlapped

with that of liver cirrhosis, providing insights into the cellular origin

of the observed proteome changes in bulk cirrhotic liver. We have

developed a web-based dashboard application that can be easily

accessed by biology and clinical researchers for hypothesis genera-

tion and research verification.

Results

In-depth acquisition of a quantitative human liver proteome

To obtain a broad and representative overview of the liver prote-

ome, we set out to measure diverse liver cell lines, primary cells,

and human biopsies in great depth using the most advanced MS-

based proteomics workflows. We started with four commonly used

immortalized cell lines, representing three hepatic cell types (Hep

G2 for hepatocytes, LX2 and TWNT4 for hepatic stellate cells and

SK-Hep-1, a human hepatic adenocarcinoma cell line). Next, we

obtained primary hepatocytes (hHEPs), Kupffer cells (hKCs), liver

sinusoidal endothelial cells (hLSECs), and hepatic stellate cells

(hHSCs) isolated from three donors aged 57–64. Two donors had no

signs of steatosis/fibrosis in the liver, and one had minimal portal

inflammation (Table EV1). Characteristics and purity of the isolated

cells were assessed by the provider—Samsara Sciences (Appendix).

The methods they used for cell isolation have previously been

shown to yield cells of high purity (DeLeve et al, 2004; Lecluyse and

Alexandre, 2010). Finally, we analyzed biopsies of liver tissue,

hepatic artery, and portal vein from six individuals undergoing liver

transplantation (three healthy donors and three patients with liver

cirrhosis, aged 39–59 years). From this total of 34 samples, we

extracted peptides for MS analysis followed by eight-fold fraction-

ation using high-pH reversed phase chromatography. We took care

to completely disrupt the tissue, for adequate coverage of the extra-

cellular matrix, and met the challenge of limited sample amount by

employing a “loss-less” nano-fractionator (Kulak et al, 2017). In this

part, our aim was to build a reliable proteome atlas and we there-

fore analyzed each fraction by liquid chromatography–tandem mass

spectrometry (LC-MS/MS) with a data-dependent acquisition (DDA)

method for an in-depth proteome characterization (Fig 1A).

The resulting 272 raw data files from the 34 proteomes were ana-

lyzed using the MaxQuant software including label-free quantifica-

tion (LFQ) with the MaxLFQ algorithm, in which we require at least

two peptides with minimum seven amino acids (Cox & Mann, 2008;

Cox et al, 2014). Applying a stringent 1% peptide and protein false

discovery rates (FDR), we identified and quantified 158,670

sequence unique peptides that were assigned to 10,528 protein

groups (Fig 1B). These distinct groups sometimes resolved protein

isoforms, mapping to 9,873 protein-coding genes in the human

genome. Our workflow quantified 9,477 proteins in all tissue types,

9,730 in all primary cell types and 9,411 in all cell lines. Thus, this

most comprehensive human liver proteome dataset provides an

excellent basis for systems-wide analyses (Fig 1B and Dataset EV1).
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Figure 1. In-depth characterization of the human liver proteome.

A Overview of biological material used for generating the liver proteome atlas. (hHSC: hepatic stellate cell, hHEP: hepatocyte, hKC: Kupffer cell, hLSEC: liver sinusoidal
endothelial cell, TWNT4 and LX2: immortalized human hepatic stellate cell line, SK-Hep-1: human hepatic adenocarcinoma cell line, HepG2: human liver cancer cell
line). Number of biological replicates is n = 6 for bulk liver, hepatic artery and portal vein; n = 3 for hHEP, hLSEC, hHSC, hKC and n = 1 for HepG2, SK-Hep1, LX2 and
TWNT4. No additional replications of the experiment was done in laboratory.

B Total quantified proteome depth in tissues (n = 18), primary cells (n = 12), immortalized cell lines (n = 4) and all samples (n = 34). In all cases, n means biological
replicates unless otherwise indicated. The upper and lower panel shows the number of quantified protein groups and peptides, respectively.

C Dynamic range of the different proteomes based on median intensity of label-free quantification (LFQ) ordered by abundance rank (Liver: bulk liver biopsy, HepA:
hepatic artery, PorV: portal vein, Cell lines: mixture of human liver-derived immortalized cell lines). Number of biological replicates is same as Panel (A).

D Principal component analysis (PCA) of all proteomes based on their proteome profiles. For abbreviations, please refer to Panel (A).
E KEGG pathway coverage in this dataset, with major metabolic pathways highlighted.
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The abundance of all quantified proteins spans more than six

orders of magnitude (Fig 1C). Analyzing the data of our proteomic

effort revealed a 35% median, aggregated sequence coverage (more

than two million amino acids of the liver proteome), a very high

value for shotgun proteomics (Fig EV1A). The median peptide num-

ber per liver protein was 12 but ranged up to 367 for Microtubule-

actin cross-linking factor 1 (MACF1, Fig EV1B).

Principal component analysis (PCA) revealed distinct proteomes

between tissue types, primary liver cell types, and the cell lines,

with the first component capturing 28.2% of the variance setting

apart hepatic arteries and portal veins from the rest (Fig 1D). The

second component further separated hHEPs, hKCs, and liver tissue

from hHSCs, hLSECs, and the cell lines, with 18.3% variance

explained. Hepatocytes constitute about 80% of the liver cell popu-

lation, therefore, should be characteristic of the bulk liver proteome.

Thus, hepatocytes and biopsies of the liver tissue clustered very

closely, whereas hHSCs and hLSECs exhibited higher similarity to

each other. LX2 and TWNT4, the two immortalized hepatic stellate

cell lines grouped closely with the corresponding primary cells,

whereas HepG2 was more alike to the other cell lines than primary

hepatocytes, indicating proteome divergence from the in vivo states

and acquisition of common cell line features.

To investigate proteomic coverage of characteristic biological

pathways of the liver, we extracted the 326 pathways of the KEGG

pathway database (Kanehisa & Goto, 2000; Kanehisa et al, 2017).

For fructose and mannose metabolism, citrate cycle, fatty acid

metabolism, glycolysis/gluconeogenesis, and cholesterol metabo-

lism, we obtained coverage between 84–94%, indicating that our

data quantifies these processes nearly completely at the proteome

level (Fig 1E). Conversely, pathways that are not expected to have

biological functions in the liver, say nicotine addiction and the olfac-

tory transduction pathways, had less than 4% pathway coverage.

Distinct proteome features between liver parenchyma and
blood vessels

To capture the proteome differences between liver parenchyma and

extrahepatic blood vessels, we characterized biopsies of the liver tis-

sue, portal vein, and hepatic artery. In total, 9,477 proteins were

quantified across different tissues, of which 81% were common to

all tissues. We exclusively quantified 824 proteins in liver biopsy

but only 86 exclusive to the two blood vessels (Fig 2A), indicating

both higher proteomic complexity of the liver biopsies, and the pres-

ence of blood vessels in the portal triad. The 86 proteins are charac-

teristic of the unique muscle fiber structure of blood vessels, such as

Myosin-7B, Tropomyosin alpha-1 chain, and Plectin. They tend to

be present in moderate-to-low abundance and most of them are typ-

ically not covered by standard single-run tissue proteomics work-

flows. To illustrate, there are only 12 unique proteins to HepA or

PorV among the 3,000 most abundant proteins, and 24 among the

top 5,000. When extracting the most abundant proteins in liver

biopsy based on intensity of LFQ, we found metabolic enzymes

(carbamoyl-phosphate synthase 1 (CPS1), which is heavily downre-

gulated in NAFLD (De Chiara et al, 2018), alcohol dehydrogenase

1B (ADH1B), and retinaldehyde dehydrogenase 1 (ALDH1A1)),

blood proteins (albumin (ALB) and hemoglobin subunits (HBA1,

HBB)) and structural constituents of the cytoskeleton (vimentin

(VIM), type VI collagen (COL6A3), myosin (MYH9), and keratin 18

(KRT18); Fig 2B). In contrast, the most abundant hepatic artery pro-

teins were almost exclusively cytoskeleton proteins with filamin-A

(FLNA), smooth muscle alpha-2 actin (ACTA2), myosin (MYH11),

vimentin (VIM), type I collagen (COL1A1, COL1A2), and transgelin

(TAGLN) apart from albumin and hemoglobin subunits among the

top 10 (Fig 2B). Analysis of the top abundant proteins in liver

biopsy and blood vessels revealed their structural and functional

characteristics. The high abundance of blood-related proteins (ALB,

HBB, and HBA1) could be due to some residual blood contamina-

tion, although the samples used in the analysis were flushed and

rinsed upon sampling.

Of note, we found that half of the total measurable proteome

mass in liver is comprised of less than 200 proteins. Adding the next

523 proteins accounts for 75% of the total measurable proteome

mass, whereas the remaining 25% is composed of an astonishing

8,471 proteins. The top abundant protein in liver tissue—CPS1, has

a quantitative signal of more than 1 million-fold higher than the

least abundant protein (ER lumen protein-retaining receptor 3,

KDELR3) that we quantified. This also explains why liver is a very

challenging tissue in proteomic analysis. This uneven distribution is

even more pronounced in the hepatic artery and portal vein, with

half of the proteome mass composed of merely 30 and 38 proteins,

respectively.

Next, we investigated proteins that contribute the most to the

separation of proteomes between liver biopsy and the blood vessels.

In PCA, as already mentioned, biological replicates of liver biopsies

and those of blood vessels clustered closely together (Fig 2C). Pro-

teins that are characteristic of the blood vessels such as cytoskele-

ton, and extracellular matrix proteins drive the first dimension of

this separation, together with metabolic enzymes in the bulk liver

tissue such as members of the cytochrome P450 superfamily:

CYP2E1, CYP4A11, CYP4F3, CYP2D6, and enzymes in alcohol

metabolism: ALDH8A1, RDH16, HAO1. When adding hepatic cell

lines in this analysis, we found proteins involved in the regulation

of cell differentiation and proliferation, such as CYR61, SERPINE1,

HIST2H3A, RORC, IGF2BP1, HMGA2; regulatory proteins in cell

cycle: HMGA2 and TRIP13 and proteins involved in chromatin orga-

nization: HIST2H3A, JMJD6, HMGA2 (Fig 2D). These examples

illustrate how our resource can connect quantitative protein expres-

sion with functional roles of tissues and cell lines.

Proteome differences between primary cell types reflect their
functional roles

Among the non-parenchymal cells populating the liver, LSECs,

hHSCs, and hKCs predominate. We quantified more than 8,200 pro-

teins in primary cells of hepatocytes and each of these cell types,

and more than 7,200 across all of them (Fig 3A). Among the pro-

teins that were uniquely identified in one cell type, 284 were

detected in at least two of three biological replicates (Fisher exact

test P < 0.05, one cell type against the rest), making them candi-

dates for cell type-specific proteins. As expected by their very differ-

ent functions, proteome similarities were modest (average Person

correlation coefficient of abundance was 0.73). The one exception

was between hLSECs and hHSCs with a correlation coefficient of 0.9

(Fig 3B). The high proteome similarity between hLSECs and hHSCs

in the liver has been previously observed in both proteomics and

single-cell transcriptomics studies (Aizarani et al, 2019; Ölander
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et al, 2020). The cumulative protein abundance showed an uneven

distribution similar to the bulk liver tissue.

Interestingly, 25% of total protein mass in hepatocytes is com-

prised of only 28 most abundant proteins (Fig 3D). The top 10 are

primarily metabolic enzymes including CPS1, liver carboxylesterase

1 (CES1), protein disulphide-isomerase (P4HB), aldehyde dehydro-

genase (ALDH2), ATP synthase subunit beta (ATP5B), and gluta-

mate dehydrogenase 1 (GLUD1). The only exceptions were heat

shock proteins A5 and D1 and keratin 18, a widely used marker of

hepatocyte cell death. In Kupffer cells, cytoskeleton components

such as vimentin, actin isoforms, and myosin are among the top

abundant proteins. In the top 10 most abundant proteins, they have

S100A8 and S100A9, who play a prominent role in the regulation of

inflammatory processes and immune response (Pruenster et al,

2016). Their heterodimer, termed calprotectin, is also highly

expressed in neutrophils and monocytes. The nature of the most

abundant proteins reflects their functional roles such as migration

along the sinusoids and for the immune response when encounter-

ing infections. In both hLSEC and hHSC, again unlike in the hHEPs,

the top 10 abundant proteins are mostly cytoskeletal framework

components, in this case presumably required for forming the endo-

thelial fenestrae by hLSEC and for the maintenance of morphology

and cellular adhesion of hHSC (Fig 3D).

The same proteins can be present in different cell types in very

different amounts, depending on their functional demands. To

investigate the cellular mass composition at the protein class level,
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Figure 2. Comparative analysis of the liver tissue proteomes.

A Commonly and exclusively quantified proteins in bulk liver tissue, hepatic artery, and portal vein.
B Cumulative protein abundance of liver biopsy, haptic artery, and portal vein as a function of protein rank, with the total of the top 10 abundant proteins and number

of proteins that comprise four quartiles indicated.
C PCA of liver, hepatic artery, portal vein, and cell lines.
D Loadings of the PCA in Panel (C) with proteins that contribute most to the variance for the three clusters annotated.
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we followed the annotation of proteins into 21 classes, such as

enzymes, secreted protein, and drug targets, of the Human Protein

Atlas (HPA; Uhlen et al, 2016). This revealed major differences

between the cells, for example, 21% of the protein mass of primary

hepatocytes are classified as secreted proteins, as compared to only

12–16% in the other cell types (Fig EV2A). This is expected since a
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Figure 3. Comparative analysis of liver cell type proteomes.

A Commonly and exclusively quantified proteins in liver cell types (hHSC: hepatic stellate cell, hHEP: hepatocyte, hKC: Kupffer cell, hLSEC: liver sinusoidal endothelial cell).
B Pair-wise correlation of the proteomes of the four primary cell types, with Pearson correlation coefficients noted.
C Circos plot representing proteins predicated to be co-localized in subcellular compartments.
D Cumulative protein abundance of liver cell types as a function of protein rank, indicating the total of the top 10 abundant proteins and number of proteins that

comprise the four quartiles.
E Schematic representation of the subcellular mass composition of an average hepatocyte.
F The bar plot shows the contribution of each organelle to total cellular protein mass, also accounting for unassigned proteins. Percentage of cytosol, mitochondria,

nucleoli, plasma membrane, and actin filaments is indicated.
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role of hepatocytes is to produce and secrete proteins into the blood.

Our data show that enzymes together comprise as much as 49% of

total proteome mass in hepatocytes. The number drops to 31% in

hKC, and 19% in both hLSEC and hHSC, whereas hLSEC and hHSC

express higher levels of transporters, cluster of differentiation (CD)

markers and ribosomal proteins compared to hHEP and hKC. In

addition, hLSEC features nearly four times higher abundance of

transcription factors as hHEP. Hepatocytes also have the highest

abundance of FDA-approved drug target proteins (13%) and poten-

tial drug targets (24%), reflecting a focus on modulating metabolic

liver functions and underlining the importance of liver disease as

comorbidity (Fig EV2A). A potential use of our resource is to under-

stand the quantitative distribution of drug targets under consider-

ation and to highlight proteins or regulatory pathways present in

cell types of therapeutic interest.

To investigate the proteome composition of subcellular compart-

ments in the liver, we predicted subcellular proteome maps by map-

ping the quantified proteins to 32 subcellular localizations according

to Gene Ontology Cellular Component (GOCC). According to this

analysis, mitochondria comprise 23% of total proteome mass in

hepatocytes, followed by the cytosol and the endoplasmic reticulum,

with 22 and 11%, respectively (Fig 3E, Dataset EV2). As many pro-

teins co-localize to more than one organelle (Fig 3C), we normal-

ized the proteome proportions based on the GOCC information. This

revealed that mitochondria have three times the total proteome

mass in hepatocytes as in other cell types (Fig 3F, Dataset EV2).

Conversely, hepatocytes have the least contribution to proteome

mass from the cytoskeleton illustrated by seven times lower levels

of actin filaments than in hHSCs and one thirds of those of hKCs

and hLSECs (Fig 3F).

To further dissect proteome composition of mitochondria in

hHEPs, we determined protein components of total mitochondrial

enzymes (68%), oxidative phosphorylation (OXPHOS) complex I–IV

(8.2%), ATPase (9.4%), solute carriers family 25 (5%), and mito-

chondria ribosomes (0.4%). These proportions were quite different

in the other cell types (Fig EV2B). As an example, the summed pro-

portion of OXPHOS complex I–IV in hepatocyte mitochondria is

twice of that in hHSCs. Among the 195 solute carrier proteins quan-

tified in our atlas data, about 15% belong to the mitochondrial car-

rier transporter family 25 (SLC25), accounting for up to 6% of the

mitochondrial mass. SLC25 is the largest solute transporter family in

humans and central to mitochondrial function (Perland &

Fredriksson, 2017; Ruprecht & Kunji, 2020). Among all 66 SLC fami-

lies, SLC25 accounted for an astonishing 70% of total solute carrier

proteins in hepatocytes, and 45–57% in the other cell types.

Proteome ruler and cell type-specific proteins

Given the pronounced differences in protein abundance across cell

types at the subcellular organelle and protein class level, we were

interested in estimating absolute copy numbers for all proteins. We

applied the “proteomic ruler” approach that uses the total histone

mass to cellular DNA (Wisniewski et al, 2014). This concept usually

assumes diploidity, whereas hepatocytes reportedly have between

one and four nuclei (Thoma, 2018); therefore, our copy numbers

are likely to be underestimated (Fig EV3A). Our calculations

resulted in two to eight billion protein molecules, corresponding to

150–700 pg of protein mass per cell across different cell types

(Fig EV3B and C). Our rough estimation allows us to infer for

instance, the stoichiometric ratios of respiratory chain subunits of

associated protein complexes and ATP synthase. This shows that

there are approximately 128 million protein molecules of the ATP

synthase in hepatocytes, with the OXPHOS complex I–IV having 15–

77 million protein copies totaling 305 million in the OXPHOS com-

plexes I–V, up to four-fold higher than those in the other cell types

(Fig 4A). Protein subunits belonging to the same complex can be

very different, illustrated by the more than 100-fold difference

between the most and least abundant ATP Synthase subunits

(ATP5B to ATP5S; Fig 4B), reflecting the regulatory role of the latter

as a coupling factor (Belogrudov & Hatefi, 2002; Jonckheere et al,

2012). Subunits alpha (ATP5A1) and beta (ATP5B) forming the cat-

alytic core in the F1 domain of the ATP Synthase, however, have

very similar copy numbers with a ratio between 0.8–0.97 (ATP5A1:

ATP5B; Fig 4B) for the four cell types, in excellent agreement with

their assembly stoichiometry of 1:1 (Walker et al, 1985; He et al,

2018). The F0 membrane domain is an assembly of single-copy sub-

units and we found similar copy numbers between them (within

two-fold difference from the mean). The only exceptions were the

mitochondrial DNA-encoded ATP6 and ATP8, with less than three-

fold of the mean copy number, possibly reflecting differences in

protein synthesis by cytosolic- and mitochondrial ribosomes

(Table EV2). Similarly, MT-CO1 and MT-CO3, two of the three mito-

chondrial DNA-encoded subunits in the cytochrome c oxidase com-

plex (Complex IV), also had the lowest number of protein copies

compared to the rest (ranking 12th and 14th among the 14 subunits).

The same applies to MT-CYB in Complex III. Protein complexes con-

sist of subunits that are produced in excess. Thus, our data may

point to a differential role of mitochondrial and cytosolic protein

biogenesis for the OXPHOS complexes. Even at an approximate

level, our estimates allow modeling the stoichiometric ratio of the

overall respiratory chain machinery (Complex I–V) between differ-

ent cell types based on all subunits. The data indicated that approxi-

mately 300 million protein molecules in these complexes were in

hepatocytes compared to only 55 million in Kupffer cells (Fig 4A).

Taking the copy number concept to another level, we extracted

them for entire KEGG pathways. For instance, about 1.2 billion

protein molecules in hepatocytes carry out metabolic pathway func-

tions, whereas 240–720 million do so in the other liver cell types

(Fig 4C). The top abundant metabolic enzymes—Liver carboxyles-

terase 1 (CES1) and Carbamoyl-phosphate synthase (CPS1)—alone

have more than 40 million protein copies each (Fig 4C).

Several genes containing non-synonymous single nucleotide

polymorphisms (SNPs) have been identified to contribute to the

pathogenesis of NAFLD, including PNPLA3, MBOAT7, GCKR, and

HSD17B13 (Tr�epo & Valenti, 2020). Our copy number catalogue

indicated that hHEPs express the highest of each of these proteins

with the only exception of MBOAT7, which is most abundant in

hHSCs (25-fold as that in hHEPs). MBOAT7 is a membrane-bound,

lysophopholipid acyltransferase. Its rs641738C>T allele has been

reported to be associated with fibrosis in a number of liver diseases,

and it was recently shown that a loss of MBOAT7 leads to liver

fibrosis, to which the mechanism is incompletely understood (Than-

gapandi et al, 2021). Our data show that MBOAT7 has the highest

expression in hHSCs, which might point to new directions in eluci-

dating this mechanism given the prominent role of hHSCs in fibro-

genesis. PNPLA3 is a lipid droplet-associated protein with hydrolase
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Figure 4. Quantitative analysis of sub-cellular proteomes and biological pathways.

A Total protein copy number of the oxidative phosphorylation complex I–V in bulk liver tissue (n = 6 independent biological replicates) and primary cell types (isolated
primary cells from n = 3 individuals for each cell type). Values are presented as mean � s.d.

B Protein copy number for members of the oxidative phosphorylation complex I–V in hepatocytes and Kupffer cells with Pearson correlation coefficient
indicated.

C Protein copy number estimation of the KEGG pathways. The left panel shows the estimated total number of proteins per cell of top 10 most abundant pathways in
liver biopsy in terms of total molecules of proteins associated. The right panel shows the protein copy numbers of top 10 most abundant proteins in liver biopsy that
are associated with metabolic pathways and their distribution in liver biopsy (n = 6), hHEP (n = 3), hLSEC (n = 3), hHSC (n = 3), and hKC (n = 3). The black line in the
middle of the box is the median, the top and the bottom of the box represent the upper and lower quartile values of the data and the whiskers represent the upper
and lower limits for considering outliers (Q3+1.5*IQR, Q1�1.5*IQR) where IQR is the interquartile range (Q3–Q1).

D Top 10 uniquely quantified proteins per cell type with label-free quantification (LFQ) intensities [Log10] and copy numbers [Log10].
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activity towards triglycerides. Individuals carrying an I148 allele on

PNPLA3 have a two-fold increased risk for developing NAFLD

(Romeo et al, 2008; Speliotes et al, 2010). We quantified it in only

hHEPs and hHSCs with approximately 21,000 and 4,700 copies per

cell, respectively. This underlines again the importance of non-

parenchymal cells in development of steatosis or NASH.

TGF-beta receptor and PDGF are required for hHSC activation

and inhibiting these pathways are under active investigation in

terms of their anti-fibrotic potential. We further looked into their

abundance levels and found that indeed, hHSCs have the highest

levels of PDGF-alpha and beta (PDGFRA, PDGFRB) as well as TGF-

beta receptor type 1 and type 2 (TGFBR1, TGFBR2) among all cell

types, with copy numbers ranging from 150,000 to 2,000,000

(Table EV3). Although copy numbers in the other cell types are

seven-fold lower on average, their higher proportion in the liver

adds up to similar copy numbers. In this way, our resource provides

useful information for therapeutically relevant proteins across liver

cell types in relation to potential toxic effects. This builds a case

why cell type-specific targeting is more effective than global

approaches with less adverse effects (Klein et al, 2012, 2019).

Next, we investigated unique protein expression between cell

types. There were only 109 proteins uniquely quantified in all the

biological replicates of each cell type, and we define them as “cell-

type specific” (Table EV4). Among the top 34 unique proteins per

cell type, about 21 are among the top 5,000 abundant proteins

within corresponding cell types, making it unlikely that they are

uniquely detected in these cells for technological reasons (Fig 4D).

Our data confirm known markers, for instance, CD163, a macro-

phage scavenger receptor, as a known marker of macrophages that

is commonly used for Kupffer cell isolation. Three other proteins in

the Kupffer cell-specific protein panel, namely peptidoglycan recog-

nition protein 1 (PGLYRP1), cathepsin W (CTSW), and CD84 are

involved in the immune response. Apart from the liver, these pro-

teins also have “enriched expression” according to RNA-seq data in

the HPA in bone marrow and lymph nodes, in agreement with the

similarity of Kupffer cells as resident macrophages with the infiltrat-

ing macrophages from the bone marrow before they migrate to the

liver. Among the top 10 hHEP-specific proteins, six have “enriched

expression” in the liver, namely small leucine rich protein 1

(SMLR1), clarin 3 (CLRN3), members of the cytochrome P450 fam-

ily (CYP4A22, CYP4A11), receptor transporter protein 3 (RTP3), and

secreted phosphoprotein 2 (SPP2) with protein copy numbers up to

180,000 (Table EV4). RTP3 and SPP2 are “exclusively expressed”

(meaning exclusively detected) in the liver according to the HPA to

which our data assigns quantitative and cell type resolved informa-

tion, with more than 70,000 and 50,000 protein copies per cell,

respectively (Fig 4D). A recent study has identified CLRN3, as a cell

surface protein for hepatocyte-like cells derived from induced plu-

ripotent stem cells (Mallanna et al, 2016). Interestingly, the top

hHEP-specific protein is an uncharacterized protein (H0YL77). Apart

from hepatocytes, it was also quantified in the bulk liver samples

and the HepG2 cell line, demonstrating its specificity to hepatocytes.

When calculating the Pearson correlation coefficients of its abun-

dance profile with other proteins, the highest correlation was to

mitochondrial fission factor (MFF; r = 0.99; Table EV5).

Among the top 10 hHSC-specific proteins, the HPA assigns three

as primarily expressed in the cerebellum or cerebral cortex, namely

testican-1 (SPOCK1), neurotrimin (NTM), and ectodermal-neural

cortex 1 (ENC1). It has been hypothesized that HSCs derived from

the neural crest due to their similar gene expression pattern to that

of neural cell types (Sato et al, 2003), which our data support at

the quantitative level for these uniquely expressed proteins. Note

that the neural crest origin of HSC has been challenged, and

another hypothesis suggests multipotent mesenchymal progenitor

cells as the origin, particularly for these cells also give rise to neu-

ral cells and mesenchymal lineages (Friedman, 2008; Hellerbrand,

2013). In line with the fundamental role of HSCs in producing

extracellular matrix components and the initiation, progression,

and regression of liver fibrosis (Mederacke et al, 2013), we found

carbohydrate sulfotransferase 4 (CHST4) among their top 10 spe-

cific proteins. This protein plays an important role in lymphocyte

homing at sites of inflammation. It has been linked to liver disease

and was shown to predict the prognosis of hepatocellular carci-

noma (Zhang et al, 2020; Hu et al, 2021). Only four proteins were

hLSEC-specific by our criteria, likely due to their proteome similar-

ity with hHSC. The four proteins are tubulin alpha chain-like 3

(TUBAL3), transcription factor AP4 (TFAP4), Yip1 interacting fac-

tor homolog B (YIF1B) and sphingosine-1-phosphate receptor 3

(S1PR3; Fig 4D). Together, our analysis identifies known as well

as so far undescribed cell type-specific proteins in the liver and

provides their abundance levels.

Functional specialization of human liver cell types

We further investigated the functional characteristics of the different

liver cell types in an unbiased manner using ANOVA, which showed

that nearly half of the liver proteome was significantly different in at

least one of them (4,173 proteins, Methods, Dataset EV3). After hier-

archical clustering based on Euclidean distance, four large clusters

of cell type characteristic proteins appeared (1,000, 900, 1,168 and

1,331 proteins enriched in hHEPs, hKCs, hLSECs, and hHSCs,

respectively, Fig 5A). These panels are very distinct between hHEPs

and hKCs but overlap between hLSECs and hHSCs. Reflecting its

active role in energy metabolism and maintaining homeostasis, the

corresponding GO terms are highly and significantly enriched in

hHEPs, along with complement activation, blood coagulation, and

regulation of blood lipoprotein levels (Fig 5B). Higher protein levels

of the oxidative phosphorylation machinery in hepatocytes from the

above-targeted analysis was also reflected in this unbiased analysis

(Fig EV4).

As expected, GO terms associated with immune responses were

highly enriched in hKCs, including antigen presentation and proces-

sing, cytokine and chemokine production, as well as cell motility

(Fig 5C), possibly required for movement along the liver sinusoids

(MacPhee et al, 1992). Surprisingly, several metabolic pathways

were also significantly enriched, including phosphorus metabolic

process, monosaccharide metabolic process and collagen metabolic

process. This is demonstrated by a higher abundance of dehydroge-

nases, for example, GPD1L (glycerol-3-phosphate dehydrogenase 1-

like protein), GAPDH (glyceraldehyde-3-phosphate dehydrogenase),

ME1 (NADP-dependent malic enzyme); carbohydrate kinases:

PGK1 (phosphoglycerate kinase 1), PFKL (ATP-dependent 6-

phosphofructokinase) as well as ALDOA, a fructose-bisphosphate

aldolase known to be predominantly expressed in skeletal muscle.

Proteases, such as cathepsins (CTSG, CTSB, CTSD, CTSH, CTSL,

CTSS, CTSW, and CTSZ) which are proteolytic enzymes that
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contribute to pathogen killing in lysosomes (Pires et al, 2016), pro-

teins of the core machinery of ubiqutination and proteasomal degra-

dation and matrix metalloproteinases (MMP8, MMP9, MMP25) that

have crucial regulatory functions have their highest abundance in

Kupffer cells. Further reflecting the roles in engulfing pathogens

into lysosomal compartments to undergo degradation pathways,
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Figure 5. Liver cell type functional specialization map.

A Unsupervised hierarchical clustering of proteins significantly differentially abundant across cell types, with columns showing three biological replicates (n = 3) of four
cell types and rows significant proteins. Significance was calculated by one-way ANOVA followed by Benjamini–Hochberg correction for multiple hypothesis testing
(FDR < 0.05). Frames and numbers indicate four clusters of proteins highly enriched in each cell type.

B GOBP map specific for hHEP (proteins in cluster 1). Each circle represents an individual biological process term significantly enriched, with the number of proteins
and FDR-corrected P-value indicated by size and degree of transparency. Significance was calculated by Fisher’s exact test followed by Benjamini–Hochberg correction
for multiple hypothesis testing (FDR < 0.01). The leading term given by the most proteins associated within a group is indicated.

C GOBP map specific for hKC (proteins in cluster 2). Significance was same as Panel (B).
D Comparative analysis of GOBP enrichment for hHSC and hLSEC from Cluster 3 and Cluster 4 from Panel (A), with blue terms specific for hHSC and pink specific for

hLSEC and gray terms shared between them. Significance was same as Panel (B).
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vacuolar protein sorting-associated proteins involved in cargo trans-

port, such as VPS11 and VPS26A, were most highly expressed com-

pared to the other cell types (Fig EV5).

As most hHSCs- and hLSECs-enriched proteins overlapped, we

did a comparative functional enrichment analysis on proteins from

cluster three and four in Fig 5A. Enriched terms were termed domi-

nant in a cell type if the percentage of associated proteins from the

cell type is larger than the other. Among the 26 terms specific for

hLSECs, a considerable proportion relates to ribonucleoprotein com-

plex biogenesis, gene expression and RNA localization. Hence,

levels of 40S- and 60S- ribosomal subunits as well as 39S- and 28S-

mitochondrial ribosomal proteins, members of the nuclear pore

complex, RNA helicase, and translation initiation among the others

where comparatively higher, reflecting higher biosynthetic activity

due to the important role of LSEC in liver homeostasis, especially

since LSEC is the first barrier of nutrients and “pathobionts” enter-

ing the human body through the gut.

LSEC constitutes the sinusoidal fenestrae, and plays an essential

role in the exchange of solutes, metabolites, fluid, and particles

between the hepatocytes and sinusoidal blood (Knolle & Wohlleber,

2016). Accordingly, proteins involved in intracellular transport, such

as many SLC family members, were highly abundant compared to

other cell types (Fig EV6). Membrane proteins with virus receptor

activity involved in interspecies interaction were also highly enriched

such as CD46, ICAM1, PVR (poliovirus receptor), EPHA2 (ephrin

type-A receptor 2, which acts as a HCV receptor in hepatocytes and

facilities its entry), as well as ANPEP (also known as CD13), DPP4

(also known as CD26) which both have human coronavirus receptor

activity (Peck et al, 2017; Sungnak et al, 2020; Tang et al, 2020), pre-

sumably rendering LSEC more sensitive or susceptible to viral infec-

tion or translocation through receptor-mediated endocytosis or

fusion. Among the HSC-specific enriched terms, many relate to ana-

tomical structure development and extracellular structure organiza-

tion (Fig 5D). Highly abundant cytoskeleton component proteins

such as actin and tubulin, motor protein myosin, membrane-

cytoskeletal protein vinculin, transmembrane receptor integrins and

extracellular matrix proteins (laminin and collagens) all belong to

this category. Alpha-smooth muscle actin (a-SMA) is a marker for

HSC activation but its expression is not unique to HSC, with up to 10-

fold lower copy numbers in the other cell types in our resource.

Primary cell culture reveals hepatic stellate cell
activation-related proteome signatures

Functional studies related to the liver and its cell types are mostly

performed in primary or immortalized cell lines due to convenience

and reproducibility. We previously compared immortalized murine

hepatocyte cell lines to their cognate primary cells, which revealed

rearrangement of characteristic metabolic processes, decrease in

mitochondria function, while insulin signaling remained intact (Pan

et al, 2009). In mouse tissue and isolated hepatocytes, expression of

complement components gradually decreased as one aspect of

extensive overall proteome remodeling during cell culture (Azimifar

et al, 2014). In another proteome study, a decrease in expression of

cytochrome P450 family was observed in human hepatocyte cell cul-

ture (Heslop et al, 2017).

Our liver proteomics workflow could shed light on which cellular

functions are retained in human liver cells during adaption from an

in vivo like state to a cell line state. To test this hypothesis, we

performed primary cell culture of hHEPs, hHSCs, and hLSECs and

investigated their proteomic changes at day-1, day-3, and day-7. We

selected the three time points based on a previous study in which

we observed substantial proteome remodeling during 7-day culture

of primary hepatocytes freshly isolated from mice (Azimifar et al,

2014). We did not further extend the culture period or sample more

frequently due to limitations in sample availability and the limited

growth potential of primary cells in culture. During the cell culture

experiment, we chose optimal culturing conditions for each primary

cell type according to the provider’s instructions and systematically

controlled the viability and confluency to avoid introducing prote-

ome changes due to sub-optimal growth conditions (Methods). We

acquired the mass spectra in data-independent acquisition (DIA)

mode with FAIMS, and in silico library (directDIA) was used for

data processing (Bruderer et al, 2015; Methods). In biological tripli-

cates and single-run proteomic measurements, 7,501 proteins were

quantified in total (Fig 6A, Dataset EV4). Hepatocytes had the larg-

est proteome alterations comprising 41% of the total in hHEP (2,531

proteins, ANOVA, FDR < 0.05) followed by hHSC (13%) and hLSEC

(3%; Dataset EV4). Despite this proteome drift, the same cell types

still cluster in PCA, with the separation of hHEPs from hHSCs and

hLSECs in the first component already explaining 57% of the vari-

ance (Fig 6B). This recapitulates the data from uncultured primary

cells as described above, in which the proteomic profiles of hHSC

and hLSEC are most alike. The PCA clearly shows the step-wise pro-

teome shift of these primary cells from day-1 to day-7, which was

further reflected by decreased Pearson correlation coefficients (0.91

from day-1 to day-3 and 0.8 from day-1 to day-7 in case of hHEP;

Fig 6C).

To understand the proteome shifts at the level of biological pro-

cesses, we performed functional enrichment analysis of the differen-

tially abundant proteins. For hHEP, this unveiled an upregulation of

proteins involved in regulation of cell shape, adhesion, and migra-

tion, as exemplified by actin and actin-binding proteins (myosin,

tropomyosin, gelsolin, drebrin) as well as extracellular matrix pro-

teins (VWF, tenascin-X, HSPG2, collagen type III, IV and VI), pre-

sumably reflecting loss of the supporting in vivo structural

framework as well as mechanical adaption to the in vitro environ-

ment. Conversely, metabolic or energy homeostatic processes were

downregulated, accounting for half of the altered proteome, includ-

ing more than 70 members of the oxidative phosphorylation

machinery components. Likewise, we observe a downregulation of

GO terms related to binding vitamins and metal, along with PPAR

(peroxisome proliferator-activated receptor) signaling. PPARs are

key metabolic regulators, whose agonists are therapeutic targets for

NAFLD/NASH currently under evaluation in phase I to III clinical

trials, including the drug Pioglitazone (Boeckmans et al, 2019; Wu

et al, 2020; Della Pepa et al, 2021). The time-dependent decrease in

PPAR emphasizes the importance to take proteome drift into

account when evaluating PPAR agonist efficacy in hepatocyte

models. This also applies for glycolysis/gluconeogenesis, lipid oxi-

dation, and drug metabolic processes, which all decrease upon cell

culture (Fig 6D).

Interestingly, hHSCs underwent gradual loss of vitamin A-

containing lipid droplets during primary cell culture—a typical fea-

ture of HSC activation. We confirmed this with our proteomics data,

illustrated by an upregulation of the HSC activation marker a-SMA
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by 30% at day-7 compared to day-1 (Fig 6F). HSC activation is a

key event in fibrogenesis, during which quiescent HSCs differentiate

into myofibroblast-like cells and secret excessive extracellular

matrix. This process is crucial for understanding the pathogenesis

and development of liver fibrosis. Functional analysis of the more

than 800 significantly changing proteins furthermore revealed

increased expression in collagen microfibril organization, extracellu-

lar matrix organization and angiogenesis (Fig 6E). Specifically colla-

gen type I, II, III, ECM1, as well as extracellular matrix modifiers

Lysyl oxidase (LOXL2, LOXL4) had an about two-fold increase
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Figure 6. Proteomics analysis of human liver primary cells upon cell culture.

A Total quantified proteins at day one, three and seven upon primary cell culture in hepatocytes (hHEP), hepatic stellate cells (hHSC) and liver sinusoidal endothelial cells
(hLSEC). In all cases, number of biological replicates is 3. Values are presented as mean � s.d. No additional replications of the experiment was done in laboratory.

B PCA showing proteome dynamics of primary cells upon cell culture.
C Pair-wise Pearson correlation of proteomes during cell culture.
D Significantly changing proteins during primary hHEP cell culture, indicating significantly enriched GO terms on the cluster of down-regulated proteins. Significance

was calculated by Fisher’s exact test corrected for multiple hypothesis testing with FDR < 0.05.
E Significantly changing proteins during primary hHSC cell culture, indicating significantly enriched GO terms on the cluster of up-regulated proteins. Significance was

calculated by Fisher’s exact test corrected for multiple hypothesis testing with FDR < 0.05.
F Protein expression patterns over the course of primary hHSC culture (n = 3). Values are presented as mean � s.d. Significance was calculated by ANOVA followed by

Benjamini–Hochberg correction for multiple hypothesis testing (FDR < 0.05) with a significance level of **P < 0.01, and ***P < 0.001.
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at day 7 compared with day 1. Among these, LOXL2 has emerged

as an attractive therapeutic target for inhibiting liver fibrosis

(Barry-Hamilton et al, 2010; Ikenaga et al, 2017). The collagenase

MMP2, MMP14, and their inhibitors TIMP2 which also have anti-

fibrotic therapeutic potential were as well upregulated by 65–120%,

likely reflecting a higher turnover rate of extracellular matrix (Craig

et al, 2015; Chuang et al, 2019).

Several receptor tyrosine kinases and related proteins, known to

be implicated in hepatic fibrosis or liver regeneration—including

epidermal growth factor receptor (EGFR), fibroblast growth factor 2

(FGF2), and hepatocyte growth factor activator (HGFAC)—were

also upregulated (Fig 6F). Liver disease such as cirrhosis can result

in changes in the growth hormone-insulin-like growth factor axis

(Donaghy et al, 2002; Bonefeld & Møller, 2011). In line with this, we

observed about 50% higher levels of insulin growth factor binding

proteins (IGFBP3, IGFBP4, and IGFBP7) by day-7 upon HSC activa-

tion. Transforming growth factor (TGF)-b is a major profibrogenic

cytokine and targeting TGF-b signaling has been explored to inhibit

liver disease (Breitkopf et al, 2005; Rao & Mishra, 2019). Accord-

ingly, TGF-b receptors TGFBR1 and TGFBR2 levels were also more

than 50% higher on day-7 during HSC activation.

In previous studies, we had found that the peptidases ANPEP

and DPP-4, a well-known drug target for T2D, were associated with

NAFLD in a human cohort and mouse models (Niu et al, 2019), and

we found them to be significantly and substantially upregulated

upon HSC activation (Fig 6F). Furthermore, we had employed unbi-

ased machine learning algorithms to select a panel of 14 circulating

markers for predicting fibrosis in alcohol-related liver disease (pre-

print: Niu et al, 2020). Levels of four of these proteins—all among

the top predictors of fibrosis in ALD—increased 1.5 to 3-fold,

namely VCAM1, IGFBP7, IGFALS, and LGALS3BP. Thus, our

dynamic proteomic profile of HSC activation provides functional

insights into liver fibrosis and can allocate cellular origin of circulat-

ing markers.

Interestingly, “immune system process” and “leukocyte chemo-

taxis” were among the most highly enriched GO terms in upregu-

lated proteins during cell culture of primary hHSCs (Fig 6E). The

depth of our experiments allowed the identification of IL-6, a protein

of extremely low abundance in the plasma and generally considered

to be secreted by macrophages such as the liver resident Kupffer

cells and modulate hepatic inflammation (Schmidt-Arras & Rose-

John, 2016; Han et al, 2020). Its levels doubled already by day-3 of

HSC culture. Altogether, more than 70 immune response proteins

were upregulated, including the complement components (C3, C4A,

C5, C8B) and proteins involved in regulation of leukocyte chemo-

taxis (VCAM1; Fig 6F). Thus, apart from ECM remodeling, HSC acti-

vation may perpetuate hepatic inflammation by secreting pro-

inflammatory factors to recruit leukocytes to the liver. These find-

ings reveal a potential unappreciated role of HSC activation in the

development of fibrogenesis.

In total, 342 proteins significantly decreased during primary cul-

ture of HSC (Dataset EV4). Among the significantly enriched KEGG

pathways are “fatty acid biosynthesis” and “PPAR signaling path-

way”. Decreased intensity in proteins related to fatty acid biosynthe-

sis may reflect the loss of lipid droplet, one of the two prominent

features of HSC activation, which we also observed morphologically

under the microscope. As mentioned above, PPAR agonists have

been investigated as possible therapeutic agents for liver disease.

The expression of PPARc is high in quiescent HSCs; however,

PPARc is suppressed during fibrosis process (Wu et al, 2020).

Therefore, our observation of decreased protein levels in PPAR sig-

naling confirms what is known but may also provide novel thera-

peutic targets, such as the proteins involved in lipid synthesis and

degradation (FADS2, HMGCS1, FABP5, SCD, ACSL3).

Dramatic proteome landscape shift in cirrhotic liver

Having generated an in-depth human liver proteome, we used it to

build a “spectral library”, to facilitate single-run DIA analysis of

liver biopsies in clinical cohorts. We applied this rapid and sensitive

pipeline to investigate and compare various pathological conditions

of the liver. Investigated liver samples were from cirrhosis patients

requiring liver transplantation as the maximal end-stage of CLD

(N = 10), patients with morbid obesity and non-alcoholic steatohe-

patitis requiring bariatric surgery (NASH, N = 20), and 15 healthy

controls, of which 10 were obese but liver-healthy. Participant char-

acteristics can be found in Table EV6. In total, we quantified 6,475

protein groups (Dataset EV5). After filtering for at least 70% valid

values in experimental groups, we obtained a data-matrix with an

average 5,382 proteins per sample and an overall data completeness

of 91.8% (Methods). ANCOVA corrected for age and sex resulted in

1,644 proteins differentially abundant between cirrhosis, NASH, and

healthy controls (Fig 7A, Dataset EV5). Of these, two thirds had

increased abundance in liver cirrhosis and they are involved in

extracellular matrix remodeling, signal transduction, cell morpho-

genesis and migration, immune response and angiogenesis (Fig 7B,

Dataset EV5). These results provide the molecular basis for the clini-

cal observations of liver cirrhosis, characterized by the replacement

of normal liver tissue by scar tissue, the formation of new vessels

leading to abnormal angioarchitecture in the cirrhotic liver, and the

compromised immune system and dysregulated immune cell activa-

tion (Trebicka et al, 2019; Schierwagen et al, 2020). In particular,

we found seven proteins that were significantly upregulated in cir-

rhotic liver biopsies to be uniquely detected in hepatic artery or por-

tal vein in our in-depth proteome atlas analysis just above (Fig 2A).

Of these, tropomyosin alpha-1 chain (TPM1) and Kinesin light chain

1 (KLC1) were detected in both but not in bulk liver. Both TGF-b
signaling and platelet-derived growth factor signaling play an impor-

tant role in mediating hepatic stellate cell activation and develop-

ment of fibrosis. We found them to be upregulated in cirrhosis

represented by the upregulation of PGDFRB, TGFB1 (TGF-b1),
TGFB1I1 (TGF-b1 induced transcript 1 protein), TGFBI (TGF-b
induced protein ig-h3), LTBP1, LTBP2, LTBP4, and ENG (transmem-

brane accessory receptor for TGF-beta signaling; Fig 7D).

In contrast, down-regulated proteins in liver cirrhosis are related

to fatty acid metabolism, ethanol/drug metabolism, and retinol/reti-

noid metabolic processes reflecting metabolic impairment in

patients with liver cirrhosis (Fig 7C). Decreased level of retinol/reti-

noid metabolic process likely reflect the loss of lipid-storing pheno-

type, in particular the loss of retinyl ester-containing lipid droplets

in HSC—a key feature of HSC activation. Interestingly, while a

majority of the CYP450 family enzymes are downregulated as

expected, there are three exceptions—CYP3A7, CYP7B1 and

CYP11B1 (Fig 7E). CYP3A7 is found predominantly in human fetal

livers and is the major hepatic enzyme of the CYP450 family

enzymes in the fetus (Li & Lampe, 2019). We detect an 18-fold
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increase of CYP3A7 in cirrhotic liver compared to controls. This

unexpected finding was consistent with a transcriptomics study in

which expression of CYP3A7 was found to be slightly higher in HBV

cirrhosis compared to normal livers while other CYP3A family mem-

bers generally decrease (Chen et al, 2014). CYP7B1 is a crucial

enzyme in the alternative bile acid synthetic pathway (Jia et al,

2021), and it has not been related to fibrosis. Similarly, little is

known about the expression of CYP11B1 in liver cirrhosis, and we

detect it to be upregulated by 77%. Thus, this study adds to our

understanding of the CYP450 family members in liver diseases and

provide new research directions for the pathogenesis and progres-

sion of liver diseases.

Hepatic fibrosis is characterized by excess accumulation and

dynamic remodeling of ECM. Proteomics has the ability to compre-

hensively characterize the ECM molecular composition and its

quantitative changes in liver fibrosis, which is essential for gaining

insights into the mechanisms of liver disease. The altered ECM land-

scape in liver cirrhosis include the upregulation of collagens (type I,

III, IV, V, VI, VIII, X, XI, XII, XIV, XV, XVI, XVIII, XXI), proteogly-

cans such as versican, decorin, lumican, and glycoproteins includ-

ing fibulins, fibronectin, and laminins (Dataset EV5). Type X and XI

collagens (COL10A1 and COL11A2) are the highest up-regulated col-

lagens, even though type I collagen (COL1A1, COL1A2) is the most

abundant protein in the ECM, suggesting that not only the overall

abundance but also the quantitative composition of the ECM constit-

uents is altered in cirrhotic liver (Praktiknjo et al, 2018; Ortiz et al,

2021). To investigate this in a quantitative manner, we extracted all

significantly elevated ECM associated proteins in cirrhotic liver and

plotted their abundance rank in cirrhotic and healthy liver respec-

tively which revealed 20 proteins whose abundance rank shifted by

at least 20 (Fig 7F). COL10A1 had the most dramatic shift—from

114 in healthy control to 53 in cirrhotic liver, followed by EFEMP1,

LOXL1, COL11A2, and FBLN5. In healthy liver, the ECM is con-

stantly undergoing remodeling processes, by which components are

being modified and degraded, tightly controlled to ensure homeosta-

sis. Among the up-regulated proteins associated with ECM
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Figure 7. Liver proteome remodeling under pathological conditions.

A Hierarchical clustering of proteins significantly differentially abundant between NASH (n = 20), cirrhosis (n = 10) and control groups (n = 15). Significance was
calculated by ANCOVA, followed by Benjamini–Hochberg correction for multiple hypothesis testing (FDR < 0.05). Two major clusters of proteins were identified with
Cluster 1 mainly upregulated in cirrhosis compared to NASH and controls and Cluster 2 downregulated. No additional replications of the experiment was done in
laboratory.

B Ten representative highly enriched GOBP terms in proteins in Cluster 1 of Panel (A). Significance was calculated by Fisher’s exact test corrected for multiple
hypothesis testing with FDR < 0.05.

C Ten representative highly enriched GOBP terms in proteins in Cluster 2 of Panel (A). Significance was calculated by Fisher’s exact test corrected for multiple
hypothesis testing with FDR < 0.05.

D Box-and-whisker plot showing the distribution of log2-intensity values of statistical significantly regulated proteins across three groups. Number of independent bio-
logical replicates is n = 15, 20 and 10 for the control, NASH and cirrhosis group, respectively. The black line in the middle of the box is the median, the top and the
bottom of the box represent the upper and lower quartile values of the data and the whiskers represent the upper and lower limits for considering outliers
(Q3+1.5*IQR, Q1�1.5*IQR) where IQR is the interquartile range (Q3–Q1). Significance was defined by ANCOVA followed by Benjamini–Hochberg correction for multiple
hypothesis testing (FDR < 0.05) with a significance level of ***P < 0.001.

E Heatmap of CYP 450 family members that are statistically significantly abundant between three groups. Data were presented as mean protein abundance followed
by Z-score normalization across the three experimental groups. Number of replicates is same as Panel (C).

F Extracellular matrix (ECM) remodeling in liver cirrhosis. Upper and lower panel shows the abundance rank of proteins involved in ECM organization in the control
(upper) and cirrhosis (lower) groups, highlighting top shifted ECM components in the cirrhosis group as compared with the control group.
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organization were the matrix metalloproteinases MMP2, MMP14,

MMP23A, ADAMTS5, and their tissue inhibitors (TIMP1, 3), as well

as lysyl oxidase (LOXL1) which catalyzes collagen cross-link forma-

tion, indicating increased collagen crosslinking. Interestingly, many

of the overexpressed proteins such as collagens, Lysyl Oxidase, tis-

sue metalloproteinase inhibitors were also upregulated upon hepatic

stellate cell activation, indicating their potential cellular source.

Unlike the dramatic proteome shift in cirrhotic liver, NASH fea-

tured only marginal changes in liver proteome compared to normal

livers characterized by 152 proteins significantly differentially abun-

dant (Tukey post hoc test on ANCOVA significant hits with

FDR < 0.05; Dataset EV5). NASH resulted in less proteome changes

in the liver compared to cirrhosis, consistent with a transcriptomics

study, in which only dozens of significantly differentially expressed

proteins (DEPs) were detected in NASH and more than 1,000 DEPs

in cirrhosis (Govaere et al, 2020).

To provide an open interface for easily accessing the data

resource generated in this study, we built a web-based Dashboard

app that enables interactive data exploration and exportation

(Methods, Fig 8). The database provides intuitive ways of data

inference, such as: (i) proteome-wide inference of protein abun-

dance across liver tissue and cell types with both MS intensity and

protein copy number, (ii) inference of protein abundance rank in a

cellular proteome across four primary liver cell types, and (iii) infer-

ence of proteome changes in liver and plasma upon pathological

conditions such as liver cirrhosis at protein and pathway level. In

addition, the database provides information of observed peptides for

each identified protein, which can be useful for building targeted

assay such as parallel reaction monitoring. The database can be

accessed at www.liverproteome.org.

Discussion

The liver is a vital organ responsible for hundreds of functions in

the body. Multiple risk factors predispose to liver diseases, which

Figure 8. A web-based dashboard app for data exploration.

The database enables inference of protein abundance across primary liver cell types and pathological conditions of liver disease.
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imposes a huge burden on the global health systems (Loomba &

Sanyal, 2013). A better understanding of basic liver biology and the

underlying mechanism of pathology can aid prevention, diagnosis,

and treatment. In the era of “big data” when omics data are increas-

ingly being generated in human cohorts, a fast and sensitive proteo-

mics workflow for liver tissue is required.

MS-based proteomics is a constantly developing field. Through

strategies such as multi-enzyme digestion, extensive fractionation,

the use of various fragmentation techniques, and matching to other

tissue proteomes, current technology has been able to identify

> 10,000 proteins in bulk human liver tissue at the expense of anal-

ysis time (Bekker-Jensen et al, 2017; Wang et al, 2019). However,

these studies did not provide quantitative information at the cell

type level. In comparison to bulk liver tissue, there are relatively

few primary liver cells in isolates from an individual, requiring more

efficient sample preparation procedures and more sensitive mass

spectrometry acquisition methods. To address these challenges, we

adopted state-of-the-art technologies—including the loss-less high-

pH reversed-phase fractionation (Kulak et al, 2017). This allowed us

to quantify the largest cell type-resolved quantitative human liver

proteome atlas, consisting of 10,528 proteins assembled from

158,670 sequence-distinct peptides. The largest prior efforts investi-

gated primary cells and only at one time point, identifying 6,788

proteins (Sun et al, 2010) and 9,791 proteins (Ölander et al, 2020).

Data-independent acquisition (DIA) in MS-based proteomics has

demonstrated superior performance in recent years in terms of pro-

teome depth, data completeness, and quantification reproducibility

as compared to data-dependent acquisition (DDA), and has become

the preferred method in clinical studies (Bruderer et al, 2015; Guo

et al, 2015; Karayel et al, 2020; Hansen et al, 2021). To achieve an

optimal data quality, a deep and high-quality peptide spectral library

is typically generated for a specific type of tissue. However, this step

is laborious and not every group is equipped with the necessary

instrumentation and technology to generate high-quality spectral

libraries. The extensive dataset generated in our study can serve as

a spectral library for high-throughput proteomic analysis of patient

samples. With an optimized DIA method integrated with the

advanced signal-processing algorithm ΦSDM (Grinfeld et al, 2017),

and MaxQuant.Live for direct instrument control (Wichmann et al,

2019), we achieved proteome coverage of 6,000 proteins in 100 min

measurement time in single-runs, demonstrating suitability of this

workflow for analyzing clinical samples.

We investigated multiple dimensions of the human liver prote-

ome: (i) four isolated primary liver cell types and three tissue types,

(ii) dynamic proteome profiles during primary cell culture, and (iii)

changes in the liver proteome of a cohort of patients with NASH and

end-stage liver cirrhosis. The resulting quantitative data and its in-

depth bioinformatics analysis highlighted new quantitative aspects

of basic cell and tissue biology. For example, we estimate—using

the “proteomic ruler” approach (Wisniewski et al, 2014)—that half

of the protein mass in hepatocytes is composed of enzymes and

about 1.2 of 4 billion protein molecules in each cell carry out meta-

bolic pathway functions, reflecting their extremely high metabolic

activity. Furthermore, there are 15–77 million protein copies in

OXPHOS complexes I–IV in hHEPs, up to six-fold higher than other

cell types. In contrast, less than 20% of protein mass in hLSECs is

dedicated to enzymatic function, but significantly more to trans-

porters, ribosomal proteins, cytoskeleton, and extracellular matrix

proteins, reflecting higher transcytosis and the functional demands

for regulating sinusoidal blood flow (Poisson et al, 2017).

These cell type level quantitative information can also help eluci-

date disease mechanisms and provide useful information for drug

development. Our copy number catalogue contains quantitative

information of disease-relevant proteins, such as those known to

carry SNPs predisposing or protecting against NAFLD, including

PNPLA3, GCKR, and HSD17B13 (all most abundant in hHEPs).

MBOAT7 is a transmembrane protein involved in phosphatidylino-

sitol remodeling, and its rs641738C>T variant, strongly contributes

to pathogenesis of a range of liver diseases in human genetic studies

(Buch et al, 2015; Thabet et al, 2016, 2017). We find its copy num-

bers to be 25-fold higher in hHSCs compared to hHEPs. In view of

the key role of hHSC in fibrogenesis, this raises interesting mecha-

nistic questions. Among therapeutically relevant proteins, TGF-beta

receptor and PDGF receptor have highest levels in hHSCs but are

also present in all other liver cell types examined. Knowledge of cell

type specific abundance should be useful for cell type-specific

targeting, which could be more effective than global approaches

with less adverse effects (Klein et al, 2012, 2019). Furthermore, our

set of more than 100 proteins uniquely detected in one of the cell

types, may serve as protein targets in developing targeted drug

delivery methods or as new markers for isolating liver cell types.

We found that cross-referencing the bulk and single-cell RNA

sequencing data as well as the image collection generated by the

Human Protein Atlas project helps to validate cell type specificity of

the markers in a scalable manner.

Human primary cell culture are common systems for drug evalu-

ation and development (Eglen & Reisine, 2011), but researchers

need to know how close they mimic the in vivo situation, especially

after culturing. In this regard, we previously observed significant

changes in the proteome of murine primary hepatocytes upon cell

culture (Azimifar et al, 2014). Consistent with this, we here

observed extensive proteome remodeling upon cell culture with

41% hepatocyte proteins changing significantly in 7 days. It is char-

acterized by reduced levels of metabolic or energy homeostatic pro-

cesses, including PPAR signaling—a pathway regulating lipid

metabolism and inflammation, and an anti-NASH drug target under

active development (Gross et al, 2017; Boeckmans et al, 2019; Wu

et al, 2020). These changes should be considered when evaluating

drug efficacy in cell models. Investigating dynamic proteome

changes upon HSC activation can help in the development of thera-

pies against liver fibrosis (Zhang et al, 2017). Our time course exper-

iment revealed the dynamics of this process, including the

upregulation of proteins involved in ECM organization and immune

response. Our finding of upregulated immune response may indicate

a new role of HSC in promoting inflammation and immune

responses in liver disease.

To connect our findings from human tissue and dynamic primary

cell culture directly to patients, we investigated the liver proteome

changes in NASH and cirrhosis in a cohort of 45 individuals. Previ-

ously, we have observed dramatic remodeling in the plasma prote-

ome of patients with liver cirrhosis, whereas only a few proteins

significantly changed in NAFLD (Niu et al, 2019). In line with this,

only a handful proteins in the liver significantly changed in NASH,

whereas one third of the total liver proteome was significantly

altered in liver cirrhosis, including increased levels of signaling

pathways, extracellular matrix components and immunological
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response, as well as decreased levels in various metabolic pathways.

This agrees with the fact that NASH is an intermediate but progres-

sive form of chronic liver disease (Simon et al, 2021), whereas liver

cirrhosis is the common end stage of a wide variety of chronic liver

diseases, characterized by substantial structural changes and

impaired liver functions. This important insight agrees with the

reversibility of NASH and underlines that therapeutic approaches

for this stage may be more successful than in cirrhosis, in which the

proteomic and thereby structural changes are very pronounced.

Large portions of NAFLD and NASH do not present with liver-

related events and this paper strengthens the rationale for

approaches to improve the large regenerative capacity still available

in NASH patients. By contrast, cirrhosis has a very high liver-related

mortality, rendering regeneration of the liver very improbable in the

late stages, when complications of cirrhosis such as refractory asci-

tes and acute-on-chronic liver failure occur. Our data and analyses

are also valuable for cirrhosis research. For instance, the lack of

important secretory capacity may point to therapeutic opportunities

aiming at replacement of vital substances such as haptoglobin. This

has only been done for albumin (Fern�andez et al, 2020) and coagu-

lation factors (Bedreli et al, 2016) but not for haptoglobin. Our

detailed catalogue of significantly altered proteins and pathways in

the disease cohort and the primary cell course experiment provide a

valuable tool for the research community to interpret data and dis-

cover new therapeutic targets. As an example, many of the proteins

upregulated in bulk cirrhotic liver tissue can be mapped to hepatic

stellate cell activation, highlighting intervention points before full

blown cirrhosis. This can be used in conjunction with circulating

biomarkers identified by proteomics such as the ones we previously

showed for NAFLD and ALD in plasma (Niu et al, 2019; preprint:

Niu et al, 2020).

A limitation to this study is that we cannot exclude the possibility

of some blood contamination in the sampling of liver biopsies,

hepatic artery, and portal vein even though we rinsed and flushed

the hepatic vessels upon sampling. Liver perfusion would be a good

way to remove blood contamination; however, it is only practical in

mouse models.

To facilitate interactive data visualization of the large proteomics

data sets, we built a dashboard application using the open source

Dash framework in Python. We have also integrated pathological

proteome changes in liver and plasma, which we generated in previ-

ous studies, allowing users to explore proteome changes at the level

of both proteins and KEGG pathways. We hope that these data will

become a valuable resource for basic, translational and clinical

research focusing on liver pathophysiology, biomarker discovery

and drug development.

Materials and Methods

Reagents and Tools table

Reagent/Resource Reference or Source Identifier or Catalog Number

Experimental Models

Isolated primary human liver cell types Samsara sciences (San Diego, CA, USA) Donors: HL170051, HL170063,
HL160034

Human hepatic artery, portal vein, liver tissues (Rheinwalt et al, 2020); (Schierwagen et al,
2020)

N/A

Human liver cell lines Trebicka Lab N/A

Chemicals, enzymes, and other reagents

Water, OptimaTM LC/MS Grade Fisher Chemical Cat # W64

Water, HiPerSolv CHROMANORM® for LC-MS VWR Chemicals (supplier) Cat # 83645.290

25% LC-MS grade ammonia Merck Millipore Cat # 533003

sodium deoxycholate (SDC) reduction and alkylation buffer PreOmics GmbH Cat # P.O.00032 iST

Tryptophan Sigma Aldrich Cat # T8941

Trypsin Sigma Aldrich Cat # T6567

Isopropanol Sigma Aldrich/Merck Cat # 67-63-0

Formic acid Sigma Aldrich/Merck Cat # 64-18-6

Acetonitrile Sigma Aldrich/Merck Cat # 75-05-8

Trifluoroacetic acid Sigma Aldrich/Merck Cat # 76-05-1

LysC Wako Cat # 129-02541

DMEM cell culture medium Gibco Cat #11995073

Medium 199 Lonza Cat # BE12-117F

RPMI cell culture medium Gibco Cat # 21875-034

William’s Medium E Life Technologies Cat #A12176-01

febal bovine serum (FBS) Gemini Bio Cat #100-106
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Reagents and Tools table (continued)

Reagent/Resource Reference or Source Identifier or Catalog Number

Penicillin/Streptomycin Life Technologies Cat #15240-062

trypsin/EDTA Sigma Aldrich/Merck Cat # T3924

Phosphate Buffered Saline (PBS) Gibco Cat # 14190-094

Insulin-Transferrin-Selenium (ITS) Life Technologies Cat # 41400-045

10�7 M Dexamethasone Lonza Cat #CC-4150DD

EGM-2 endothelial cell growth basal medium Lonza Cat # CC-4176

HEPES Biochrom Cat #L1613

EBM-2 endothelial cell growth basal medium Lonza Cat # CC-3156

Software

MaxQuant (1.5.3.30) https://maxquant.org/ N/A

MaxQuant.Live (1.0) MaxQuant.Live N/A

Spectronaut (13.3 and 14.1) https://biognosys.com/software/spectronaut/ N/A

Perseus (1.5.5.5 and 1.6.5.0 ) https://maxquant.net/perseus/ N/A

Python (3.7) python.org N/A

Jupyter Notebook https://jupyter.org/ N/A

Cytoscape (2.3.1) https://cytoscape.org/ N/A

Other

Bravo Automated Liquid Handling Platform Agilent Cat # G5409A

Bioruptor Plus sonication device Diagenode Cat # B01020001

Reprosil-Pur Basic C18, 1.9 µm Dr. Maisch Gmbh Cat # r119.b9

ThermoMixer® Eppendorf Cat # 460-0223

Concentrator plus Eppendorf Cat # F-45-48-11

Silicone sealing mat, for 96 well PCR-plates Nerbe Plus Cat # 04-090-0000

PicoFrit self-pack columns Pico FRIT Cat # PF360-75-15-N-5

iST’ sample preparation kit PreOmics GmbH Cat # P.O. 00001

high-pH reversed phase fractionator (SPIDER) PreOmics GmbH N/A

Empore SPE SDB-RPS disk Sigma Aldrich/Merck Cat # 66886-U

PRSO-V2 column oven Sonation N/A

96-Well Plates Thermo Fisher Cat # AB-1300

NanoDropTM One/OneC Microvolume UV-Vis Spectrophotometer Thermo Fisher Cat # ND-ONEC-W

EASY-nLCTM 1200 System Thermo Fisher Cat # LC140

Orbitrap Exploris 480 Mass Spectrometer Thermo Fisher Cat # BRE725533

FAIMS ProTM Interface Thermo Fisher Cat # FMS02-10001

Costar® 6-well Corning Cat # 3516

Q ExactiveTM HF-X Hybrid Quadrupole-OrbitrapTM Mass
Spectrometer

Thermo Fisher Cat # 0726042

Methods and Protocols

Experimental model and subject details
Cell lines

Snap-frozen cells were thawed in a water bath at 37°C and trans-

ferred to culture medium. Viability was controlled and was system-

atically over 95%. For cryopreservation, cells were centrifuged at

200 g for 5 min. LX2 cells and TWNT-4 cells were grown with cell

culture medium (DMEM + 20% FCS + Penicillin/Streptomycin) in

250 ml plastic flasks in a humidified 5% CO2 incubator at 37°C.

After reaching 80% confluency, cells were passaged with a 1:3 split

ratio. Detachment was achieved by incubating the cells with 0.05%

trypsin/EDTA solution (solved in phosphate buffered saline (PBS))

for 5 min at 37°C. HepG2 cells were grown with cell culture medium

(DMEM + 10% FCS + Penicillin/Streptomycin) in 250 ml plastic

flasks in a humidified 5% CO2 incubator at 37°C. Cells were seeded

at density of about 3 × 106 cells/80 cm2. After reaching 80%

confluency, cells were passaged with a 1:2 split ratio. SK Hep1 cells

were cultured in a humidified 5% CO2 incubator at 37°C. Cells were

grown in culture medium (M199 + 10% FCS + Penicillin/
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Streptomycin). Cells were plated at density of about 4 × 106 cells/

80 cm2 in flasks coated with collagen IV. After reaching 80%

confluency, cells were passaged with a 1:10 split ratio. Detachment

was achieved by incubating the cells with 0.05% Trypsin/EDTA

solution (solved in PBS) for 5 min at 37°C.

Primary cells

Primary human HSC, KC, HEP, and LSEC were obtained from Sam-

sara sciences (San Diego, CA, USA). The cells used in the compara-

tive analysis of basal proteome between the four cell types have not

been previously cultured after isolation. Characteristics and purity

of the isolated cells were assessed by the provider (liver cell charac-

terization attached as Appendix). For the time course primary cell

culture experiment, snap-frozen primary cells were thawed in a

water bath at 37°C and transferred to culture medium. Viability was

controlled and was systematically over 95%. For cryopreservation,

cells were centrifuged at 200 g for 5 min. Primary human HSC were

grown in cell culture medium (DMEM + 10% fetal bovine serum

(FCS) + Penicillin/Streptomycin) in a humidified 5% CO2 incubator

at 37°C. Cells were seeded at density of about 6,370 cells/cm2. After

reaching 85% confluency, cells were passaged with a 1:3 split ratio.

Detachment was achieved by incubating the cells with 0.05% Tryp-

sin/EDTA solution (solved in PBS) for 5 min at 37°C. Primary

human KC were grown in cell culture medium (RPMI 1640 + 10%

FCS + Penicillin/Streptomycin) in a humidified 5% CO2 incubator

at 37°C. Cells were plated at a concentration of 0.3 × 106 cells/ml.

Primary human HEP were grown in cell culture medium (Williams’

Medium E + 1% Insulin-Transferrin-Selenium (ITS) + 10�7 M

Dexamethasone + Penicillin/Streptomycin + 10 mM HEPES) in a

humidified 5% CO2 incubator at 37°C. Primary human LSEC were

grown in cell culture medium (EBM-2 + EGM-2 endothelial cell

growth basal medium singlequots) in a humidified 5% CO2 incuba-

tor at 37°C. Cells were plated at a seeding density of about

3,000 cells/cm2. Cells were plated in flasks coated with collagen I.

Human tissues

Liver tissue, hepatic artery, and portal vein which were used to gen-

erate the fractionated, deep proteomes were collected from three

receivers and three donors of liver transplantation during 2001 and

2003. For the human cohort (N = 45 in total), additional 10 liver

samples from patients with cirrhosis requiring liver transplantation

(performed between 2001 and 2003) were used. Patients with liver

cirrhosis were classified as Child-Pugh class B (n = 4) or C (n = 6)

with a median score of 10 and had a median MELD (model of end-

stage liver disease) score of 18.5 (minimum 13, maximum 23). Liver

samples of patients with morbid obesity and non-alcoholic steatohe-

patitis (NASH, n = 20), as well as samples from obese but liver-

healthy individuals (n = 10) were collected during bariatric surgery,

which was performed at the Department of Bariatric, Metabolic and

Plastic Surgery, St. Franziskus-Hospital Cologne, Germany, between

July 2018 and May 2019 (Rheinwalt et al, 2020). Additional

five liver samples from healthy donors of liver transplantation

(performed between 2001 and 2003) were used as healthy controls,

adding to 15 in total. Patients with NASH had a median fibrosis

stage of F2 (minimum F1, maximum F3; Kleiner et al, 2005), a

median NAFLD activity score (NAS) of 6 (minimum 5, maximum 7

on a scale of 0–8) and had at least perisinusoidal fibrosis. Liver

fibrosis stage from biopsy: F1/2/3 = 4/14/2. NAFLD activity score:

5/6/7 = 3/15/2. Liver steatosis score: 1/2/3 = 1/14/5. Hepatocyte

ballooning score: 1/2 = 1/19. Lobular inflammation score: 1/2 = 4/

16. Obese but liver-healthy control individuals had less than 5% of

parenchymal steatosis. The diagnosis was performed

independently by two experienced pathologists as described else-

where (Schierwagen et al, 2020). Samples were washed with ice-

cold PBS, snap-frozen in liquid nitrogen and stored in �80°C after

collection. The investigation was approved by the ethical committee

of the University of Bonn (document no. 029/13 and 194/17, respec-

tively) by the ethics committees of the regional Medical Association

Nordrhein (project identification code 2017110) in accordance with

the Declaration of Helsinki. All patients signed an informed consent

before being enrolled in the study.

Sample preparation for MS analysis

Tissue samples were ground to a frozen powder using a mortar and

pestle in liquid nitrogen. Powdered samples were then resuspended

in 350 ll of sodium deoxycholate (SDC) reduction and alkylation

buffer (PreOmics GmbH, Martinsried, Germany) and boiled for

10 min while vortexing at 1,200 rpm in the thermomixer to dena-

ture proteins (Kulak et al, 2014). The lysates were sonicated at full

power for 30 cycles with 30 s intervals using a water bath sonicator

(Diagenode Bioruptor�, Li�ege, Belgium). Protein content was deter-

mined by Tryptophan assay. An aliquot of 150 ll homogenate was

digested overnight with LysC and trypsin in a 1:50 ratio (lg of

enzyme to lg of protein) at 37°C and 1,700 rpm in the thermomixer.

On the following day, boiling and sonicating was repeated followed

by an additional step of digestion for 2 h (1:100 ratio). Peptides

were acidified to a final concentration of 0.1% trifluoroacetic acid

(TFA) to quench the digestion reaction. Peptide concentration was

estimated using Nanodrop and 20 lg of peptides was loaded on two

14-gauge Stage-Tip plugs. Peptides were washed first with isopro-

panol/1% TFA (200 ll) and then 0.2% TFA (200 ll) using an in-

house-made Stage-Tip centrifuge at 2,000 g. Peptides were eluted

with 60 ll of elution buffer (80% acetonitrile/1% ammonia) and

dried at 60°C using a SpeedVac centrifuge (Eppendorf, Concentrator

plus). Dried peptides were redissolved and sonicated in 5% acetoni-

trile/0.1% TFA, and concentration was measured using Nanodrop.

About 50 lg of peptides were fractionated into eight fractions using

basic reverse phase high-pH fractionation with the SPIDER fraction-

ator (PreOmics GmbH, Martinsried, Germany). Cell lines, isolated

and cultured human primary cells were processed similarly to the

tissue samples without liquid nitrogen crushing.

LC-MS/MS

All samples were measured using LC-MS instrumentation consisting

of an EASY-nLC 1200 system (Thermo Fisher Scientific, San Jose,

CA) interfaced on-line with a Q Exactive HF-X Orbitrap or Orbitrap

Exploris 480 equipped with a FAIMS Pro Interface (Thermo Fisher

Scientific, Bremen, Germany). Samples were prepared and mea-

sured in a randomized manner to avoid systematic bias. No blinding

was performed. The latter LC-MS instrumentation setup was used in

the time-course experiment of primary cell culture. For all samples,

purified peptides were separated on 42.5 cm HPLC-columns (ID:

75 µm; in-house packed into the tip with ReproSil-Pur C18-AQ

1.9 µm resin (Dr. Maisch GmbH)). For each LC-MS/MS analysis,

around 0.5 µg peptides were injected for the 100 min gradients.

Peptides were loaded in buffer A (0.1% formic acid) and eluted with
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a linear 82 min gradient of 3–23% of buffer B (0.1% formic acid,

80% (v/v) acetonitrile), followed by a 8 min increase to 40% of

buffer B. The gradients then increased to 98% of buffer B within

6 min, which was kept for 4 min. Flow rates were kept at 350 nl/

min. Re-equilibration was done for 4 ll of 0.1% buffer A at a pres-

sure of 980 bar. Column temperature was kept at 60°C using an

integrated column oven (PRSO-V2, Sonation, Biberach, Germany).

MS spectra of fractionated samples were acquired with a Top15

data-dependent MS/MS scan method (DDA, topN method). Target

values for the full-scan MS spectra was 3e+6 in the 300–1,650 m/z

range with a maximum injection time (IT) of 25 ms and a resolution

of 60,000 at m/z 200. Precursor ions targeted for fragmentation were

isolated with an isolation width of 1.4 m/z, followed by higher-

energy collisional dissociation (HCD) with a normalized collision

energy of 27 eV. Precursor dynamic exclusion was activated with

30 s duration before triggering the subsequent scan. MS/MS scans

were performed at a resolution of 15,000 at m/z 200 with an auto-

matic gain control (AGC) target value of 1e+5 and an IT of 25 ms.

MS spectra of unfractionated patient samples were acquired in

single-shot with a data-independent acquisition (DIA) method,

enabled by MaxQuant.Live (Wichmann et al, 2019) in which the

scan protocol was defined. Each acquisition cycle was consisted of a

survey scan at resolution of 60,000 with an AGC of 3e+6 and IT of

100 ms, followed by 66 DIA cycles at resolution of 15,000 with an

AGC of 3e+6 and IT of 22 ms at range 300–1,650 m/z (Table EV7).

HCD fragmentation was set to normalized collision energy of 27%.

In all scans, PhiSDM (Grinfeld et al, 2017) was enabled with 100

iterations, spectra type was set to centroid.

For spectra acquisition in the time course experiment of primary

cell culture, a FAIMS Pro Interface was mounted between the elec-

trospray ionization source and the mass spectrometer (Orbitrap

Exploris 480). The ion source was set to a voltage of 2,650 (V) in

positive ion mode with an ion transfer tube temperature of 275°C.

FAIMS mode was set to “standard resolution” with a total carrier

gas flow of 4.6 l/min throughout the entire acquisition period. For

single-shot analysis, MS spectra were acquired using DIA mode with

intra-analysis compensation voltage (CV)-switching. Each acquisi-

tion cycle was consisted of a survey scan at resolution of 120,000

with a normalized AGC target (%) of 300% and 28 ms of injection

time at scan range of 350–1,650 m/z, followed by 22 DIA cycles at

resolution of 15,000 with a normalized AGC target (%) of 3,000%

and 25 ms of injection time repeated for three CVs (�40 V, �55 V,

and �70 V), totaling a cycle time of around 3 s (Table EV8). HCD

fragmentation was set to normalized collision energy of 30%. To

create a spectral library based on gas-phase fractionation, a pooled,

unfractionated primary cell sample for each cell type was analyzed

in single-shots using seven methods of different CVs stepping from

�40 V to �70 V with an increment of �5 V. These gas-phase frac-

tionation methods consisted of a survey scan at resolution of

120,000 followed by 66 DIA scans at resolution of 15,000

(Table EV8). The resulting MS spectra were analyzed together with

data acquired by the above-described single-shot method of intra-

analysis CV switching to boost identifications.

MS data processing

All raw files of fractionated samples were analyzed by MaxQuant

v.1.5.3.30 software (Cox & Mann, 2008) using the integrated

Andromeda Search engine (Cox et al, 2011) and searched against

the Uniprot human database (April 2017 release including isoforms

and sequence variants). Enzyme specificity was set to trypsin with a

maximum of two missed cleavages. The search included cysteine

carbamidomethylation as fixed modification and oxidation on

methionine and N-terminal acetylation as variable modifications

with a minimum length of seven amino acids. A false discovery rate

(FDR) of 1% was set to PSM and protein levels. The “match

between runs” algorithm was activated to transfer MS/MS identifi-

cations between runs where applicable (Nagaraj et al, 2012). Label-

free quantification was performed with the integrated MaxLFQ algo-

rithm using a minimum ratio count of 2 (Cox et al, 2014). A spectral

library was generated from the fractionated samples for single-

injection DIA analysis of patient samples in the clinical cohort

(N = 45).

All raw files of patient samples were analyzed by Spectronaut

(version 13.3) with default settings except that the normalization

strategy for “cross-run normalization” was wet to “local normaliza-

tion” based on rows with “Qvalue complete” (Bruderer et al, 2015).

A FDR of 1% was set to peptide precursor level and 1% to protein

level. The FDR method of Storey was used (Storey & Tibshirani,

2003). The library generated from fractionated samples described

above was used in the targeted analysis of single-shot DIA data

against the human Uniprot fasta database (January 2018 release

including isoforms and sequence variants).

All raw files in the time course experiment of primary cell culture

were analyzed by Spectronaut (version 14) in directDIA mode against

the human Uniprot fasta database (January 2018 release including

isoforms and sequence variants). Default settings were used except

that the normalization strategy for “cross-run normalization” was wet

to “local normalization” based on rows with “Qvalue complete”.

For the PCA, no pre-filtering was applied due to the diversity of

sample types and relatively small number of biological replicates.

Missing values were imputed by drawing from a down-shifted nor-

mal distribution relative to that of a sample’s proteome abundance

distribution (down-shifted mean by 1.8 standard deviation (s.d.)

and scaled s.d. (0.3)). The same imputation method was applied

throughput all analyses. For the proteome comparison across four

primary cell types (fractionated samples), we filtered proteins quan-

tified in this study for at least two valid values in three biological

replicates of at least one cell type, resulting in 8,866 proteins. For

the patient samples, we filtered proteins quantified in the cohort for

at least 70% valid values at experimental group level (healthy,

NASH and cirrhosis group), resulting in 5,843 proteins with an aver-

age of 5,382 proteins per sample and an overall data completeness

of 91.8%. For comparison between time points of the same cell type

in the time course experiment of primary cell culture, we filtered

proteins for at least two valid values in three biological replicates of

at least one time point within each cell type, resulting in total num-

ber of proteins ranging between 6,100 and 6,900 proteins in the

three cell types.

Bioinformatics and statistical analysis

Statistical and bioinformatics analysis was performed with the Per-

seus software (version 1.6.2.1) and Python software. No samples

analyzed were excluded for the down-stream statistical and bioin-

formatics analysis. One-way ANOVA and ANCOVA significance

level was controlled with FDR below 5% with Benjamini–Hochberg

for multiple hypothesis testing. GO Enrichment Analysis in the
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primary cell type proteome was performed with ClueGo (Bindea

et al, 2009), a plug-in app in Cytoscape (Shannon et al, 2003), with

default settings except the following changes: Ontologies file of Bio-

logical Process was downloaded from EBI-Uniprot on September 04,

2018 which contains 15,947 terms with 17,940 available unique

genes. Customed reference set which contains 9,223 unique genes

(quantified in the uncultured primary liver cell types in this study)

was used in Fisher’s exact test. Term significance was corrected by

Benjamini–Hochberg with a FDR of below 1%. GO tree levels was

controlled at 2–3 for HEP and KC, and 2–4 for LSEC and HSC with a

threshold of 10 genes and 10% of genes per term to maximize the

information presentable. Both GO term fusion and grouping are acti-

vated. ANCOVA controlled for age and sex was performed to deter-

mine differentially abundant proteins across the three groups of

patient samples: NASH, healthy control, and patients with liver cir-

rhosis. Normality and equality of variance were assessed using the

Pingouin statistical package in Python, resulting in 86% of the pro-

teins having equal variance between the three experimental groups

and 75% of proteins having a normal distribution (P < 0.05). GO

Enrichment Analysis in patient samples between NASH, cirrhosis

and control was performed with the online Gene Ontology Resource

(geneontology.org). Protein class annotation was downloaded from

the Human Protein Atlas (HPA) database (Uhlen et al, 2016). The

interactive dash board application was built using the open source

web application framework of Plotly Dash and Python.

Data availability

The datasets and computer code produced in this study are available

in the following databases:

The mass spectrometry proteomics data have been deposited to

the ProteomeXchange Consortium via the PRIDE (Vizca�ıno et al,

2014) partner repository with the dataset identifier PXD027722. The

code generated in this study have been uploaded to the GitHub

repository https://github.com/llniu/Human_Liver_Proteome. The

interactive dash board application can be accessed at www.

liverproteome.org.

Expanded View for this article is available online.
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