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Abstract

Purpose: In recent years in vivo microdialysis has become an important method in research studies investigating
the alterations of neurotransmitters in the extracellular fluid of the brain. Based on the major involvement of
glutamate and γ-aminobutyric acid (GABA) in mediating a variety of alcohol effects in the mammalian brain,
numerous microdialysis studies have focused on the dynamical behavior of these systems in response to alcohol.

Methods: Here we performed multiple meta-analyses on published datasets from the rat brain: (i) we studied basal
extracellular concentrations of glutamate and GABA in brain regions that belong to a neurocircuitry involved in
neuropsychiatric diseases, especially in alcoholism (Noori et al., Addict Biol 17:827-864, 2012); (ii) we examined the
effect of acute ethanol administration on glutamate and GABA levels within this network and (iii) we studied
alcohol withdrawal-induced alterations in glutamate and GABA levels within this neurocircuitry.

Results: For extraction of basal concentrations of these neurotransmitters, datasets of 6932 rats were analyzed and
the absolute basal glutamate and GABA levels were estimated for 18 different brain sites. In response to different
doses of acute ethanol administration, datasets of 529 rats were analyzed and a non-linear dose response
(glutamate and GABA release) relationship was observed in several brain sites. Specifically, glutamate in the nucleus
accumbens shows a decreasing logarithmic dose response curve. Finally, regression analysis of 11 published reports
employing brain microdialysis experiments in 104 alcohol-dependent rats reveals very consistent augmented
extracellular glutamate and GABA levels in various brain sites that correlate with the intensity of the withdrawal
response were identified.

Conclusions: In summary, our results provide standardized basal values for future experimental and in silico studies
on neurotransmitter release in the rat brain and may be helpful to understand the effect of ethanol on
neurotransmitter release. Furthermore, this study illustrates the benefit of meta-analyses using the generalization of
a wide range of preclinical data.
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Background
In vivo microdialysis methods have been developed to
study the quantity of the chemical composition of intersti-
tial tissue fluids. This technique has been used to observe
the extracellular neurotransmitter release in various brain
regions of different species. Usually these studies first es-
tablish a baseline level of a specific neurotransmitter and

subsequently investigate alterations in extracellular neuro-
transmitter concentrations in response to the administra-
tion of a certain drug or other manipulation.
Numerous microdialysis studies focus on amino acids,

in particular glutamate and GABA, as these neurotrans-
mitters are the key players in the excitatory and inhibi-
tory network of the central nervous system (CNS) and
are involved in a variety of neuropsychiatric diseases,
including substance abuse and alcohol use disorders
(Kalivas, 2009; Spanagel, 2009).* Correspondence: hamid.noori@zi-mannheim.de
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In recent years, the glutamate theory of alcoholism has
emerged as a major theory in the addiction research
field. In a seminal publication, David Lovinger and
colleagues (Lovinger et al. 1989) demonstrated that
N-methyl-D-aspartate (NMDA) receptor function was
inhibited by ethanol. Further research using site-directed
mutagenesis experiments identified putative binding
sites for ethanol molecules at the NMDA receptor (for
review, see Spanagel, 2009). Thus, the first level of inter-
action of alcohol with brain function concerns the
NMDA receptor (but also the γ-aminobutyric acid A
(GABAA) receptor and other primary targets of ethanol
in the brain; for an overview, see Vengeliene et al.,
2008). The NMDA receptor is a ligand-gated ion chan-
nel with a heteromeric assembly of NR1, NR2 (A-D),
and NR3 subunits, and genetic variants that affect the
vulnerability to alcohol dependence within the genes en-
coding these subunits have been identified (Schumann
et al., 2008; Domart et al., 2012; Tsai and Coyle, 2012).
In addition to this direct interaction with the NMDA re-
ceptor, acute alcohol administration also affects glu-
tamatergic neurons at the synaptic and cellular level and
thereby releases glutamate. Although numerous microdi-
alysis studies have examined the alcohol-induced glu-
tamate release process, its concentration-dependency is
less clear. It is further proposed that through various
neuroadaptive responses that restore homeostasis, chro-
nic alcohol consumption leads to an enhanced activity of
the glutamatergic system in alcohol-dependent individ-
uals (Tsai and Coyle, 1998; Spanagel and Kiefer, 2008;
Ding et al., 2012). This glutamate-induced hyperex-
citability within the CNS is uncovered during alcohol
withdrawal. Acute alcohol withdrawal responses, which
typically occur after discontinuation of prolonged and
excessive alcohol ingestion, are associated with in-
creased central glutamatergic transmission. Several
studies employing brain microdialysis experiments in
alcohol-dependent animals have shown augmented
extracellular glutamate levels in various brain sites
that correlate with the intensity of the withdrawal
response (Rossetti and Carboni, 1995; Gass and Olive,
2008; Gass et al., 2011). This finding also translates
into the human situation, as alcoholics undergoing
acute withdrawal exhibit increased glutamate brain
levels, as measured by magnetic resonance spectroscopy
(Hermann et al., 2012).
As previously mentioned, other receptors or ion chan-

nels expressed within the CNS also have putative alcohol
binding sites. In particular, the function of GABAA

receptors is enhanced by ethanol. The GABAA receptor/
chloride channel complex is a pentameric ligand-gated
ion channel and the major inhibitory neurotransmitter
receptor in the mammalian brain. Several subunits have
been identified, with the majority of GABAA receptors

composed of α, β, γ and δ subunits (Barnard et al., 1998;
Rewal et al., 2012). Using different receptor constructs,
putative ethanol binding sites in the transmembrane
domaines of the α/ β subunits of the GABAA receptor
have been identified (Mihic et al., 1997), and genetic var-
iants within the genes encoding these subunits have
been shown to affect the vulnerability to alcohol depen-
dence (Cui et al., 2012; Frank et al., 2012; Uhart et al.,
2012). Finally, some microdialysis studies have shown
that acute alcohol also affects GABA release (Koob,
2004). Thus, consistent with the neuroadaptive changes
that occur in the glutamatergic system, similar altera-
tions might also occur in the GABAergic system follo-
wing chronic alcohol administration.
Despite the important advantages of microdialysis

measurements, the low spatiotemporal resolution re-
mains a major drawback of these investigations. How-
ever, recent studies on the modeling of acute and
chronic drug effects (Noori, 2012; Noori et al., 2012a)
suggest that in silico analysis of the neurochemical pro-
cesses provides complimentary information to overcome
the experimental difficulties, particularly by enabling the
observation of the dynamical multi-dimensional interac-
tions of different transmitter systems with high spatio-
temporal resolution. These computational methods rely
on microdialysis results as initial setup parameters.
Thus, comprehensive insights on the dynamical be-
havior of the extracellular concentrations of these
neurochemical systems are of particular importance
for understanding the neurobiology of alcohol abuse
and alcoholism by conventional or in silico ap-
proaches. We have introduced a neurocircuitry (Noori
et al., 2012a) that provides the foundation of such
computational models. Using systematic data mining
and clustering methods, we have identified specific
brain regions and neurotransmitter systems, including
glutamate and GABA, that are critical for understand-
ing the spatiotemporal effects of drugs, especially
alcohol, on the neurochemical mechanisms and pro-
cesses in the rodent brain.
The main objective of the present study is to provide

universally valid basal amino acid (glutamate and GABA)
concentrations and their alterations due (i) to the ad-
ministration of acute ethanol and (ii) during withdra-
wal, as measured by in vivo microdialysis experiments.
Our previous studies (Frank et al., 2008; Noori et al.,
2012b; Brand et al., 2013) suggest that meta regression
analysis presents a suitable framework to approach
this aim. Here, we use a similar strategy as in these
studies and apply equivalent data mining and analytic
methods.
Meta-analysis describes the integration of several

primary studies using quantitative and statistical
methods (Glass, 1976; Smith and Glass, 1977). The
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intention is to summarize the results of a large col-
lection of individual studies in order to give a univer-
sally valid statement on specific topics. In particular,
the effectiveness of a specific treatment or measure is
investigated.

Methods
Data mining
A literature search was conducted on Pubmed (http://
www.ncbi.nlm.nih.gov/pubmed/). No particular journal
was preferred. The search included the specific brain
region and the transmitter of interest as well as the
keywords “rat” and “microdialysis”. Literature search for
ethanol administration also included the keyword “etha-
nol” and “alcohol”. The selection criteria further in-
cluded (i) rats of the age between 2 and 15 months and
(ii) drug-naïve rats. Articles that did not comply with
these criteria had to be excluded. Out of approximately
5000 publications, 245 publications fulfilled the selection
criteria. In a second search we included “withdrawal”.
Out of 43 publications, 11 publications fulfilled our
stringent selection criteria for this additional meta-
analysis.
The subsequent variables (i.-vii.) were obtained from

the publications and used for further analysis:

i. Weight, age, gender and consciousness of the rats
(if anaesthetics applied: agent and dose).

ii. Number of the animals used in each experiment.
iii. Absolute basal glutamate and GABA values.

Different units were converted into molarity (nM).
iv. Sample time in min and perfusion rate in μl/min.
v. Peak % baseline (= highest divergence between

maximum peak and baseline value) and peak time.
vi. Coordinates of probe placements according to the

stereotaxic atlas of (Paxinos and Watson, 2007),
Pellegrino et al. (Pellegrino and Cushman 1979), or
König and Klippel (1974) as well as the shape,
length and outer diameter of the probe membrane
(mm), the calcium concentration and pH value of
the Ringer solution or artificial CSF (mM), and the
neurochemical detection assays.

vii. Doses of ethanol applied, as well as the
route of administration (intravenous (i.v.)
and intraperitoneal (i.p.) injections or local
infusions).

Statistical analysis
Usually a meta-analysis observes an entire experiment.
Although we considered only selected values, we did not
lose the relation to the experiment in total. The mean
basal values are not collected from only one animal that
means numbers, percentages etc. are associated to the
whole experiment. We conducted the meta-analysis

using fixed effect model (Hedges and Olkin, 1985),
which utilizes the inverse of the number of animals of
the studies as the weights to calculate a weighted ave-

rage �x ¼ 1
N

Xk

i¼1
nixi , where �x represents the weighted

average value as the weighted sum of the products of the
mean values xi from each experiment i (within a time
interval of [0; 300] minutes) and the number of animals

used in that particular study ni, and N ¼
Xk

i¼1
ni denot-

ing the total number of animals considered in the meta-
analysis of the k studies. To guarantee the robustness of
this model, we have analyzed the datasets statistically
with respect to the experimental parameters by one-
way analysis of variance (ANOVA) using the Holm-
Bonferroni method with a global level of significance
of α < 0.05 and identified significant heterogeneity
factors.
One purpose of the analysis was to get the mean basal

value of the two neurotransmitters glutamate and GABA
measured in a defined brain region. According to our
defined neurocircuitry for modelling acute and chronic
effects of alcohol 19 brain regions were taken into con-
sideration - from caudal to rostral: olfactory bulb (OB),
prefrontal cortex (PFC), insula (Ins), nucleus accumbens
(NAc), caudate putamen (CPu), septal region (S), bed
nucleus of stria terminalis (BNST), globus pallidus (GP),
hypothalamus (HyT), amygdala (Amy), habenula (Hb),
hippocampus (Hc), thalamus (Th), subthalamic nucleus
(STh), substantia Nigra (SN), ventral tegmental area
(VTA), raphe nuclei (R), locus coeruleus (LC), and pons
(Pn). As mentioned above, weighted values (concerning
the number of rats, which were taken in one experiment)
were used for calculation in order to get an average basal
value. In addition to systematically examine those baseline
values the second objective was the “peak % baseline” after
acute administration of alcohol (i.p., i.v., s.c., local). A
dose-dependent correlation analysis was conducted using
the variables peak % baseline, peak time and the given
dose of ethanol to determine the functional relationship
between administered dose of ethanol and the alteration
of glutamate and GABA concentrations, respectively. The
third objective was the estimation of “peak % baseline”
and “peak time” during alcohol withdrawal.
To analyse the data, one-way analysis of variance

(ANOVA) using Holm-Bonferroni method with a global
level of significance of α < 0.05 were performed. If any
significance emerged, the respective weighted average
basal value and standard error were calculated separ-
ately. Additionally forest plots were used to illustrate the
influence of ethanol on the baseline values of glutamate
in the prefrontal cortex and the nucleus accumbens.
This graphical representation is a scattergram of the vari-
ables “experiment” and “average basal value” and “peak %
baseline”, respectively.
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Results
Baseline values for extracellular glutamate and GABA
concentrations in different areas of the rat brain
Literature search revealed 245 publications that fulfilled
the selection criteria for baseline values of glutamate
and GABA. Out of these 43.3% were published before
the year 2000, 51.8% between 2000 and 2010 and 4.5%
after 2010. Altogether 6932 animals were used in these
experiments. Average basal values, as well as the statis-
tical distribution (i.e., median, maximum and minimum)
are represented in Table 1 (glutamate) and Table 2
(GABA) for 18 different brain regions respectively (for
the habenula no data could be retrieved from Pubmed).
The forest plots (Figures 1 and 2) represent the basal
values of glutamate in the PFC and the NAc, respect-
ively. Rapid microelectrode measurements of glutamate
in the PFC (Hascup et al., 2010), glutamate measure-
ments with oxidase-coated biosensors in the AMY and
NAc (Gass et al., 2011) as well as a variety of control
experiments (Timmerman and Westerink, 1997;
Sun et al., 2011) suggest the neuronal origin of these
concentrations.
Numerous experimental variables are known to have

an impact on the relative recovery of an analyte and
thereby influence the concentration per sample and the
baseline values measured. Most critical parameters are
the flow rate of the perfusate, probe size, the compo-
sition of the perfusate - particularly the Ca2+ concentra-
tion, and the analytical technique for determining the
neurotransmitter concentrations. The statistical distribu-
tion of these parameters within our datasets (Table 3)
suggests a dense distribution of the parameters around
their averages and a lack of significant heterogeneity in
the applied ranges. ANOVA performed on the weighted
averages with respect to these parameters reflected this
absence of variance and suggests the robustness of our
analysis in agreement with previous studies (Frank et al.,
2008; Noori et al., 2012b; Brand et al., 2013). This result
is not in contrast to the previous experimental observa-
tion but underlines the awareness of the study designers
of the importance of these parameters. This was particu-
larly reflected in the choice of the shape of the probes
(99% I-shaped) and the transmitter detection systems.
Almost all studies (98%) used high performance liquid
chromatography (HPLC) and fluorecence detection sys-
tems for glutamate quantifications, whereas the vast ma-
jority of the studies measuring GABA utilize HPLC and
coulometric electrochemical detection assays. However,
it should also be mentioned that the majority of the
studies used in the present study did not report the
time point of measurement with respect to circadian
rhythms. Recent studies (Castaneda et al., 2004;
Hampp et al., 2008) suggest that the neurotransmitter
levels measured by in vivo microdialysis are under the

control of the circadian clock and vary with the time
of the day. The lack of information on this issue in
most of the publications might have a non-negligible
impact on our analysis.
Most of the experiments used Sprague–Dawley (43.4%)

and Wistar rats (42.3%). A smaller percentage used Lister-
Hooded (2.4%) and Long-Evans (3.1%) rats. Statistical ana-
lysis shows statistically significant differences of average
basal values of rat strain in several brain regions. Most of
them occurred between Wistar and Sprague–Dawley rats
(strain differences shown in Table 1 and 2). In particular,
GABA levels in the PFC and CPu were significantly differ-
ent between Sprague–Dawley and Wistar rats (F1,6 = 6.03;
resp. F1,10 = 4.76; P < 0.05). Furthermore, glutamate levels
showed a statistically significant difference between
Sprague–Dawley and Wistar rats in the GP (F1,5 = 9.11;
p < 0.05), the SN (F1,9 = 4.67; P < 0.05), and the VTA
(F2,8 = 4.26; P < 0.05). In general, the average basal values
seem not to depend on gender. However, with the excep-
tion of measurements in the OB, which were performed
only on female animals (n = 100), the majority of the
remaining studies (96.5%) used male rats. Hence, statis-
tical analysis did not reveal any gender-specific significant
differences, but due to the low number of female rats it is
difficult to draw any certain conclusion. In order to
minimize age-related variations, only values obtained from
adult animals (between 2 and 10 months of age) were con-
sidered for the analysis. The weight of the animals was
Gaussian normal distributed around 300 g. The dominant
part of the experiments (78%) was conducted on awake,
conscious and freely moving animals. In the remaining
studies, animals were maintained under anaesthesia
during the experiment, which often induced statistically
significant effects on the basal neurotransmitter concen-
trations (Table 4). Previous studies (Lillrank et al., 1994;
Rozza et al., 2000; Dong et al., 2006; Westphalen and
Hemmings, 2006) already suggest a significant impact of
the anaesthetics on the forebrain glutamate and GABA
levels. Our analysis further supports the suggestion that
the application of different anaesthetics such as halothane,
urethane and pentobarbital increase the level of glutamate
significantly in Th (F1,6 = 80.12; P < 0.05), SN (F1,14 = 6.3;
P < 0.05), and VTA (F1,10 = 83.53; P < 0.05). In addition,
chloral hydrate appeared to also have enhancing effects on
the GABA release in the SN (F1,4 = 216.28; P < 0.05)
(Table 4).

Alcohol-induced glutamate and GABA release in different
areas of the rat brain
Our literature search revealed 17 publications that were
in agreement with our selection criteria for acute etha-
nol exposure. Out of these, 66 values were extracted.
Altogether 529 animals were used in the experiments.
Observation of seven brain regions fulfilled the selection

Fliegel et al. In Silico Pharmacology 2013, 1:7 Page 4 of 16
http://www.in-silico-pharmacology.com/content/1/1/7



Table 1 Average basal values (nM) of glutamate in awake animals as well as the statistical distribution of the data
(i.e., median, maximum and minimum)

Brain region Glutamate: average
basal value ± sEM [nM]

Median Max Min

(Number of rats)

Olfactory Bulb (30) 3857 ± 2057 4681 3307 6055

Prefrontal Cortex (445) 1182 ± 236 1290 3500 105

Insular Cortex (6) 1750 ± 320 - - -

Nucleus Accumbens (661) 2135 ± 382 623 12379 10

Caudate Putamen (675) 1009 ± 166 735 8100 25

Bed Nucleus of Stria Terminalis (7) 830 ± 70 - - -

Globus Pallidus 435 ± 153 400 673 171

Sprague–Dawley (42)

Wistar (39) 876 ± 381 1518 1905 236

Hypothalamus (63) 1178 ± 373 492 3500 24

Amygdala (138) 4475 ± 1779 835 10980 32

Hippocampus (301) 2616 ± 513 1480 18940 50

Thalamus (71) 842 ± 280 705 1640 114

Subthalamic Nucleus (30) 118 ± 1 - - -

Substantia Nigra Sprague–Dawley (487) 136 ± 41 115 518 88

Wistar (75) 517 ± 210 500 684 110

Ventral Tegmental Area 205 ± 68 177 410 114

Sprague–Dawley (184)

Wistar (17) 571 ± 342 504 733 275

Long-Evans (59) 1294 ± 654 1295 1489 1100

Raphe (7) 1243 ± 92 - - -

Locus Coeruleus (100) 2430 ± 730 4400 10750 58

Pons (26) 75 ± 5 - - -

OB: Guevara-Guzman, R., et al. (2000) PFC: Abekawa et al. (2006); Ballini et al. (2008); Calcagno et al. (2006); Carli et al. (2011); Del Arco and Mora (1999); Del Arco
and Mora (2000); Del Arco and Mora (2002); Giovannini et al. (2005); Harte and O'Connor (2004); Hashimoto et al. (1995); Hernandez et al. (2008); Huang et al.
(2008); Hugues et al. (2007); Li et al. (2010b); Lupinsky et al. (2010); Ohoyama et al. (2011); Pistis et al. (2002); Qi et al. (2012); Robert et al. (1996); Selim and
Bradberry (1996); Stephans and Yamamoto (1995); Timmerman et al. (1999); Welty and Shoblock (2009); Yamamura et al. (2009a) Ins: Guzman-Ramos et al. (2010)
NAc: Dahchour et al. (1996); Dalley et al. (1999); Dawson et al. (2001); Ericson et al., (2011); Fu et al. (2000); Giorgetti et al. (2001); Hemmati et al. (2001); Hernandez
et al. (2008); Hotsenpiller and Wolf (2003); Huang et al. (2008); Ito. et al. (2006); Lallemand et al. (2006); Li et al.(2010a); Mikhailova (2003); Quarta et al. (2004);
Quertemont et al.(2000); Saulskaya and Mikhailova (2002); Saul'skaya and Mikhailova (2005); Saulskaya and Soloviova (2004); Segovia et al. (1999); Selim and
Bradberry (1996); Shou et al. (2004); Xi et al. (2003b); You et al. (2001); You et al. (1998); Zangen and Hyodo (2002) CPu: Anderson and DiMicco (1992); Battaglia
et al. (1997); Bert et al. (2002); Carboni et al. (1993); Dawson et al. (2001); Dawson et al. (2003); Del Arco et al. (1998); Fantin et al. (2007); Ferraro et al. (1998);
Hashimoto et al. (1995); Hernandez et al. (2008); Lillrank et al. (1994); Mark et al. (2004); Massieu et al. (1995); Meeusen et al. (1997); Melani et al. (2003);
Molchanova et al. (2004a); Molchanova, et al. (2004b); Morales-Villagran and Tapia (1996); Morari et al. (1996); Morari et al. (1993); Morari (1994); Northrop et al.
(2011); Parrot et al. (2003); Segovia et al. (1997); Segovia et al. (1999); Segovia et al. (2001); Stephans and Yamamoto (1995); Takeda et al. (2003); Toth et al. (1993);
Yamada et al. (2009); Yamamoto et al. (1999) BST: Forray et al. (1999) GP: Biggs et al. (1997a); Biggs and Starr (1997b); Chapman and See (1996); Fantin et al.
(2007); Ferraro et al. (1998); Galeffi et al. (2003); Kretschmer (2000); Li et al. (2010a); Sizemore et al. (2000); Windels et al. (2000); Windels et al. (2005) HyT:
Anderson and DiMicco (1992); Azuma et al. (1996); Ferraro et al. (1999); Keck et al. (2000); Mason et al. (1997); Melis et al. (2004); Succu et al. (2006) Amy: Kaura
et al. (1995); Mucignat-Caretta et al. (2006); Quertemont et al. (1999); Quertemont et al. (1998); Roberto et al. (2004b); Skorzewska et al. (2009) Hc: Ballini et al.
(2008); Biggs et al. (1992); Clinckers et al. (2005); Dawson et al. (2001); Ferraro et al. (1997a); Giovannini et al. (2005); Giovannini et al. (2001); Giovannini et al.
(1998); Hossain et al. (2008); Katoh et al. (1997); Kuntz et al. (2004); Langlais and Zhang (1993); Oreiro-Garcia et al. (2007); Rakovska et al. (1998); Rosi et al. (2004);
Rowley et al. (1995); Shimizu et al. (1998); Takeda et al. (2004); Takeda et al. (2002); Tanaka et al. (2004); Ueda and Tsuru (1995); Wislowska-Stanek et al. (2008);
Zhu et al. (2008); Zuiderwijk et al. (1996) Th: Abarca et al. (2000); Banerjee and Snead (1995); Ferraro et al. (1997b); Hazell et al. (1993); Langlais and Zhang (1993);
Nyitrai et al. (1999); Terzioglu et al. (2006) STh: Ampe et al. (2007) SN: Bianchi et al. (1998); Biggs et al. (1995); Boulet et al. (2006); Fantin et al. (2007); Ferraro et al.
(1998); Ferraro et al. (2001); Galeffi et al. (2003); Hatzipetros and Yamamoto (2006); Marti et al. (2002); Morari et al. (1998); Nyitrai et al. (1999); Robelet et al. (2004);
Rosales et al. (1997); Yamamura et al. (2009ba) VTA: Frantz et al. (2002); Fu et al. (2000); Harte and O'Connor (2004) Harte and O'Connor (2005); Kretschmer et al.
(2000); O'Dell (2004); Pehek et al. (2006); Timmerman et al. (1999); Wang et al. (2005); Wolf and Xue (1998); Wolf and Xue (1999); You et al. (2007) R: Varga et al.
(1998) LC: Feng et al. (1997); Feng et al. (1995); Hoshi et al. (1996); Hoshi et al. (1997); Liu et al. (1999); Singewald et al. (1995); Sullivan et al. (2000); Timmerman,
et al. (1999); Tokuyama et al. (1998); Zhang et al. (1994) Pn: Sato et al. (2007).

Fliegel et al. In Silico Pharmacology 2013, 1:7 Page 5 of 16
http://www.in-silico-pharmacology.com/content/1/1/7



criteria: AMY, GP, HC, NAc, PFC, CPu, and VTA. In
general, alcohol was administered via three routes: (i) al-
most 90% of the experiments used intraperitoneal (i.p.)
injections in a dose between 0.5 and 3.0 g/kg body
weight; (ii) local infusion (100–1000 mM) of alcohol in
8% of the studies; and (iii) the remaining experiments
applied ethanol orally (20% ethanol). The average mag-
nitude of increase/decrease comparing to the baseline

concentrations (peak % baseline) and the average peak
time are presented in the Tables 5 and 6. The correlation
analysis shows a non-uniform (region-dependent) inter-
action between ethanol and the release of glutamate and
GABA. In particular, ethanol-induced alterations in glu-
tamate concentrations appear to depend on the network
properties such as the connectivity of the brain regions
within the neurocircuitry for modelling drug effects.

Table 2 Average basal values (nM) of GABA in awake animals as well as the statistical distribution of the data (i.e.
median, maximum and minimum)

Brain region GABA: average basal Median Max Min

value ± SEM [nM](Number of rats)

Olfactory Bulb (30) 73 ± 46 61 80 43

Prefrontal Cortex 34 ± 12 32 50 25

Sprague–Dawley (131)

Wistar (80) 89 ± 33 118 170 10

Nucleus Accumbens (167) 90 ± 22 33 764 13

Caudate Putamen 17 ± 5 19 130 6

Sprague–Dawley (341)

Wistar (300) 78 ± 22 110 660 1

Septal Region (17) 640 ± 420 488 775 200

Bed Nucleus of Stria Terminalis (7) 110 ± 20 - - -

Globus Pallidus (198) 21 ± 6 19 83 7

Hypothalamus (56) 29 ± 10 17 92 5

Amygdala (128) 56 ± 20 16 830 2

Hippocampus (302) 97 ± 19 95 2500 1

Thalamus (100) 228 ± 70 60 870 8

Subthalamic Nucleus (33) 9 ± 5 9 9 9

Substantia Nigra (454) 18 ± 4 15 145 4

Ventral Tegmental Area (202) 16 ± 6 23 43 8

Locus Coeruleus (6) 6 ± 1 - - -

Pons (26) 90 ± 7 - - -

OB: Guevara -Guzman et al. Guevara-Guzman et al. (2000) PFC: Ballini et al. (2008); Del Arco and Mora (1999); Del Arco and Mora (2000); Del Arco and Mora
(2002); Grobin and Deutch (1998); Harte and O'Connor (2004); Hernandez et al. (2008); Huang et al.(2008); Ohoyama et al. (2011); Petkova-Kirova et al. (2008)
Pistis et al. (2002); Welty and Shoblock (2009); Yamamura et al. (2009a) NAc: Dahchour (1996); Ferraro et al. (1996a); Hazell (1993); Hemmati et al. (2001);
Hernandez (2008); Huang et al. (2008); Lindefors et al. (1992); Reynolds et al. (1999); Segovia (1999); Shou et al. (2004); Smith and Sharp (1994); Tanganelli et al.
(1994); Xi et al. (2003a) CPu: Anderson and DiMicco (1992); Bourdelais and Deutch (1994); Del Arco et al. (1998); Fantin et al. (2007); Ferraro et al. (1998); Ferraro
et al. (1997b); Hernandez et al. (2003 ); Hernandez et al. (2008); Hondo et al. (1995); Lillrank et al. (1994); Meeusen et al. (1997); Melani et al. (2003); Molchanova
et al. (2004a); Morari et al. (1996); Morari et al. (1993); Morari et al. (1994); Segovia et al. (1997); Segovia et al. (1999); Semba et al. (1995); Takeda et al. (2003);
Wang et al. (2007); Yamamoto et al. (1999) S: Giovannini et al. (1994); Sotomayor-Zarate et al. (2010) BST: Forray et al. (1999) GP: Chapman and See, (1996) Cowen
et al. (1998); Fantin et al. (2007); Ferraro et al. (1998); Ferraro et al. (1997a); Ferraro et al. (2000); Galeffi et al. (2003); Inui et al. (2009); Littlewood et al. (2006);
O'Connor etal. (1998); Rimondini et al. (1994); Rimondini et al. (1996); Sizemore et al. (2000); Sommer et al. (1996); Windels et al. (2000); Windels et al. (2005)
Hyt: Anderson and DiMicco (1992); Dong et al. (2006); Ferraro et al. (1999); Ferraro et al. (1996b); Katoh et al. (1997); Voisin et al. (1994) Amy: Kaura et al. (1995);
Mucignat-Caretta et al. (2006); Quertemont et al. (1999); Rea et al. (2009); Roberto et al. (2010); Roberto et al. (2004b); Skorzewska et al. (20099) Hc: Ballini et al.
(2008); Biggs et al. (1992); Dalby (2000); de Groote and Linthorst (2007); Ferraro et al. (1997b); Giovannini et al. (2001); Giovannini et al. (1998); Hossain et al.
(2008); Katoh et al. (1997); Kuntz et al. (2004); Langlais and Zhang (1993); Oreiro-Garcia et al. (2007); Rakovska et al. (1998); Rosi et al. (2004); Rowley et al. (1995);
Takeda et al. (2004); Takeda et al. (2002); Ueda and Tsuru (1995); Wislowska-Stanek et al. (2008); Yoshida et al. (2007); Zuiderwijk et al. (1996) Th: Banerjee and
Snead (1995); Dalby (2000); Ferraro et al. (1996b); Ferraro et al. (2001); Juhasz et al. (1997); Langlais and Zhang (1993); Mark (2004); Nyitrai et al. (1999); Terzioglu
et al. (2006) STh: Ampe et al. (2007); Yamamura et al. (2009a) SN: Bianchi et al. (1998); Biggs et al. (1995); Boulet et al. (2006); Bustamante et al. (2002); Fantin et al.
(2007); Ferraro et al. (1998); Ferraro et al. (2001); Galeffi et al. (2003); Herrera-Marschitz et al. (1996); Invernizzi et al. (2007); Mark et al. (2004); Matuszewich and
Yamamoto (1999); Morari et al. (1996); Ochi et al. (2004); Rosales et al. (1997); Sayin et al. (1995); Sommer et al. (1996); Windels et al. (2000); Windels et al. (2005);
You et al. (1996a); You et al. (1996b); You et al. (2007) VTA: Bankson and Yamamoto (2004); Frantz et al. (2002); Harte and O'Connor (2004); O'Dell and Parsons
(2004); Winter et al. (2008); Yan et al. (2005); You et al. (2007) LC: Singewald et al. (1995) Pn: Sato et al. (2007).
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Figure 1 Forest-plot of the basal glutamate values in the prefrontal cortex as measured in 24 experiments, ordered by year of
publication. Row 1 indicates the weighted average basal value and its standard error of mean (±SEM). The vertical line extends the weighted
mean in order to compare the extracted data. 2 Hashimoto et al. (1995); 3 Stephans and Yamamoto (1995); 4 Robert et al. (1996); 5,6 Selim and
Bradberry (1996); 7 Del Arco and Mora (1999); 8 Timmerman et al. (1999); 9 Del Arco and Mora( 2000); 10 Del Arco and Mora (2002); 11 Pistis et al.
(2002); 12 Harte and O'Connor (2004); 13 Giovannini et al. (2005); 14 Abekawa et al. (2006); 15 Calcagno et al. (2006); 16 Hugues et al. (2007); 17
Ballini et al. (2008); 18 Hernandez et al. (2008); 19 Huang et al. (2008); 20 Welty and Shoblock (2009); 21 Yamamura et al. (2009a); 22 Li et al.
(2010a); 23 Lupinsky et al. (2010); 24 Carli et al. (2011); 25 Ohoyama et al. (2011).

Figure 2 Forest-plot of the basal value of glutamate in the nucleus accumbens as measured in 28 experiments, ordered by year of
publication. Row 1 indicates the weighted average basal value and its standard error of mean (±SEM). The vertical line extends the weighted
mean in order to compare the extracted data. 2 Dahchour et al. (1994); 3 Selim and Bradberry (1996); 4 You et al. (1998); 5 Dalley et al. (1999);
6,7,8 Segovia et al. (1999); 9 Fu et al. (2000); 10 Quertemont et al. (2000); 11 Dawson et al. (2001); 12 Giorgetti et al. (2001); 13,14 Hemmati et al.
(2001); 15 You et al. (2001); 16 Saulskaya and Mikhailova (2002); 17 Zangen and Hyodo (2002); 18 Hotsenpiller and Wolf (2003); 19 Mikhailova
(2003); 20 Xi et al. (2003a); 21 Quarta et al. (2004); 22 Saulskaya and Soloviova (2004); 23 Shou et al. (2004); 24 Saul'skaya and Mikhailova (2005);
25 Ito et al. (2006); 26 Lallemand et al. (2006); 27 Hernandez (2008); 28 Huang et al. (2008); 29 Li et al. (2010b).
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Table 3 Statistical distribution of the microdialysis procedure parameters within the meta-analyzed datasets

Average Median Max Min

Flow Rate (μl/min) 1.7 2.0 4.0 0.5

Ca2+ (mM)

aCSF (53%) 1.2 1.2 2.5 0.57

Ringer Solution (30%) 1.9 2.2 3.4 1.0

Krebs-Ringer-Phosphate Solution (9%) 1.5 1.2 3.4 1.0

Modified Ringer Solution (7%) 1.4 1.2 2.3 1.0

Dulbecco Phosphate Buffer Saline (1%) 1.2 1.2 1.2 1.2

pH-value (Perfusate) 7.4 7.4 7.4 6.0

Probe Size

Length (mm) 2.3 2.0 5.0 1.0

Outer Diameter (mm) 0.3 0.3 0.6 0.15

The compliance of the average values and the median in the flow rates and in the different calcium concentrations within the composition of perfusates suggest
a lack of heterogeneity and a high level of standardization in the general experimental design of microdialysis measurements.

Table 4 Significantly different average basal values (nM) of glutamate and GABA (in comparison to Tables 1
and 2) in anesthetized rats

Brain region/ transmitter
(number of animals)

Average basal
value ± SEM

Median Max Min

Thalamus/Glu (8) 6600 ± 300 - - -

Substantia Nigra/Glu (16) 684 ± 259 699 863 440

Ventral Tegmental Area/
Glu (12)

4607 ± 392 - - -

Ventral Tegmental Area/
GABA (6)

226 ±79 - - -

Glu-Th: Juhasz et al. (1997) Glu-SN: Bustamante et al. (2002); Herrera-Marschitz et al. (1996); Windels et al. (2000); Windels et al. (2005); You, et al. (1996a); You et al.
(1996b) Glu-VTA: You et al. (2001) GABA-VTA: Winter et al. (2008).

Table 5 Average ethanol-induced alterations of glutamate and GABA as measured by in vivo microdialysis experiments

EtOH dosis (g/kg) 0.5 1.0 2.0 3.0

Brain region/transmitter
(number of animals)

Peak % baseline (Peak time [min])

Prefrontal Cortex/Glu (44) 145 (40) 154 (57) 160 (20)

Nucleus Accumbens/Glu (186) 160 (53) 126 (49) 80 (80)

Nucleus Accumbens/GABA (82) 135 (58) 97 (65) 73 (90)

Caudate Putamen/Glu (11) 138 (NN) 61 (20)

Glu-PFC: Selim and Bradberry (1996); Glu-NAc: Dahchour et al. (1994); Dahchour et al. (1996); Kashkin and De Witte (2004); Selim and Bradberry (1996); Yan et al.
(1998) GABA-NAc: Dahchour et al. (1994); Dahchour et al. (1996); Glu-CPu: Carboni et al. (1993); Smith et al. (2004).

Table 6 Local infusion of ethanol in the AMY enhances GABA levels significantly, while glutamate release remains
almost unchanged (Glu: Roberto et al. (2004b) GABA: Roberto et al. (2004a)

EtOH dosis (mM) 100 300 1000

Peak % Baseline

Amygdala/Glu 110 104 113

Amygdala/GABA 127 - 182
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This observation is best reflected in the analysis of the
PFC, NAc and CPu (Figure 3). While ethanol increases
the glutamate concentrations in the PFC in a dose-
dependent fashion, it simultaneously decreases the ex-
tracellular levels of glutamate in the NAc and CPu. In
contrast GABA concentrations were elevated in the NAc
following the same doses of alcohol.

Alcohol withdrawal-induced glutamate and GABA release
in different areas of the rat brain
On the basis of our selection criteria for ethanol with-
drawal, 11 articles (n = 104 rats) were extracted. All
studies used freely moving male rats with a strain distri-
bution of 55% Wistar and 45% Sprague Dawley animals.
The experiments measured the amino acids alterations
in an interval of [2; 12] hours after last exposure to

alcohol within different brain regions (Table 7 and
Figure 4) with significant enhancements of extracellular
glutamate and GABA levels due to acute ethanol
withdrawal.

Discussion
To investigate the effects of a specific drug on amino
acid release in the rat brain, in vivo microdialysis is an
ideal method. Nevertheless, experimental parameters
should be defined more precisely, as they can largely
vary between different publications; however, there are
no universal instructions concerning the number of
animals, gender, age, doses of applied drugs, state of
consciousness and weight in these studies. Our meta-
analysis shows general robustness of the observations for
glutamate and GABA release with respect to experimen-
tal parameters such as gender and state of consciousness
of the animals, and provides universal references for the
basal concentrations of glutamate and GABA in a num-
ber of brain regions. However, the observed statistical
differences of glutamate and GABA neurotransmission
in specific brain regions as a consequence of the ad-
ministration of anaesthetics and strain of the animals
suggest particular cautiousness in establishing baseline
measurements with respect to these variables.
Our analysis further reflects the highly complex me-

chanisms underlying the actions of ethanol on the re-
lease properties of amino acids. While different doses of
ethanol enhance the basal levels of glutamate in the PFC
(Table 4 and Figure 3), the magnitude of the alterations
appear to be nonlinearly dependent on the applied

Figure 3 Dose-dependent ethanol induced changes of extracellular glutamate concentrations (nM) in the prefrontal cortex (PFC),
nucleus accumbens (NAc) and caudate putamen (CPu) of rats.

Table 7 The effects of acute ethanol withdrawal on
extracellular amino acid concentrations in rats

Brain Region Glutamate GABA

(Number of rats)

Central Amygdala (21) 216% 360%

Nucleus Accumbens (39) 370%

Caudate Putamen (13) 255%

Hippocampus (31) 240% 100%

Glu-Central AMY: Roberto et al., 2004b; GABA-Central AMY: Roberto et al.,
2004a, Roberto et al. 2010; Glu-NAc: Dahchour et al., 1998; Dahchour and De
Witte 1999b, 2000, 2000; Melendez et al., 2005; Saellstroem Baum et al. 2006;
Glu-CPu: Rossetti and Carboni, 1995; Glu-HC: Dahchour and De Witte, 1999a,
2003; GABA-HC: Dahchour and De Witte, 1999a, 2003.
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doses. In addition, the negative correlation of the admin-
istered doses of ethanol and the changes in amino acid
concentrations in the dorsal and ventral striatum suggest
the involvement of feedback mechanisms and the ac-
tivation of additional secondary regulatory processes in
the subcortical brain structures by alcohol (Noori et al.,
2012a).
In general, the multi-scale involvement of glutamate

and GABA in information processing in the brain (from
synaptic to network interactions) and the interactions
between these transmitters make it difficult to identify
the key components of the ethanol-induced alterations.
In light of these difficulties, in silico experiments might
represent an alternative strategy to capture the dyna-
mical complexity of these interactions and provide fur-
ther neurobiological insights on the relevant processes
that are not measurable simultaneously in real-world
experiments.

Conclusion
In conclusion, this meta-analysis approach may be help-
ful for the optimal systematic design of future in vivo
microdialysis and in silico experiments on neurotrans-
mitter release and ethanol-related processes, to therefore
attain a better comparability between those studies. Fur-
thermore, the basal extracellular concentrations of glu-
tamate and GABA in 18 different brain sites, as well as
the quantitative and qualitative measures for the acute
action of ethanol on these neurotransmitters provide the
necessary setup parameters for in silico studies.

Limitations
Despite the numerous advantages of meta-analysis ap-
proaches, their main problem remains the lack of essen-
tial information in the publications. Many potentially
important articles had to be excluded from our analysis
because crucial information was missing, such as the
number of animals used or standard errors of the mean.
In addition, it should be noted that in the majority of
studies, circadian rhythmicity was not considered and
thus the time point of the measurement was oftentimes
excluded. Recent studies (Casteneda et al., 2004; Hampp
et al., 2008) indicate that there is a relationship between
the concentrations of neurotransmitters, as measured
by in vivo microdialysis, and the time of measurement
(day/night).
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Figure 4 The time course of withdrawal induced enhancements in the glutamate levels relative to the respective basal values in
nucleus accumbens, caudate putamen and hippocampus. The time course was not provided for central amygdala.
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