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Abstract: We used quantified electroencephalography (qEEG) to define the features of encephalopathy
in patients released from the intensive care unit after severe illness from COVID-19. Artifact-free
120–300 s epoch lengths were visually identified and divided into 1 s windows with 10% overlap.
Differential channels were grouped by frontal, parieto-occipital, and temporal lobes. For every channel
and window, the power spectrum was calculated and used to compute the area for delta (0–4 Hz),
theta (4–8 Hz), alpha (8–13 Hz), and beta (13–30 Hz) bands. Furthermore, Shannon’s spectral entropy
(SSE) and synchronization by Pearson’s correlation coefficient (ρ) were computed; cases of patients
diagnosed with either infectious toxic encephalopathy (ENC) or post-cardiorespiratory arrest (CRA)
encephalopathy were used for comparison. Visual inspection of EEGs of COVID patients showed a
near-physiological pattern with scarce anomalies. The distribution of EEG bands was different for the
three groups, with COVID midway between distributions of ENC and CRA; specifically, temporal
lobes showed different distribution for EEG bands in COVID patients. Besides, SSE was higher and
hemispheric connectivity lower for COVID. We objectively identified some numerical EEG features
in severely ill COVID patients that can allow positive diagnosis of this encephalopathy.

Keywords: cardiorespiratory arrest; correlation coefficient; fast fourier transform; quantified EEG;
spectral entropy

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) causes an acute, highly lethal
disease, COVID-19. This disease was first detected in December 2019 in China and rapidly spread
around the world. Neurological complications in COVID-19-infected patients have been reported.
Reported central nervous system (CNS) effects include encephalitis [1,2], toxic encephalopathy
(ENC) [3–5], dysgeusia and anosmia [6], and acute cerebrovascular disease [7,8]. The mechanisms
of CNS infection and its pathophysiology by CoV2 are still debated, and direct invasion through the
blood–brain barrier (BBB), a neuronal pathway, hypoxic damage, immune-response mediated injury,
and angiotensin-converter enzyme 2, among others, have been proposed [3,9].

Encephalopathy, also called altered mental status or confusional state, refers clinically, descriptively,
or pathologically to a state of impaired cognition, generally acute or subacute [10]. Acute or infectious
toxic encephalopathy refers to a type of reversible brain syndrome caused by several factors, such as a
metabolic disorder, systemic toxemia, or hypoxia during an acute infection [11–14]. The pathological
changes include cerebral edema, with no evidence of inflammation in cerebrospinal fluid. Symptoms
are complex and diverse. The electroencephalogram (EEG) defined in [15] is similar to that described
in one case of COVID-19, showing bilateral and focal slowing in the left temporal region with sharp
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waves (see [4]). Descriptions of EEG are based on classical analysis by visual inspection. In recent
years, however, the development of mathematical analysis tools for bioelectric signals, commonly
known as quantified EEG (qEEG), has introduced elements of objectivity into the analysis of EEG
records [16,17]. With this goal in mind, we developed a qEEG using classical mathematical methods,
but in a neurophysiologically and clinically oriented fashion. We started from the assumption that
EEG is based in a homeostatic system [18,19], in order to establish an approximate direct relationship
between variations in numerical magnitude and the underlying anatomo-functional system.

We applied this method of qEEG to patients discharged from the intensive care unit (ICU) after
COVID-19. We used two control groups from patients previously studied in our hospital: (i) patients
with infectious toxic encephalopathy, taken as a kind of gold-standard encephalopathic pattern, and (ii)
patients after cardiorespiratory arrest, as an example of severe hypoxic insult to the CNS. The main aim
of our work is to describe the structure of EEG for the three groups of patients, especially the COVID
group. This structure is defined by the relative distribution of different bands (δ, θ, α, β) across the
brain lobes and by global synchronization, defined at the lobe and hemisphere level. We hypothesize
that these structures can be specific, to some degree, for every pathological state.

2. Materials and Methods

2.1. Patients and Definitions

We analyzed scalp EEGs performed in 20 patients (17 men, 3 women) diagnosed with COVID-19
after a stay of several days and following release from the ICU. Recordings were performed while
patients were hospitalized but in the non-critical care unit and were required because patients had
shown clinical alterations of awareness or cognitive state. Patients were over 18 years old and their
medical history was collected (see Appendix A, Tables A1–A3). The experimental procedure was
approved by the medical ethical review board of the Hospital Universitario de La Princesa and deemed
“care as usual.” Under these circumstances, written informed consent was not required.

We used two control groups to try to identify possible pathophysiological mechanisms. Both
groups were obtained from previously studied hospitalized patients and were defined as follows:
(i) to evaluate the effect of severe hypoxemia, we assessed patients who underwent resuscitation after
cardiorespiratory arrest (CRA; 20 men and 1 woman), and (ii) we assessed inpatients evaluated with
mild/moderate cognitive impairment showing encephalopathy (ENC) on EEG (16 men and 15 women).
In both cases, recordings showing intense irritative activity or patients with focal/localized pathology
(e.g., craniectomy, previous surgery, cerebrovascular disease) were excluded.

Patients were clinically classified as fully alert, confused, stuporous, or comatose. To obtain a
global clinical state for the group, we computed the weighted mean, assigning a range from 1 (fully
alert) to 4 (coma). A value near 1 indicates a less clinically affected group, and a value near 4 indicates
a majority of patients in coma, thus severely affected.

We visually analyzed the EEGs according to the definitions of the American Clinical Neurophysiology
Society’s Standardized EEG Terminology [20,21]. Visually analyzed encephalopathy patterns have been
categorized in 4 grades: (i) grade I, excess of slow posterior activity; (ii) grade II, predominant theta
activity in more than 50% of recording; (iii) grade III, predominant delta activity in more than 50% of
recording; and (iv) grade IV, burst-suppression pattern [10,22].

2.2. Electroencephalogram (EEG) Recording

EEG recordings were performed always in the basal state of patients using a 32-channel digital
system (EEG32U, NeuroWorks, XLTEK®, Oakville, ON, Canada) with 19 electrodes placed according
to a 10–20 international system. In addition, Einthoven’s differential derivation I for ECG was placed.
Recordings were performed at a 512 Hz sampling rate, with a filter bandwidth of 0.5 to 70 Hz and
notch filter of 50 Hz. Electrode impedance was usually below 15 kΩ.
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Clinical reports were prepared by a clinical neurophysiologist with several years of experience in
electroencephalography. qEEG was performed online to facilitate better information of EEG status.

Voltage amplitude (in µV) was obtained as the root mean square of occipitoparietal differential
channels. The same channels were used to identify the dominant frequency of posterior rhythm, defined
as the highest value of the power spectrum above 4 Hz. In some patients, just the delta component was
observed, and its maximum value was chosen as the dominant posterior rhythm.

Artifact-free periods (excluding electro-oculogram or muscular movement in awake patients)
were selected and exported in ASCII files to be quantified.

2.3. Quantification of EEG

The algorithm used was previously published [17]. Classical EEG bands used in the analysis were
defined as delta (δ) = 0.5–4.0, theta (θ) = 4.0–8.0, alpha (α) = 8.0–13.0, and beta (β) = 13.0–30.0 Hz (see
Appendix B for more details). The process is indicated in Figure 1. All records were between 120 and
300 s, which allowed a minimum of 130 and a maximum of 330 windows to be computed.

Numerical analysis of EEG recordings was performed with custom-made MATLAB® R2019
software (MathWorks, Natick, MA, USA).
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Figure 1. Method of electroencephalogram (EEG) quantification in two branches: power spectra (b–
d) and synchronization (e,f). (a) Raw EEG tracing. Discontinuous rectangle shows moving window 
used for analysis; (b) power spectra for every channel; (c) areas for delta, theta, alpha, and beta bands 
under spectrum highlighted in different colors; (d) dynamics of four bands (and entropy in lower 
row) for every lobe. Mean and standard error of the mean (SEM) values for every tracing are 
displayed inside every graph. Red and blue lines indicate right and left hemispheres, respectively; (e) 
correlation matrix for window; (f) mean correlation computed for all recordings. 

2.4. Statistics 

EEG bands were normalized to the whole spectrum, therefore values are given in percentages. 
Statistical comparisons between groups were performed using Student’s t-test or analysis of 

variance (ANOVA) for data with normal distribution. Normality was evaluated using the 
Kolmogorov–Smirnov test. Mann–Whitney rank sum test or ANOVA on ranks was used when 

Figure 1. Method of electroencephalogram (EEG) quantification in two branches: power spectra (b–d)
and synchronization (e,f). (a) Raw EEG tracing. Discontinuous rectangle shows moving window used
for analysis; (b) power spectra for every channel; (c) areas for delta, theta, alpha, and beta bands under
spectrum highlighted in different colors; (d) dynamics of four bands (and entropy in lower row) for
every lobe. Mean and standard error of the mean (SEM) values for every tracing are displayed inside
every graph. Red and blue lines indicate right and left hemispheres, respectively; (e) correlation matrix
for window; (f) mean correlation computed for all recordings.

2.4. Statistics

EEG bands were normalized to the whole spectrum, therefore values are given in percentages.
Statistical comparisons between groups were performed using Student’s t-test or analysis of

variance (ANOVA) for data with normal distribution. Normality was evaluated using the Kolmogorov–
Smirnov test. Mann–Whitney rank sum test or ANOVA on ranks was used when normality failed.
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In the last case, either the Tukey or Holms–Sidak test was used for all pairwise post hoc comparisons
of mean ranks of groups. Chi-square test (χ2) was used to assess the differences in EEG bands between
groups of patients. This test cannot be used when numerical values are lower to unity, therefore
comparison for Shannon’s spectral entropy (SSE) and correlation was done with values normalized to
ENC patients. SigmaStat® 3.5 software (SigmaStat, Point Richmond, CA, USA) and MATLAB® were
employed for statistical analysis.

The significance level was set at p = 0.05. Results are shown as mean ± standard error of the mean
(SEM), except where otherwise indicated.

3. Results

3.1. Patients

The main clinical features of the three groups can be seen in Tables A1–A3 in Appendix A. All
COVID patients showed severe illness (including pneumonia, desaturation, and inflammatory systemic
response), indicating a need for intubation and sedo-analgesia in the ICU for several days [23]. Two
patients were fully alert, 10 were mildly to moderately confused, and eight stuporous. Bearing in
mind the small number of patients, we did not separately analyze recordings from stuporous and
confused patients, considering them all as different degrees of the same continuum. Irritative activity
was observed in four patients.

Overall, CRA patients were the most severely affected, with 3.7 ± 0.2 (p < 0.001, ANOVA on ranks)
on the global clinical scale, and severity was similar for COVID and ENC groups (2.3 ± 0.1 and 2.3 ± 0.2
respectively). In spite of the severity, the mean period of hospital admission was similar for all three
groups (11.6 ± 3.6, 13.4 ± 2.1, and 8.6 ± 3.6 days for ENC, COVID, and CRA, respectively, ANOVA on
ranks). However, the ENC group was older (74.2 ± 3.0 years, p = 0.002, ANOVA on ranks) than the
COVID and CRA groups (63.9 ± 2.7 and 62.8 ± 2.5, respectively).

Although the minimum values of capillary oxygen saturation (SaO2) in COVID patients reached
78%, mean saturation was above 89% (overall group 94.8 ± 0.6%).

3.2. Visual Properties of EEG

EEG records of COVID patients showed mean voltage and posterior dominant rhythm in the
theta band (17.5 ± 1.4 µV and 6.5 ± 0.8 Hz), with ENC showing a tendency toward higher amplitude
(not significant) and slower posterior component (24.3 ± 1.4 µV and 3.8 ± 0.6 Hz). Patients who had
experienced CRA showed amplitude similar to COVID patients and frequency similar to ENC patients
(17.1 ± 2.4 µV and 4.0 ± 0.4 Hz). Only mean frequency for COVID patients was different (p < 0.05,
ANOVA on ranks); amplitude was similar for all three groups. Visually, COVID EEG records had less
delta activity than infectious toxic encephalopathy, although this turned out to be a false impression
when qEEG was performed (see below). Overall, the apparent absence of delta/theta activity conferred
a near-physiological aspect to the recordings. Despite the different visual aspects appearing between
ENC and COVID, mean spectra by channels were quite similar. Although not analyzed in detail
because a comparison with physiological states was out of the scope of this paper, the power spectrum
of COVID patients was completely non-physiological (Appendix A, Figure A1). Examples of typical
recordings are shown in Figure 2. Another interesting property was the scarce presence of sharp
elements (sharp waves or spikes). In fact, we observed sharp waves in EEGs of only 4/20 patients.
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Figure 2. Examples of raw recordings: (a) encephalopathy (ENC), (b) COVID, and (c) cardiorespiratory
arrest (CRA). Right column shows mean spectra for channels. Red and blue lines indicate right and left
hemispheres, respectively. Y-axis units in µV2/Hz.

3.3. Topographic Distribution of EEG Bands

Firstly, we assessed the similarities in the EEG structure, defined by the relative distribution of
bands across the scalp. Results are shown in Table 1.

Table 1. Comparison by paired groups of patients of EEG bands using χ2. Statistical significance for 5
degrees of freedom is indicated by p in the column to the right of every band.

Paired Groups δ p θ p α p β p

ENC/COVID 10.0 n.s 6.0 n.s 11.5 0.05 11.6 0.05
ENC/CRA 167.8 0.001 80.2 0.001 49.6 0.001 72.4 0.001

COVID/CRA 68.5 0.001 54.6 0.001 22.1 0.001 47.2 0.001

n.s., not significant.

From this table we can observe that EEG structure is truly different for the three groups and
for all bands (except for ENC/COVID delta and theta bands, which are similar). Another interesting
observation is that the value of χ2 is always greater for ENC/CRA, with the COVID value in the
middle of the two groups. Therefore, the structure of the EEG for COVID patients is between the two
extreme conditions.
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However, although overall the three groups were dissimilar, we assessed exactly what the
differences were for every band. Then, we computed one-way ANOVA (ANOVA on ranks when
normality failed) for every lobe and band. These results are shown in Figure 3.
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Figure 3. Box plots showing comparison of EEG structure for different bands: (a) delta, (b) theta,
(c) alpha, and (d) beta. Striped black box: ECN; striped red box: COVID; striped blue box: CRA; black
asterisk: difference between ENC and COVID; red asterisk: difference between ENC and CRA; blue
asterisk: difference between COVID and CRA.

Significant difference above p < 0.05 by ANOVA is indicated by asterisks. The post hoc results
indicating pairs of groups are presented in a color code. The pattern of ENC and CRA is clearly
different for all bands, except for the parieto-occipital theta band. However, the COVID group is
not completely different from ENC and CRA, although it is clearly observed that the distribution is
between the two extreme groups. Nonetheless, the behavior of temporal lobes clearly differs for ENC
and COVID groups for δ, α, and β bands.

3.4. Synchronization and Spectral Entropy of EEG

We computed mean synchronization, measured as Pearson’s correlation coefficient (ρ), at hemispheric
and lobar levels. We also used a measure of the complexity of spectra, SSE. As stated above, global
comparison using χ2 was done on values for ρand SSE normalized to ENC. The results are shown in
Table 2.

From this table we can observe that the structure of SSE is quite different for the COVID group.
However, contrary to what was previously observed, the value of χ2 was greater for ENC/COVID,
with the CRA value in the middle of the two groups. However, no differences have been observed for
the overall synchronization.
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Table 2. Comparison by paired groups of patients for Shannon’s spectral entropy (SSE) and ρ using χ2.
Statistical significance for either 5 (SSE) or 7 (ρ) degrees of freedom (ν) is indicated by p in column to
the right of every variable.

Paired Groups SSE (χ2) p (ν = 5) ρ (χ2) p (ν = 7)

ENC/COVID 35.4 0.001 10.7 n.s
ENC/CRA 3.3 n.s 1.8 n.s

COVID/CRA 15.6 0.01 5.5 n.s

n.s., not significant.

As we did with the bands, we plotted these properties, comparing the three groups for every lobe
(and hemisphere, in the case of ρ), using ANOVA/ANOVA on ranks (Figure 4).

J. Clin. Med. 2020, 9, 1545 7 of 14 

 

Table 2. Comparison by paired groups of patients for Shannon’s spectral entropy (SSE) and ρ using 
. Statistical significance for either 5 (SSE) or 7 (ρ) degrees of freedom (ν) is indicated by p in column 

to the right of every variable. 

Paired groups SSE ( ) p (ν = 5) ρ ( ) p (ν = 7) 
ENC/COVID 35.4 0.001 10.7 n.s 

ENC/CRA 3.3 n.s 1.8 n.s 
COVID/CRA 15.6 0.01 5.5 n.s 

n.s., not significant. 

From this table we can observe that the structure of SSE is quite different for the COVID group. 
However, contrary to what was previously observed, the value of  was greater for ENC/COVID, 
with the CRA value in the middle of the two groups. However, no differences have been observed 
for the overall synchronization. 

As we did with the bands, we plotted these properties, comparing the three groups for every 
lobe (and hemisphere, in the case of ρ), using ANOVA/ANOVA on ranks (Figure 4). 

 

 

Figure 4. Box plots showing comparison of the structure of entropy and synchronization for different 
groups: (a) Se; (b) p. Striped black box: ECN; striped red box, COVID; striped blue box, CRA; black 
asterisk: difference between ENC and COVID; red asterisk: difference between ENC and CRA; blue 
asterisk: difference between COVID and CRA. 

Contrary to EEG bands, SSE was higher for the COVID group and lower for the ENC group. 
From Figure 4a we can observe that SSE was always different for COVID from both other groups at 
all lobes. This result may be surprising considering the kind of spectra shown in Figure 2c, where the 
distribution is apparently more complex. However, the presence of α and β bands (scarcely present 
in the CRA group) increased the SSE for COVID patients. 

Finally, although ρ was not as different between groups as SSE, a clear difference was seen in 
hemispheric synchronization and temporal lobes for CRA and COVID patients, with lower 
synchronization for the first group. 

4. Discussion 

We show in this paper that qEEG can differentiate between types of encephalopathies. In this 
sense, we show that COVID patients display structures of EEG truly distinguishable from infectious 
toxic encephalopathy on the one hand, and from encephalopathies of patients who experienced a 

Figure 4. Box plots showing comparison of the structure of entropy and synchronization for different
groups: (a) Se; (b) p. Striped black box: ECN; striped red box, COVID; striped blue box, CRA; black
asterisk: difference between ENC and COVID; red asterisk: difference between ENC and CRA; blue
asterisk: difference between COVID and CRA.

Contrary to EEG bands, SSE was higher for the COVID group and lower for the ENC group.
From Figure 4a we can observe that SSE was always different for COVID from both other groups at all
lobes. This result may be surprising considering the kind of spectra shown in Figure 2c, where the
distribution is apparently more complex. However, the presence of α and β bands (scarcely present in
the CRA group) increased the SSE for COVID patients.

Finally, although ρ was not as different between groups as SSE, a clear difference was seen in
hemispheric synchronization and temporal lobes for CRA and COVID patients, with lower synchronization
for the first group.

4. Discussion

We show in this paper that qEEG can differentiate between types of encephalopathies. In this
sense, we show that COVID patients display structures of EEG truly distinguishable from infectious
toxic encephalopathy on the one hand, and from encephalopathies of patients who experienced a
severe hypoxic condition (CRA) on the other. This is the first report of a specific EEG pattern in COVID
patients exhibiting encephalopathy and is different from the case report previously published, which
shared the same features as infectious and toxic encephalopathy [4]. Obviously, we cannot exclude
that this pattern appears in COVID patients, but until now we have not observed this pattern in
our patients.
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From a methodological point of view, it is quite obvious that the groups do not exactly overlap.
Patients from the ENC group were older than those in the COVID and CRA groups. Infectious toxic
encephalopathy is not an age-related entity; therefore, it does not seem probable that the difference with
COVID patients would be due to this factor. The other group, including patients after severe hypoxia
(CRA), was also different, mainly in clinical impairment. We analyzed these patients, because one
possible pathophysiological mechanism of nervous injury would be hypoxia [24]. Significantly, the EEG
pattern of COVID patients was between those of the ENC and CRA groups. Therefore, it can be
speculated that hypoxia may have some participation in this electroclinical entity. In fact, peaks of
low saturation were observed in all patients. However, the EEG structures of the CRA and COVID
groups were different enough to consider that other factors besides hypoxia must be responsible for the
bioelectrical pattern. Nevertheless, the different history of previous medical conditions can influence
the brain response. Nonetheless, the presence of previous chronic pathologies was lower for COVID
patients (12/20) than for ENC (22/31) or CRA groups (19/21).

Post-intensive care syndrome (PICS) is a complex clinical situation observed in patients discharged
from the ICU after a prolonged period of intubation under sedo-analgesia and includes mobility problems
of neuromuscular origin, altered cognition, and the development of psychotic manifestations [25]. Risk
factors for this syndrome include female sex, older age, previous mental health problems, disease
severity, and delirium [26]. To the authors’ knowledge, no reports of encephalopathy in the context of
this syndrome have been described. Therefore, although we cannot firmly exclude this possibility as a
cause of COVID encephalopathy, neither can we consider it as the first option.

For most of the COVID patients, the raw EEGs show a nearly physiological pattern. However,
the mean spectra show the existence of a significant encephalopathic pattern with an excess of generalized
delta activity and lower alpha and beta values. Other specific anomalies were also observed. First, SSE,
a measure to characterize spectral complexity [27], was higher than in the ENC and CRA groups. We
can conclude that the distribution of bands into spectra was more complex for COVID patients’ EEGs,
with higher relative amounts of faster bands (α and β). Second, the synchronization was different for
COVID patients’ EEGs, showing lower hemispheric values for all three groups. Although it is not proved,
we can hypothesize that low hemispheric synchronization may be causally related to the clinical state
of confusion observed in all patients, especially those with great discrepancies between nearly normal
EEG tracings and cognitive/behavioral alteration. The method used to assess synchronization (ρ) has
shortcomings deriving from volume conduction [28]. To minimize this problem, we used differential
montage, instead of referential [29]. Besides, although absolute numerical values for connectivity could
be different, it can be expected that the same problems persist in the three groups analyzed (e.g., volume
conduction, change in coupling), therefore the relative synchronization between them would remain
the same. However, the use of metrics more adequate to measure functional connectivity, such as
coherence, mutual information, phase synchronization, or Granger’s causality [28–31], would permit us
to definitively solve this aspect.

It has been described that some patients with COVID-19 have symptoms similar to epilepsy [3]
or sharp waves on the EEG [4]. However, in our series the presence of irritative activity was scarce.
Probably the differential diagnosis search for confusion and cognitive complaints biased the diagnosis
of epilepsy. Nonetheless, in the eight patients who showed a stuporous state, non-convulsive status
epilepticus was suspected and finally discarded.

Although the features described for the three groups, including COVID, our main target, are
robust enough to show statistically significant differences, obviously we need to increase the number
of patients to attain a sharper and more exact definition of this entity. We cannot exclude that COVID
patients express other EEG patterns and obviously a greater population will define better all the clinical
spectrum of COVID encephalopathy. Additionally, we need to check whether COVID patients not
admitted to the ICU but with cognitive complaints share the same EEG pattern.
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5. Conclusions

Some severely affected COVID patients develop an encephalopathy with specific EEG features,
with spectral and connectivity alterations, and raw tracings appear nearly physiological.

6. Patents

The numerical method used in this work is being evaluated for patent: Multivariate analysis
method in EEG. Application number: P201930036. Application date: 01/21/2019. Pastor, J; Vega-Zelaya, L.
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Appendix A

Clinical features of the groups of patients.

Table A1. Patients with infectious toxic encephalopathy (ENC).

Patient Sex Age (Years) Medical History Level of Awareness EEG Findings

1 F 84 Stuporous II
2 F 90 CD, HBP, DM, CLD Stuporous II
3 F 84 HBP, DM Stuporous III
4 F 72 HBP, CLD Comatose III
5 F 79 HBP Confused I
6 F 78 HBP Fully alert III
7 F 83 CD Confused II
8 M 71 CD, HBP Confused III
9 F 84 CD Confused III

10 M 42 ACLD Comatose III
11 F 88 CD, HBP, DM, CKD Confused III
12 M 53 Fully alert II
13 M 80 CD, HBP Fully alert I
14 F 93 CD, HBP, CKD Confused III
15 F 86 Fully alert II
16 M 82 CD, DM, CKD Fully alert II
17 M 81 CD, HBP, DM, CKD Fully alert III
18 M 82 CD, HBP, DM, CLD, I Confused II
19 F 92 CD, HBP Stuporous III
20 M 76 CD, HBP, DM, CKD, CLD Comatose III
21 M 18 Stuporous III
22 F 56 Stuporous III
23 M 83 CKD Stuporous III
24 M 83 HBP, DM Confused I
25 F 91 HBP Stuporous III
26 F 52 Comatose IV
27 M 65 Fully alert I
28 M 68 ACLD Confused II
29 M 77 CD, HBP, DM, CLD Confused III
30 M 56 CD, HBP, ACLD, CLD Confused II
31 M 70 Confused II

ACLD, advanced chronic liver disease; CD, cardiovascular disease; CKD, chronic kidney disease; CLD, chronic lung
disease; DM, diabetes mellitus; F, female; HBP, high blood pressure; I, immunosuppression; M, male. I–VI: grades
of encephalopathy.
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Table A2. Patients with SARS-CoV-2 (COVID).

Patient Sex Age (Years) Medical History Level of
Awareness

SaO2 (%) (Mean ±
SEM)/Minimum

EEG
Findings

1 M 69 CD, HBP Confused 92.3 ± 0.9 80 II, PLD
2 M 64 Confused 98.8 ± 0.4 91 I
3 M 36 CD, HBP, DM Confused 97.2 ± 0.5 90 I
4 M 60 CD, HBP, DM, CLD Stuporous 97.4 ± 0.5 89 II
5 M 61 Stuporous 95.1 ± 0.7 82 III
6 M 46 Confused 96.7 ± 0.5 83 III, SW
7 M 76 HBP Confused 97.0 ± 0.7 80 I
8 F 74 CD, HBP Fully alert 98.8 ± 0.6 88 II
9 M 60 CD, HBP, CLD Stuporous 97.7 ± 0.4 88 III
10 M 55 Confused 95.6 ± 0.2 86 I, SW
11 M 61 Confused 91.2 ± 1.3 89 III
12 M 97 CD, HBP, CKD Confused 95.0 ± 1.2 85 III, SW
13 M 63 ACLD Confused 95.2 ± 0.6 91 II
14 M 61 CD, HBP, DM Fully alert 96.2 ± 0.8 85 I
15 M 60 Stuporous 89.6 ± 1.2 81 III
16 F 71 Stuporous 91.2 ± 1.1 78 III
17 M 70 DM Stuporous 91.5 ± 1.0 82 III
18 M 60 CD, HBP Confused 94.6 ± 1.6 91 II
19 M 62 HBP Stuporous 91.6 ± 2.2 89 III
20 F 72 Stuporous 93.6 ± 1.8 91 III

CD, cardiovascular disease; CLD, chronic lung disease; DM, diabetes mellitus; F, female; HBP, high blood pressure;
M, male; PLD, periodic lateralized discharge; SW, sharp waves. I–VI: grades of encephalopathy.

Table A3. Patients with encephalopathy after cardiorespiratory arrest (CRA).

Patient Sex Age (Years) Medical History Level of Awareness EEG Findings

1 M 63 CD, DM Comatose IV
2 M 60 CD, HBP Stuporous IV
3 M 56 Comatose III
4 M 68 CD, HBP, CLD Comatose III
5 M 59 CD Comatose IV
6 M 87 CD, HBP, DM Confused III
7 M 76 CD, HBP, CKD Comatose IV
8 M 85 CD, HBP Comatose III
9 M 65 DM Comatose IV
10 F 63 CD, HBP, CLD Confused II
11 M 48 CD Comatose IV
12 M 49 CD, HBP, DM Comatose III
13 M 58 CD, DM, ACLD Comatose III
14 M 59 CD, HBP, DM, CLD Comatose IV
15 M 59 Comatose IV
16 M 66 CD Comatose IV
17 M 71 CD, HBP, DM, CKD Comatose IV
18 M 59 CD Confused II
19 M 48 CD, HBP, CKD Comatose IV
20 M 45 DM, ACLD Comatose IV
21 M 75 CD, HBP, DM, CKD Comatose IV

ACLD, advanced chronic liver disease; CD, cardiovascular disease; CKD, chronic kidney disease; CLD, chronic lung
disease; DM, diabetes mellitus; F, female; HBP, high blood pressure; M, male. I–VI: grades of encephalopathy.
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Figure A1. Comparison of mean power spectrum for channels between a COVID patient (#8) and
the mean spectra pooled from 30 healthy volunteers, normalized to the maximum amplitude of delta
band at central regions. Red and blue lines indicate right and left hemispheres for the COVID patient
respectively and black lines represent the volunteers group. Y-axis units in µV2/Hz. Pay attention to
the great difference for alfa/beta bands.

Appendix B

Algorithm used for qEEG

1. EEG channels were digitally filtered by a sixth-order Butterworth digital filter between 0.5 and
30 Hz.

2. Differential EEG montage was reconstructed. Topographic placement of channels was defined
on the scalp as the midpoint between the electrode pairs defining the channel, e.g., the Fp1–F3

channel would be placed at the midpoint of the geodesic between Fp1 and F3 electrodes.
3. All recording was divided into 1 s moving windows with 10% overlap. This allowed us to use

a precise frequency of 0.5 Hz. For each window (n) and frequency (k), we computed the fast
Fourier transform (FFT) of the voltage (Vm(n)) obtained from every channel (m) to obtain the
power spectrum (Sm

n,k, in µV2/Hz). We used this expression:

Sm
n,k =

N−1∑
n=0

Vm(n)e−i 2π
N kn; m = Fp1, F3, . . . (A1)

We also computed Shannon’s spectral entropy (SSE) according to:

Sem
k = −

F∑
k=0

pk log2 pk (A2)
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where F is the maximum frequency computed and pk is the probability density of S, obtained
from the expression:

pk =
Sm

n,k∑F
k=0 Sm

n,k∆k
(A3)

4. We computed the area under the Sm
n,k according to the classical segmentation of EEG bands. We

used this expression:

A j(k) =
sup∑

k=in f

Sm
n (k)∆k; j = δ, θ,α, β (A4)

The expression sup refers to the upper limit of every EEG band.
5. The absolute value of Pearson’s correlation coefficient (ρ) was computed for every pair of channels

(i,j) according to this expression:

ρk
i j =

∑Nwindow
k=1 (xi(k) − xi)

∑Nwindow
k=1

(
x j(k) − x j

)
√∑Nwindow

k=1 (xi(k) − xi)
2 ∑Nwindow

k=1

(
x j(k) − x j

)2
(A5)

where Nwindow is the number of points included in a window (usually 128) and xi, x j represents
the mean of both channels.

6. The mean value of all windows was computed, obtaining the mean correlation matrix.

Areas of the same band were grouped by cerebral lobe. In the case of the left hemisphere

(shown as an example), we grouped frontal F =
{
(Fp1−F3)+(F3−C3)+(Fp1−F7)

3

}
, parieto-occipital PO ={

(C3−P3)+(P3−O1)+(T5−O1)
3

}
, and temporal T =

{
(Fp1−F7)+(F7−T3)+(T3−T5)+(T5−O1)

4

}
. Channels from the

right hemisphere were grouped accordingly. These areas, for both bands (j) and lobes (r), Ar
j(t); r =

F, PO, T, were plotted as time functions and compared between hemispheres. The same groups were
used to compute SSE.
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