
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Applied Soft Computing 111 (2021) 107692

S
M
a

b

c

d

e

f

a
r
a

M

s
(
s
d
(

h
1

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

Correcting data imbalance for semi-supervised COVID-19 detection
using X-ray chest images
Saul Calderon-Ramirez a,b,∗, Shengxiang Yang a, Armaghan Moemeni c, David Elizondo a,
imon Colreavy-Donnelly a, Luis Fernando Chavarría-Estrada d,
iguel A. Molina-Cabello e,f

Centre for Computational Intelligence (CCI), De Montfort University, United Kingdom
Instituto Tecnologico de Costa Rica, Costa Rica
School of Computer Science, University of Nottingham, United Kingdom
Imágenes Médicas Dr Chavarría Estrada, La Uruca, San José, Costa Rica
Department of Computer Languages and Computer Science, University of Málaga, Spain
Instituto de Investigación Biomédica de Málaga (IBIMA), Spain

a r t i c l e i n f o

Article history:
Received 29 September 2020
Received in revised form 11 June 2021
Accepted 7 July 2021
Available online 13 July 2021

Keywords:
Coronavirus
COVID-19
Computer aided diagnosis
Data imbalance
Semi-supervised learning

a b s t r a c t

A key factor in the fight against viral diseases such as the coronavirus (COVID-19) is the identification of
virus carriers as early and quickly as possible, in a cheap and efficient manner. The application of deep
learning for image classification of chest X-ray images of COVID-19 patients could become a useful pre-
diagnostic detection methodology. However, deep learning architectures require large labelled datasets.
This is often a limitation when the subject of research is relatively new as in the case of the virus
outbreak, where dealing with small labelled datasets is a challenge. Moreover, in such context, the
datasets are also highly imbalanced, with few observations from positive cases of the new disease.
In this work we evaluate the performance of the semi-supervised deep learning architecture known
as MixMatch with a very limited number of labelled observations and highly imbalanced labelled
datasets. We demonstrate the critical impact of data imbalance to the model’s accuracy. Therefore,
we propose a simple approach for correcting data imbalance, by re-weighting each observation in
the loss function, giving a higher weight to the observations corresponding to the under-represented
class. For unlabelled observations, we use the pseudo and augmented labels calculated by MixMatch
to choose the appropriate weight. The proposed method improved classification accuracy by up to
18%, with respect to the non balanced MixMatch algorithm. We tested our proposed approach with
several available datasets using 10, 15 and 20 labelled observations, for binary classification (COVID-19
positive and normal cases). For multi-class classification (COVID-19 positive, pneumonia and normal
cases), we tested 30, 50, 70 and 90 labelled observations. Additionally, a new dataset is included among
the tested datasets, composed of chest X-ray images of Costa Rican adult patients.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

The COVID-19 disease is caused by the SARS-CoV2 coron-
virus. Coronaviruses spread across the gastrointestinal and the
espiratory tracks within a large variety of animal groups, with
high infectivity rate in the case of the SARS-CoV2, which has

∗ Corresponding author at: Centre for Computational Intelligence (CCI), De
ontfort University, United Kingdom.

E-mail addresses: sacalderon@itcr.ac.cr (S. Calderon-Ramirez),
yang@dmu.ac.uk (S. Yang), armaghan.moemeni@nottingham.ac.uk
A. Moemeni), elizondo@dmu.ac.uk (D. Elizondo),
imon.colreavy-donnelly@dmu.ac.uk (S. Colreavy-Donnelly),
rchavarriaestrada@gmail.com (L.F. Chavarría-Estrada), miguelangel@lcc.uma.es
M.A. Molina-Cabello).
ttps://doi.org/10.1016/j.asoc.2021.107692
568-4946/© 2021 Elsevier B.V. All rights reserved.
caused a virus outbreak at the end of 2019 [1]. As more and more
people regularly travel across the world, the rapid spread is a
lurking danger of a worldwide scale. A key priority for societies
across the world, is to develop tools to enable the identification
of virus outbreaks and to be able to diagnose them in a short
time frame. The quick identification of potential virus carriers is
vital to contain a virus outbreak. This is where state of the art
Artificial Intelligence (AI) based techniques, such as deep learning,
can play a key role, enabling pre-diagnostic and triage systems
to effectively identify the presence of the virus in a subject.
They offer quick diagnostic responses to enable health systems
to cope with rapid spread of virus out-breaks. Deep learning
based approaches have been proposed to tackle medical imaging
problems [2–6]. However, deep learning models typically need

large labelled datasets [7,8].
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This research extends a novel SSDL framework known as Mix-
Match [9] for the detection of COVID-19 based on chest X-ray im-
ages. MixMatch is a semi-supervised learning method allows the
combination of labelled and unlabelled data to train the model.
Semi-supervised learning is more cost effective and accessible,
as unlabelled data is cheaper than labelled data. Semi-supervised
models can easily be adapted for mutations of the virus at a later
stage, with relatively small labelled samples.

We propose a modification for the MixMatch architecture,
designed to improve its accuracy under data imbalance settings.
Added to smaller labelled datasets, in an outbreak situation,
datasets can also be strongly imbalanced, as data available for the
subjects manifesting symptoms of the new pathogen are more
scarce than non-pathogenic patient records.

1.1. Use of X-ray images towards the diagnosis of COVID-19

A common, well established and robust method for the de-
tection of COVID-19 virus is the Real-time Reverse Transcription
Polymerase Chain Reaction (RT-PCR) test [10]. This is a molec-
ular test, which uses respiratory tract samples to identify and
confirm infection of COVID-19 [11]. Samples from symptomatic
patients suspected of infection of the COVID-19 are gathered [12].
Nevertheless, the costs associated to the use of RT-PCR can be
significant, since the facilities and trained personnel needed to
perform these tests can be expensive. These severely limit the use
of this technique in less industrialized countries, making urgent
the need to develop more accessible methods, adding the possible
need of testing asymptomatic patients [13].

Diagnosing COVID-19 based on medical imaging can be a
reliable and accurate alternative, which is still under exploration.
The accuracy and sensitivity levels of this approach as a first stage
in COVID-19 detection using chest images, have been analysed
in a number of studies [14,15]. The usage of X-ray images for
COVID-19 diagnosis has been studied recently. In [16] the authors
proposed a severity score using radiography chest images, with a
dataset sample of 783 SARS-CoV-2 infected cases. The score was
used to identify patients that could potentially acquire more life
threatening symptoms. Several studies [14,17,18] have suggested
that in a small number of people there is a low level of sensi-
tivity towards the manual detection of alterations using medical
images of the chest which can indicate the presence of COVID-
19. The use of features extracted and learned by a machine might
overcome the variable subjective evaluation of X-ray images. This
leads us to explore the potential implementation of deep learning
solutions using more widely available and less expensive chest X-
ray images. As typical deep learning architectures require many
labelled images, we aim to explore the usage of SSDL for COVID-
19 detection using X-ray images, evaluating it under another
frequent challenge; labelled data imbalance.

1.2. Contribution

In this work, we extensively test the SSDL technique known
as MixMatch [9] in a variety of data imbalance situations, with
a very limited number of labelled observations. We aim to as-
sess MixMatch’s performance under real-world usage scenarios,
specifically medical imaging in the context of a virus out-break.
Within such context, small labelled samples are available with a
strong under-representation of the new pathology, leading to im-
balanced datasets. An imbalanced dataset can frequently lead also
to a distribution mismatch between the labelled and unlabelled
dataset, as described in [19].

Moreover, in this work we propose a simple, yet effective
approach for correcting data imbalance for the SSDL MixMatch ar-
chitecture. We implement a loss based imbalance correction, giv-

ing more weight to the under-represented classes in the labelled
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dataset, a common approach for this aim. In the context of Mix-
Match, we make use of the pseudo-label and augmented labels
predictions to choose the corresponding class-weight. The imple-
mented SSDL solution for COVID-19 detection makes use of unla-
belled data. Using unlabelled data can improve model’s accuracy,
in the absence of high quality and large labelled datasets.

The proposed method uses chest X-ray images. X-ray ma-
chines are commonly available, which results in a wealth of
unlabelled datasets due to the shortage of radiologists and tech-
nicians who can label the images. As an example, India, with its
current 1.44 billion population, has a ratio between radiologists
and patients of 1:100,000 [20]. However, X-ray machines can
be found even in remote areas in under-developed countries,
compared to other medical devices like computer tomography
scanners [21].

In the event of a viral outbreak, it becomes essential to help
health practitioners to quickly identify and classify viral patholo-
gies using digital X-ray images. Outbreaks create a large number
of cases, which require the intervention of trained radiologists.
Labelling data is time consuming, and in the context of a virus
out-break gathering high quality and reliable labelled data can be
challenging. SSDL can provide much needed key support for the
diagnosis, trace and isolation of the COVID-19 infection and other
future pandemics through an early, fast and cheap diagnosis, by
using more widely available unlabelled data.

Unlike previous work on COVID-19 detection using deep learn-
ing as in [22], we focused in the usage of very small labelled
datasets for training a semi-supervised model with wider avail-
able unlabelled data. In the context of a pandemic, a specific
clinic/hospital might gather a very small labelled dataset, but
a larger number of unlabelled observations might be available.
Furthermore, given the different patient ethnicity’s and charac-
teristics, along with varying imaging protocols, using a model
trained with data from another set of hospitals or clinics (from
possibly different countries) might yield a distribution mismatch
between the training and test datasets. This possibly would yield
a very low performance [23,24]. Therefore, training the model
with data from the specific clinic/hospital where the model is in-
tended to be used (target data), is an urgent task, which faces the
challenge of dealing with very limited labelled datasets [23–25].

In this work, we also make available a first sample of a chest-X
ray dataset from the Costa Rican medical private clinic Imagenes
Medicas Dr. Chavarria Estrada, with observations containing no
findings, and test its usage for training the SSDL framework. If
the reader is interested in using such dataset, please contact the
main author.

2. Related work

2.1. Deep learning for chest X-ray based COVID-19 detection

The identification of COVID-19 infection based on X-ray im-
ages is a new challenge. Thus, up to date there is not much
research available with regards to the use of deep learning mod-
els for automatically identifying COVID-19 infection. This is the
reason why this paper presents mainly pre-published work in the
area up-to-date. Since most pre-published articles have not been
peer reviewed, it is used here as a general guide and not as a
reference towards performance.

A classification model based on a support vector machine fed
with deep features was presented in [26]. Different common deep
learning architectures were used for feature extraction. These in-
cluded: VGG16, AlexNet, GoogleNet, VGG19, several variations of
Inception and Resnet, DenseNet201 and XceptionNet. The dataset
used included a total of fifty observations with half representing

COVID-19 images and the other half representing a combination



S. Calderon-Ramirez, S. Yang, A. Moemeni et al. Applied Soft Computing 111 (2021) 107692

o
a
f
w
p
w
v
s

S
v
w
b
u
n
a

l
a
T
C
a
i
m
d
C
n

1
c
a
t
r
a
a
u
a
n
t
c
C

t
e
i
u
t
l
t
w
a
w

t
g
a
p
r
i

f pneumonia and normal images. The COVID-19 images were
cquired from the GitHub repository created by Dr. Joseph Cohen
rom the University of Montreal [27]. COVID-19 negative images
ere downloaded from the public repository on X-ray images
resented in [28]. The highest level of accuracy was obtained
ith the ResNet50 model which was combined with a support
ector machine as a top model. An accuracy of around 95%, with
tatistical significance, was obtained.
Several machine learning architectures were compared in [29].

ome of the tested methods by the authors included: support
ector machines, random forests and Convolutional Neural Net-
ork (CNN) models. The results reported the CNN model as the
est performing approach, with an accuracy of 95.2%. The dataset
sed in such work includes 48 Cases for COVID-19+ and 23 for
egative COVID-19 cases from Dr. Cohen’s repository [27]. Data
ugmentation was used to deal with scarce labelled data.
Another study involving the use of CNNs along with transfer-

earning for the automatic classification of pneumonia, COVID-19
nd images presenting no lung pathology was presented in [30].
he authors used a 10-fold cross-validation, to test the following
NN architectures: VGG-19, MobileNet v2, Inception, Xception
nd Inception ResNet v2. An accuracy of around 93% was obtained
n the identification of COVID-19, with the use of a VGG-19
odel. No statistical significance tests were performed. As for the
ata used in [30], similar to related proposed solutions, positive
OVID-19 cases were extracted from [27], while pneumonia and
o lung pathology observations were taken from [28].
A deep learning model for the automatic detection of COVID-

9 and pneumonia was proposed in [31]. The system proposed
lassifies images into three classes; COVID-19+, viral pneumonia
nd normal readings. To increase the number of observations,
he authors relied on data augmentation techniques including
otation, translation and scaling, along with transfer-learning. The
rchitectures tested included: AlexNet, ResNet19, DenseNet201
nd SqueezeNet. A combination of the datasets from [27] was
sed in this research. According to the results yielded by the
uthors, the SqueezeNet model outperformed all the other CNN
etworks. Regarding the data used in such work, a combination of
wo data repositories [28,32] was used for viral and normal image
ategories, and the data repository in [27] was used for positive
OVID-19 cases.
Explainability for deep learning models is an important fea-

ure for medical imaging based systems [33]. Model uncertainty
stimation is a common approach to enforce model explainabil-
ty and usage safety [33]. A COVID-19 detection system with
ncertainty assessment was proposed in [34]. By providing prac-
itioners with a confidence factor of the prediction, the overall re-
iability of the system was improved. A high correlation between
he prediction accuracy of the model and the level of uncertainty
as reported [34]. The dataset used for positive COVID-19 cases
lso used Dr. Cohen’s repository [27], and normal X-ray readings
ere collected from [28].
In [35], a semi-supervised approach for defining relevant fea-

ures for COVID-19 detection was developed. The suspicious re-
ions were extracted by training a semi-supervised auto-encoder
rchitecture that minimizes the reconstruction error. This ap-
roach relied in the wider availability of COVID-19− cases to learn
elevant features. Such extracted features were used for classify-
ng the input observations into three classes; COVID-19+, pneu-
monia and normal, using a common supervised CNN approach.
The extracted features were used to enforce model explainability.
Similar to previous reviewed approaches, the datasets provided
in [27,28] were used.

The work in [36] also used a feature extractor built from train-
ing a model to classify X-ray images in larger datasets with non

COVID-19 observations. The model was trained for the regression
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of COVID-19 severity. Similar to [35], the built feature extractors
simplified the extraction of further information from the model,
improving the model’s explainability. A wider range of datasets
were used in such work for training the feature extractor [32,37–
41].

In summary, the reviewed papers implemented transfer-
learning and data augmentation to deal with limited labelled
data. Fewer proposed methods trained more specific feature
extractors [35,36]. The datasets in [27,28,32] have been used
extensively in previous work. The frequently used dataset in [27]
includes COVID-19+ observations made available by Dr. Joseph
Cohen, from the University of Montreal [27]. The images were col-
lected from journal websites such as radiopaedia.org, the Italian
Society of Medical and Interventional Radiology. The images were
also collected from recent publications in this area such as [27].
The dataset is composed of chest X-ray images involving over 100
patients. Their ages range from 27 to 85 years old. The countries
of origin include: Iran, China, Italy, Taiwan, Australia, Spain and
the United Kingdom. A warning has been raised by the authors
on [27] with regards to any diagnostic performance claims prior
to doing a proper clinical study.

As for the dataset available in [28], frequently used in previous
work for normal and pneumonia readings, all of them correspond
to samples taken from paediatric Chinese patients. The usage of
such data as negative COVID-19 cases can be less reliable, since
different populations were sampled for COVID-19 and no COVID-
19 cases. Observations of adults (with ages ranging between 20
and 86 years old) were used for COVID-19+ cases, while for the
normal and pneumonia cases in [28], the images were sampled
from paediatric patients. The usage of biased datasets is a lurking
danger in recent COVID-19 machine learning based detection
systems [42]. Therefore, in this work we test a wider variety of
sources for COVID-19− cases, including a new dataset with Costa
Rican adult patients.

We highlight the fact that both the test and training datasets
are drawn from the same distribution in most of the afore-
mentioned studies, with usually one data source for COVID-19
positive cases. Moreover, the test datasets are usually very small
(for instance in [29] less than 50 test images were used). Little
exploration on the benefits of using a fully SSDL model can
be found in the literature, for COVID-19 detection using X-ray
images. Furthermore, to our knowledge no work on the impact
and correction of data imbalance in SSDL for COVID-19 detection
has been developed so far in the literature.

2.2. Semi-supervised deep learning and data imbalance correction

In general, deep learning models require a large number of
labelled observations to provide good levels of generalization.
This limitation makes it hard to implement these techniques to
medical applications. Given the lack of labelled data SSDL is gain-
ing increasing popularity in the academic community. It is well
suited to deal with datasets which are poorly labelled, or have
few labels, making SSDL attractive for computer aided medical
imaging analysis, as seen in [43,44]. Semi-supervised methods
require the use of both labelled Sl = (Xl, Yl) and unlabelled
samples Su = Xu =

{
x1, . . . , xnu

}
. Each labelled observation

in Xl =
{
x1, . . . , xnl

}
has an associated label in the set Yl ={

y1, . . . , ynl
}
.

SSDL architectures can be classified as follows: Pre-training,
self-training (also known as pseudo-labelled) and regularization
based. Some of the regularization methods include generative
based approaches, along consistency loss term as well as graph
based. An extensive survey on SSDL approaches can be found
in [45].

https://radiopaedia.org/
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The MixMatch approach developed in [9] merged intensive
data augmentation with unsupervised regularization and pseudo-
labelled based semi-supervised learning. This method produced
better results compared to other regularized, pseudo-labelled and
generative based SSDL methods as shown in [9].

Data imbalance for supervised approaches, has been widely
studied. The approaches range from data based transformations
(data augmentation, over-sampling or under-sampling, genera-
tive methods) to architecture based (loss function or ensemble
based) [46–48]. Scarce literature is to be found to our knowledge
on data imbalance correction for modern SSDL architectures.
Data imbalance in the labelled dataset, can be approached as
a particularization of the data distribution mismatch problem
outlined in [19], when the unlabelled dataset presents a different
distribution. This is common under real-world usage conditions
of SSDL techniques. In [19], authors made a first glance at the
impact of Out of Distribution (OOD) data in the unlabelled dataset
Su, leading to a distribution mismatch between the distributions
of Sl and Su. The work in [49,50] goes deeper into the impact
of distribution mismatch data in SSDL. Authors tested several
distribution mismatch scenarios with different OOD data con-
tamination degrees, and different OOD data sources. The results
showed an important influence on the degree of OOD data in the
unlabelled dataset Su.

In [51], authors explored further the impact of the distribution
ismatch, in the particular case of using imbalanced datasets.
he results showed a classification error rate decrease, ranging
rom 2% to 10% for the SSDL model. Furthermore, the authors
roposed a straightforward approach for correcting such accuracy
egradation. The approach assigned weights to each unlabelled
bservation, depending on the number of observations per class.
igher weights were used for under-represented observations in
he unlabelled loss term. To pick the right weight for each un-
abelled observation, the highest label predicted with the model
ielded for the current epoch, was used. The authors imple-
ented and tested the approach in the mean teacher model [52].
he results demonstrated a significant accuracy gain by imple-
enting the proposed approach. We base our contribution on

hese findings, and propose an extended data imbalance correc-
ion approach into MixMatch in the context of semi-supervised
OVID-19 detection.

.3. MixMatch

The proposed SSDL method is based on the MixMatch [9] ar-
hitecture. It creates a set of pseudo-labels, and also implements
n unsupervised regularization term. The consistency loss term
sed by the MixMatch method minimizes the distance between
he pseudo-labels and predictions that the model makes on the
nlabelled dataset Xu.
The average model output of a transformed input xj was

sed to estimate pseudo-labels ŷ j =
1
K

∑K
η=1 fw

(
Ψ η

(
xj

))
. Here

corresponds to the number of transformations (like image
lipping) Ψ η performed. Based on the work done in [9], a value
f K = 2 is recommended. The authors also mentioned that
he estimated pseudo-label ŷ j usually presents a high entropy
alue. This can increase the number of non-confident estimations.
herefore, the output array ŷ was sharpened with a temperature
, making up the modified Softmax activation function s (̂y, ρ)i =

ŷ1/ρi∑
j ŷ

1/ρ
j

. The term S̃u =
(
Xu, Ỹ

)
defines the dataset with the

harpened estimated pseudo labels. It is assumed here that Ỹ =

ỹ1, ỹ2, . . . , ỹnu

}
In [9] the authors argued that data augmentation is a key

spect when it comes to SSDL. The authors used the MixUp
4

pproach, as proposed in [53], to further augment data using both
abelled and unlabelled observations, this can be represented
s:

(
S ′

l , S̃
′
u

)
= ΨMixUp

(
Sl, S̃u, α

)
. The MixUp method proposed

to create new observations based on a linear interpolation of
a combination of unlabelled (together with their pseudo-labels)
and labelled data. More specifically, for two labelled or pseudo
labelled data pairs (xa, ya) and (xb, yb), MixUp creates a new
bservation with its corresponding label

(
x′, y′

)
based on the

following steps:

1. Sample the MixUp parameter λ based on a Beta distribu-
tion λ ∼ Beta (α, α), with α chosen by the user.

2. Make sure that λ > 0.5. This is done by making λ′
=

max (λ, 1 − λ)

3. Produce a new observation based on a lineal interpolation
of the two observations: x′

= λ′xa +
(
1 − λ′

)
xb.

4. Generate the corresponding pseudo-label for the new ob-
servation y′

= λ′ya +
(
1 − λ′

)
yb.

The augmented datasets
(
S ′

l , S̃
′
u

)
were used by the MixMatch

lgorithm to train a model as specified in the training function
MixMatch, resulting in the model f with weights w:

w = TMixMatch (Sl, Xu, α, λ) = argmin
w

L (S, w) (1)

L (S, w) =

∑
(xi,yi)∈S′

l

Ll (w, xi, y i) +

γ r(t)
∑

(xj ,̃yj)∈̃S′
u

Lu
(
w, xj, ỹ j

)
(2)

For the labelled loss term, a cross-entropy loss was used in [9];
Ll (w, xi, y i) = δcross-entropy (y i, fw (xi)). As for the unlabelled loss
term, an Euclidean distance was implemented Lu

(
w, xj, ỹ j

)
=̃y j − fw

(
xj

) in [9]. The coefficient r(t) was proposed as a ramp-
up function that increases its value as the epochs t increase. In our
implementation, r(t) was set to t/3000. The γ factor was used
as a regularization weight. In our work, we followed the same
implementation of both loss functions. This coefficient controls
the influence on unlabelled data. It is important to highlight
that unlabelled data has also an effect on the labelled data term
Ll. The reason being that unlabelled data is used to artificially
increase data observations by using the MixUp method for also
the labelled term.

3. Proposed method: Pseudo-label based balance correction

In this work an implementation of a data imbalance correction
in the loss function of the MixMatch method is proposed. Positive
results were yielded in [51] for correcting dataset imbalance by
weighting the unsupervised loss function terms in a per observa-
tion basis. The authors in [51] developed a similar approach by
modifying the SSDL framework known as mean teacher [52]. We
extend this approach for the MixMatch architecture, but using
both the pseudo-labels and augmented labels for selecting the
appropriate weights for both the unlabelled and labelled loss
terms. We refer to the proposed approach in this work as PBC,
and is depicted as follows.

Let the number of observations per class is used to compute
the array of correction coefficients c. The actual computation is
done by calculating the array v using the inverse of the amount
of observations available in each class Sl: vi =

1
ni
. Here ni corre-

sponds to the total amount of observations for class i. The next
step consists of the computation of the array with the normalized
weights c as ci =

vi∑C
j vj

, where C corresponds to the total

number of classes. The original and augmented/pseudo labels y
i
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nd ỹj (respectively), are contained in the augmented labelled
nd unlabelled datasets, S ′

l and S̃ ′
u, respectively, after the MixUp

ethod mentioned in Section 2.3 is executed. Such augmented
abels are used to select its corresponding weight in c. To do so,
he one-hot vector notation of the labels is converted to a numeric
ne; bi = argmaxk yk,i, and b̃j = argmaxk ỹk,j, for every bi and b̃j
bservation in S ′

l and S̃ ′
u, respectively.

Both the loss function and the calculated weights are used to
eight both loss terms:

(S, w) =

∑
(xi,yi)∈S′

l

Ll
(
w, xi, y i, bj

)
+

r(t)
∑

(xj ,̃yj)∈̃S′
u

Lu
(
w, xj, ỹ j, b̃j

)
(3)

The chosen indices are used in the array of weights c. We used
a cross-entropy and mean squared error loss for the labelled and
unlabelled loss terms, respectively. Therefore, the modified cross-
entropy and MSE functions are respectively described as follows:
Ll (w, xi, y i) = δcross-entropy

(
cbiy i, cbi fw (xi)

)
and Lu

(
w, xj, ỹ j

)
=

c̃bj ỹ j − c̃bj fw
(
xj

). The numerical estimated and real labels are

hen used for indexing the array c. The re-weighted loss functions
re minimized as usual.1

. Datasets

A system to classify x-ray images into: COVID-19+ and no
ung pathology (COVID-19−) is presented in this work. We used
ifferent previously existing datasets, and add the usage of a
ew one, containing negative COVID-19 cases from Costa Rican
atients. The following previously existing datasets were used in
his work.

Cohen’s COVID-19+ dataset: Images containing COVID-19+

bservations were collected from the publicly available GitHub
epository accessible from [27]. This repository was built by Dr.
oseph Cohen, from the University of Montreal [27], and is com-
osed of around 100 images at the time of writing this work. The
mages were collected from journal websites such as radiopaedia.
rg and the Italian Society of Medical and Interventional Radiol-
gy. Images were also collected from recent publications in this
rea. Only images containing signs of COVID-19+ were used in
ur work. All other images relating to Middle East Respiratory
yndrome (MERS), Acute Respiratory Distress Syndrome (ARDS)
nd Severe Acute Respiratory Syndrome (SARS) were discarded.
his reduced the dataset to a subset containing 102 front chest
-ray containing COVID-19+ observations. The grey-scaled obser-
ations were stored with varying resolutions from 400 × 400 up
o 2500 × 2500 pixels.

Valencian Region Medical Image Bank COVID-19+ dataset:
n additional alternative source of COVID-19+ readings, is the
ataset depicted in [54], referred by the authors as Valencian
egion Medical ImageBank (BIMCV). The dataset includes chest
-ray and Computed Tomography (CT) images. The dataset also
ontains detailed findings for the observations, covering different
horacic entities. A total of 1311 subjects were included in the
ataset sample, with an age ranging from 25 to 100 years, with
round 46% female patients. The dataset includes a total of 2427
hest X-rays. The images were stored in PNG format with an
riginal resolution of 299 × 299 pixels.
Chinese paediatric patients dataset: A dataset of 5856 obser-

ations containing images of pneumonia and normal observations

1 Upon paper publication, we are going to make it available through a public
itHub repository.
5

was defined in [28]. The patient sample used for the study corre-
spond to Chinese children [28]. These images were divided into
4273 observations of pneumonia (including viral and bacterial)
and 1583 of observations with no lung pathology (normal). We
used the observations with no findings, and refer to it as the
Chinese paediatric dataset. The negative and pneumonia obser-
vations from this dataset have been used extensively in recent
related research to COVID-19 detection [30,55–58]. Most of the
images were stored with a resolution of 1300 × 600 pixels.

ChestX-ray8 dataset: The ChestX-ray8 dataset, made available
in [41], is also used for the category of no findings in this work.
The dataset includes 224,316 chest radiographs from 65,240 pa-
tients from Stanford Hospital, US. The studies were done between
October 2002 and July 2017. We picked a sample of this dataset
available in its website2 given the low labelled data setting used
in this work. Patients sampled in this dataset were aged from 0
to 94 years old.

Indiana Chest X-ray dataset: The dataset published in [37]
gathers 8121 images from the Indiana Network for Patient Care.
The dataset can be accessed from its repository.3 Images were
stored with a resolution of 1400 × 1400 pixels. Only the obser-
vations with no pathologies were used in this work.

Costa Rican dataset: In this work we also used a dataset
we gathered from a Costa Rican private clinic, Clinica Imagenes
Medicas Dr. Chavarria Estrada. The data corresponds to chest
X-rays from 153 different patients, with ages ranging from 7
to 86 years old. 63% of the patients were female and 37% are
male. The images were taken using a Konica Minolta digital X-
ray machine with 0.175 of pixel spacing. The images were stored
with a resolution of 1907 × 1791 pixels. As the images were
digitally sampled, no tags or manual labels are contained in the
images.4 As for ethical compliance of our procedure for gathering
mammogram images data, we have an explicit permission from
the Chavarria Clinic board to use it with academical purposes. Our
data was gathered from the Clinica Chavarria’s patients of 2020.
Therefore, the data was already collected before this study. We
declare that the data collection process of this study complies
with the Helsinki’s declaration for human based studies, as this
study is entirely observational, and the data was already acquired
during regular clinical practice.

RSNA dataset: For multi-class classification into common
pneumonia (viral and bacterial) and COVID-19+ positive cases
(using the aforementioned Dr. Cohen’s repository in [27]), we
used the Radiological Society of North America (RSNA) dataset
as described in [22,56]. A pool of 69 observations per class
(pneumonia and normal observations) and 69 observations for
COVID-19+ cases was used for each batch, randomly picked from
he original RSNA dataset.

. Experiments definition

We implemented two test-beds for binary classification, a
egular-sized dataset and an extended-size test dataset. For the
egular-sized test dataset for binary classification, in each run, a
andom sample dataset of 204 observations was picked from both
he evaluated COVID19− dataset (Costa Rica, Indiana, ChestX-
ray8 and Chinese paediatric dataset) and the COVID-19+ dataset
vailable in [27]. Therefore, a total of 10 different training and
est samples were used. The same samples were used across
ll the tested architectures. A completely balanced test dataset
omprising the 30% of the 204 observations was used (62 test
bservations), and the rest was used as labelled and unlabelled

2 https://www.kaggle.com/nih-chest-xrays/sample/data.
3 https://www.kaggle.com/raddar/chest-xrays-indiana-university.
4 The dataset will be available upon paper publication.

https://radiopaedia.org/
https://radiopaedia.org/
https://radiopaedia.org/
https://www.kaggle.com/nih-chest-xrays/sample/data
https://www.kaggle.com/raddar/chest-xrays-indiana-university
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ean accuracy/F1-score/precision/recall for the Costa Rican dataset, for the oversampling (OS), the original MixMatch architecture and the proposed PBC imbalance
orrection method. LB stands for the label balancing usage (PBC in the case of SSDL).
COVID-19− COVID+ LB nl = 10 nl = 15 nl = 20

x x x

80% 20% PBC 0.943/0.905/0.937/0.879 0.943/0.894/0.944/0.853 0.936/0.913/0.951/0.883
OS 0.877/0.718/1/0.562 0.881/0.727/1/0.572 0.882/0.698/1/0.5372
No 0.891/0.726/1/0.573 0.877/0.718/1/0.56 0.874/0.696/1/0.535

70% 30% PBC 0.941/0.889/0.931/0.853 0.946/0.907/0.948/0.872 0.953/0.918/0.965/0.875
OS 0.91/0.793/0.982/0.671 0.903/0.828/1/0.707 0.906/0.798/0.996/0.669
No 0.91/0.789/0.982/0.664 0.903/0.778/0.996/0.64 0.905/0.818/1/0.696
Table 2
Accuracy results with the COVID-19− from the Costa Rican dataset, the higher, the better. LB stands for label balancing, with usual weight correction for the supervised
model, and the proposed PBC for the MixMatch model. A total of nl = 10, nl = 15 and nl = 20 labelled observations were tested. Two data imbalance settings were
ested, with 70%/30% and 80%/20%. The sample mean x and the sample standard deviation s are reported.
SSDL COVID-19− COVID-19+ LB nl = 10 nl = 15 nl = 20

x s x s x s

No 50% 50% NA 0.871 0.039 0.912 0.049 0.951 0.025

70% 30% Yes 0.877 0.040 0.900 0.053 0.931 0.034
No 0.877 0.040 0.924 0.056 0.931 0.044

80% 20% Yes 0.876 0.060 0.903 0.058 0.922 0.037
No 0.876 0.079 0.907 0.072 0.938 0.035

Yes 50% 50% NA 0.941 0.035 0.955 0.025 0.957 0.030

70% 30% Yes 0.955 0.027 0.947 0.035 0.950 0.029
No 0.907 0.042 0.900 0.049 0.914 0.028

80% 20% Yes 0.957 0.025 0.964 0.021 0.960 0.020
No 0.922 0.031 0.926 0.047 0.919 0.033
Table 3
Accuracy results with the COVID-19− cases gathered from the Chinese paediatric repository available in [28]. LB stands for label balancing, with usual weight
orrection for the supervised model, and the proposed PBC for the MixMatch model.
SSDL COVID-19− COVID-19+ LB nl = 10 nl = 15 nl = 20

x s x s x s

No 50% 50% NA 0.882 0.077 0.868 0.080 0.925 0.039

70% 30% Yes 0.812 0.050 0.815 0.089 0.883 0.048
No 0.823 0.048 0.815 0.087 0.868 0.064

80% 20% Yes 0.857 0.107 0.898 0.052 0.930 0.053
No 0.823 0.125 0.872 0.066 0.930 0.037

Yes 50% 50% NA 0.945 0.036 0.950 0.026 0.963 0.028

70% 30% Yes 0.925 0.042 0.930 0.053 0.943 0.034
No 0.902 0.058 0.898 0.091 0.915 0.044

80% 20% Yes 0.947 0.037 0.957 0.022 0.962 0.028
No 0.847 0.122 0.857 0.141 0.895 0.042
s
a
d
d
b

w
c
a

dataset (142 observations). As for the extended-size test dataset
for binary classification, we used a total of 300 images from the
BIMCV dataset as COVID-19+ readings source, and for COVID-19+

ata source, we mixed the Chest-Xray8 and Indiana chest X-ray
ataset in equal proportions, using also 300 images, accumulating
00 images in total. 400 of the images were used for test, and
he remaining 200 images for training (with a varying number of
abelled and unlabelled images and class imbalance settings, as
e will detail later). Picking different data sources for COVID19−

bservations can be considered to raise discrimination complex-
ty, a frequently skipped setting in previous work. We selected
uch datasets, as they present a similar patient age distribution
o the COVID19+ dataset used. For all the binary classification
est datasets, the number of observations per-class are completely
alanced.
Regarding the multi-class classification test-bed, we also im-

lemented a regular-sized and a extended-size test datasets. For
he regular-sized dataset, 90 test images are used, along with
total of 210 training images (either labelled or unlabelled,

epending on the test-bed setting). COVID-19+ observations were
andomly picked from Dr. Cohen’s dataset, with pneumonia and
6

normal readings picked from the RSNA dataset. The extended-
size multi-class classification dataset is composed as follows: For
COVID-19+ observations, we used the 102 images from the Dr.
Cohen’s dataset, and 98 images from BIMCV dataset. The normal
and pneumonia observations were picked randomly from the
RSNA dataset, with 200 observations for each class. Therefore, a
total of 600 images compose the dataset. From there, 300 images
were used for test, and the remaining 300 observations were used
as either labelled or unlabelled observations, with a varying num-
ber of nl labelled observations from 50 to 90, and class imbalance
ettings. This testing setting can be considered more challenging,
s both COVID-19 positive and negative observations come from
ifferent distributions. For all the multi-class classification test
atasets, the number of observations per-class are completely
alanced.
To assess the data imbalance impact in binary classification,

e evaluated both the supervised and the semi-supervised ar-
hitectures using three balance configurations: 50%/50%, 80%/20%
nd 70%/30% for the labelled dataset Sl. The under-represented

class corresponds to the COVID-19+ class. We tested different
sizes of labelled samples, n = 10, n = 15 and n = 20 (from
l l l
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Fig. 1. Training and validation curves for the SSDL with PBC, the SSDL model with no label balancing and supervised models, respectively, from top to bottom. The
lue dashed line corresponds to the training loss and the red continuous line to the validation loss.
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he 142 observations for the regular-sized test dataset, and 400
bservations for the extended-sized test dataset), using the rest
s unlabelled data. The remaining data was used as unlabelled
ata, with close to a 50% data balance between the two classes.
his leads to a distribution mismatch between Su and Sl. Tables 2,
, 5 and 4 show the evaluated setting and its results, for the
osta Rican, Chinese, Indiana and ChestX-ray8 datasets, for the
egular-sized test-bed. Table 6 summarizes the results. As for
he extended-size binary classification test-bed, Table 9 shows its
esults and the described test settings.

As for multi-class classification, we tested three different im-
alance scenarios, with 10%/45%/45%, 20%/40%/40% and
0%/35%/35%, with COVID-19+ as the under-represented class
n all the three configurations, and balanced pneumonia (both
iral and bacterial) and normal chest X-ray observations. We also
ested different labelled sample sizes, with nl = 30, nl = 50,
l = 70 and nl = 90. The labelled sample sizes were higher
han the binary classification setting, as a multi-classification
roblem often needs of more observations. Tables 7 and 8 show
he described test layout (regular and extended size test datasets,
espectively), with the averages and standard deviations reported
or each configuration over 10 runs with randomly picked data
artitions. To complement the results description of Table 7, we
how the averaged confusion matrices over all the 10 runs for
oth the standard and extended size test datasets, in Tables 10
nd 11, respectively. The confusion matrices were calculated from
 f

7

he final model yielded after the 50 epochs, and not the best one
ccording to the validation dataset.
All the datasets have been preprocessed to exclude artefacts

manual labels), in the cases where one of them does not present
ny, to avoid artefact bias. Data augmentation using flips and
otations is implemented. No crops were used to avoid losing
egions that might be important for image discrimination. Images
tored with 8 bits were replicated by 3 to use the selected CNN ar-
hitecture. We used the following hyper-parameters used for the
ixMatch model for all the experiments performed: K = 2 trans-

formations, T = 0.5 of sharpening temperature and α = 0.75
for the beta distribution, as advised in [9].5 A Wide-ResNet [59]
model has been used for the binary classification experiments
(regular-sized dataset) given its preliminar good results in our
experiments, with an input image size of 110 × 110 pixels (lim-
ited by the graphics processor memory needed by MixMatch). For
multi-class classification and the binary extended-sized dataset,
we used a more efficient densenet model, which allowed us to use
an input image size of 220 × 220 pixels, as more resolution might
be necessary, given the higher number of classes to discriminate
from.

The following training hyper-parameters were used: a weight
decay of 0.0001, a learning rate of 0.00001, a batch size of 12 ob-
servations, a cross-entropy loss function and an Adam optimizer

5 The MixMatch implementation used in this work is based on the
mplementation available in repository https://github.com/noachr/MixMatch-
astai.

https://github.com/noachr/MixMatch-fastai
https://github.com/noachr/MixMatch-fastai
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able 4
ccuracy results with the COVID-19− cases gathered from the ChestX-ray8 repository available in [41]. LB stands for the label balancing usage (PBC in the case of
SDL).
SSDL COVID-19− COVID-19+ LB nl = 10 nl = 15 nl = 20

x s x s x s

No 50% 50% NA 0.756 0.062 0.727 0.062 0.756 0.050

70% 30% Yes 0.732 0.039 0.723 0.043 0.752 0.038
No 0.739 0.051 0.744 0.053 0.773 0.049

80% 20% Yes 0.729 0.051 0.721 0.054 0.768 0.047
No 0.735 0.052 0.739 0.070 0.777 0.050

Yes 50% 50% NA 0.803 0.059 0.814 0.052 0.840 0.038

70% 30% Yes 0.816 0.048 0.815 0.038 0.839 0.049
No 0.782 0.054 0.760 0.068 0.782 0.051

80% 20% Yes 0.798 0.050 0.818 0.044 0.824 0.039
No 0.735 0.056 0.740 0.075 0.752 0.048
Table 5
Accuracy results with the COVID-19− cases gathered from Indiana dataset [37]. LB stands for the label balancing usage (PBC in the case of SSDL).
SSDL COVID-19− COVID-19+ LB nl = 10 nl = 15 nl = 20

x s x s x s

No 50% 50% NA 0.845 0.044 0.853 0.053 0.879 0.038

70% 30% Yes 0.834 0.042 0.839 0.053 0.874 0.046
No 0.845 0.058 0.860 0.050 0.869 0.061

80% 20% Yes 0.845 0.048 0.829 0.053 0.856 0.042
No 0.840 0.041 0.827 0.045 0.853 0.066

Yes 50% 50% NA 0.905 0.047 0.918 0.038 0.908 0.029

70% 30% Yes 0.882 0.067 0.902 0.046 0.902 0.042
No 0.837 0.078 0.819 0.109 0.834 0.037

80% 20% Yes 0.860 0.076 0.889 0.056 0.885 0.035
No 0.803 0.062 0.747 0.095 0.795 0.078
Table 6
Accuracy gain comparison when using no SSDL (No MM) vs. MixMatch with the proposed loss balancing correction (MM+PBC), and to using MixMatch with no
alancing correction (MM) vs. MixMatch with the proposed loss balancing correction (MM+PBC). The accuracy gain is evaluated for the tested number of labelled
bservations (10, 15 and 20). Italic entries correspond to non statistically meaningful gains, after performing a Wilcoxon test, with p > 0.1.
SSDL COVID-19− COVID-19+ Comparison nl = 10 nl = 15 nl = 20

Acc. gain Acc. gain Acc. gain

Costa Rican dataset 70% 30% MM+PBC vs. No MM +0.07 +0.046 +0.018
MM+PBC vs. MM +0.048 +0.046 +0.036

80% 20% MM+PBC vs. No MM +0.081 +0.06 +0.038
MM+PBC vs. MM +0.034 +0.038 +0.041

Chinese paediatric dataset 70% 30% MM+PBC vs. No MM +0.113 +0.115 +0.06
MM+PBC vs. MM +0.023 +0.031 +0.028

80% 20% MM+PBC vs. No MM +0.09 +0.058 +0.031
MM+PBC vs. MM +0.1 +0.099 +0.066

Chest X-ray8 dataset 70% 30% MM+PBC vs. No MM +0.083 +0.092 +0.087
MM+PBC vs. MM +0.033 +0.055 +0.057

80% 20% MM+PBC vs. No MM +0.069 +0.096 +0.056
MM+PBC vs. MM +0.063 +0.0774 +0.072

Indiana dataset 70% 30% MM+PBC vs. No MM +0.048 +0.063 +0.027
MM+PBC vs. MM +0.045 +0.082 +0.067

80% 20% MM+PBC vs. No MM +0.014 +0.059 +0.029
MM+PBC vs. MM +0.056 +0.141 +0.09
with a 1-cycle policy [60]. For each configuration, we trained the
model a total of 50 epochs, in 10 different runs. Fig. 1 shows vali-
dation and training loss curves for a Wide-ResNet model, trained
with the MixMatch approach (with the proposed PBC and without
it) and through a regular supervised fashion, in a particular batch.
10 labels were used, with the 30/70 percent imbalance scenario.
For each epoch, the whole dataset was evaluated in batches of 10
observations. The curves show the regularization effect of semi-
supervised learning, with fast convergence in less than 50 epochs
for both training approaches. The proposed method improves
even more the regularization effect of the SSDL.

A baseline experiment using the Costa Rican dataset was
one, aiming to compare the performance of the proposed PBC
8

approach to another simple technique frequently used to correct
data imbalance in supervised models; over-sampling. Under-
sampling was not used as the scarce labelling settings lead to
model over-fitting (using the regular-sized test dataset). We
skipped far more complex approaches in the comparison such
as generative networks [48], to focus in more straightforward
data imbalance correction approaches. We compare the testing
accuracy, F1-score, precision and recall of these two methods
with the non imbalance corrected MixMatch baseline in Table 1.
Also, the ROC curves are plotted in Figs. 2 and 3 for both the
standard and extended sized test datasets, respectively. Tables 2–
5 show this layout. Given the low labelled setting, we report the
highest validation accuracy, assuming the usage of early stopping
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able 7
ulti-class classification for accuracy measures, using the RSNA dataset (standard-sized test dataset). LB stands for the label balancing usage (PBC in the case of
SDL). PBC results with no statistical significance gains over the non-balanced SSDL implementation are written in italic.
COVID-19/Pneumonia/Normal SSDL LB nl = 30 nl = 50 nl = 70 nl = 90

x s x s x s x s

10%/45%/45% No No 0.561 0.052 0.575 0.062 0.588 0.056 0.603 0.039
Yes No 0.587 0.048 0.565 0.045 0.595 0.035 0.571 0.056

Yes 0.736 0.054 0.748 0.043 0.757 0.045 0.744 0.027

20%/40%/40% No No 0.607 0.054 0.636 0.042 0.667 0.036 0.711 0.036
Yes No 0.67 0.063 0.691 0.043 0.695 0.048 0.7 0.044

Yes 0.733 0.052 0.747 0.048 0.758 0.052 0.752 0.024

30%/35%/35% No No 0.656 0.048 0.666 0.057 0.698 0.041 0.707 0.039
Yes No 0.727 0.654 0.766 0.047 0.76 0.032 0.738 0.04

Yes 0.732 0.043 0.752 0.04 0.778 0.072 0.727 0.038
Table 8
Multi-class classification for accuracy measures, using the BMIVC dataset (extended-sized dataset with 300 test observations). LB stands for the label balancing usage
(PBC in the case of SSDL). PBC results with no statistical significance (with p > 0.1) gains over the non-balanced SSDL implementation are written in italic.
COVID-19/Pneumonia/Normal SSDL LB nl = 50 nl = 70 nl = 90

x s x s x s

10%/45%/45% No No 0.55 0.041 0.58 0.04 0.61 0.035
Yes No 0.513 0.016 0.511 0.011 0.521 0.02
Yes Yes 0.618 0.047 0.647 0.027 0.67 0.027

20%/40%/40% No No 0.597 0.049 0.627 0.037 0.661 0.031
Yes No 0.5805 0.045 0.585 0.036 0.573 0.029
Yes Yes 0.652 0.036 0.677 0.03 0.686 0.035

30%/35%/35% No No 0.615 0.036 0.649 0.012 0.68 0.24
Yes No 0.671 0.037 0.675 0.025 0.695 0.021
Yes Yes 0.67 0.03 0.671 0.02 0.677 0.027
Table 9
Results for the extended test dataset binary classification setting. LB stands for the label balancing usage (PBC in the case for SSDL), using 400 test images. PBC
results with no statistical significance (with p > 0.1) gains over the non-balanced SSDL implementation are written in italic.
COVID-19− COVID+ SSDL LB nl = 10 nl = 15 nl = 20

x s x s x s

50% 50% No No 0.671 0.032 0.696 0.037 0.722 0.035

70% 30% Yes Yes 0.773 0.055 0.769 0.305 0.761 0.025
Yes No 0.651 0.065 0.678 0.075 0.652 0.09
No Yes 0.631 0.072 0.622 0.066 0.659 0.05

80% 20% Yes Yes 0.785 0.045 0.78 0.035 0.772 0.029
Yes No 0.7 0.062 0.667 0.058 0.695 0.053
No Yes 0.67 0.036 0.642 0.042 0.726 0.01
to avoid over-fitting. We trained the MixMatch model with both
the uncorrected loss function and the proposed PBC modification
for data imbalance correction. For reference, we also tested the
supervised model with balance correction and without it, for
binary classification.

Table 6 summarizes the accuracy gains when using MixMatch
ith PBC vs. not using MixMatch, and using MixMatch with
o balance correction (under the same balance conditions) vs.
sing MixMatch with PBC. A non-parametric Wilcoxon test was
erformed to detect whether the accuracy gain is statistically
ignificant (with p > 0.1) across the 10 runs (observations) sam-
led. Gains not statistically significant according such criteria are
ritten in italic in Table 6. This was also done for the multi-class
est results in Table 7.

Finally, as a qualitative experiment, we calculated the gradient
ctivation maps using the technique proposed in [61].6 For this

qualitative experiment, we compared the supervised model and
the MixMatch modification with the proposed PBC. The objective
of this experiment was to spot the changes on the regions used

6 We used the FastAI implementation available of the gradient activa-
ion maps available in https://forums.fast.ai/t/gradcam-and-guided-backprop-
ntergration-in-fastai-library/33462.
9

by the model to output its decision, when trained with the semi-
supervised approach. A sample with 20 labelled observations and
around 180 unlabelled observations (for the MixMatch model
with PBC) was used for training the model. A completely balanced
dataset of 61 observations was used for validation. We trained a
Densenet121 model for 50 epochs, for both the supervised and
semi-supervised frameworks. Fig. 4 includes sampled heatmaps
for the chest X-ray8 and Indiana datasets. The net weights in the
final output layer for each entry, and the real and predicted labels
are also shown for each output image in Fig. 4.

6. Results and analysis

6.1. Binary classification results

As for the first experiment comparing the proposed method
against over-sampling for binary classification in the standard-
sized dataset, the results depicted in Table 1 show a clear ad-
vantage of using the proposed PBC against over-sampling, with
accuracy gains around 5%, and F1-score gains of almost 10%. The
recall is heavily improved when using the PBC, since the false
negative rate decreases. We think that the usage of specific in-
formation within unlabelled data is important for correcting data
imbalance, as the PBC use the pseudo and augmented labels. The

https://forums.fast.ai/t/gradcam-and-guided-backprop-intergration-in-fastai-library/33462
https://forums.fast.ai/t/gradcam-and-guided-backprop-intergration-in-fastai-library/33462


S. Calderon-Ramirez, S. Yang, A. Moemeni et al. Applied Soft Computing 111 (2021) 107692

n
‘
m

R
d
i
a
b
t
w
r
d

d
h
s
1
1
T
n
o
H
m
a
c
c
u

t
8

Fig. 2. Receiver Operator Curves for binary classification (regular-sized test dataset), for the semi-supervised and supervised models with nl = 10, nl = 15 and
l = 20 (from top to bottom), for the 20/80 percent (left column) and 30/70 percent (right column) imbalance settings (COVID and non COVID classes). The yellow
x’ line corresponds to the SSDL with PBC ROC curve, the red dashed line to the SSDL with no imbalance correction, and the blue continuous curve to the supervised
odel ROC curve. As usual, the x-axis corresponds to the false positive ratio, and the y-axis to the true positive ratio.
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OC curves depicted in Fig. 2 for the tests with the Costa Rican
ataset in the 20%/80% (left column) and 30%/70% (right column)
mbalance scenarios, also show a strong gain of the proposed bal-
nce correction method over the semi-supervised model with no
alance correction. This is correlated to the improvement on the
rue positive rate observed in the confusion matrices in Table 10
hen using our proposed method. The statistical relevance of the
esults is evaluated for the rest of the experiments with more
atasets.
The results using accuracy as a metric for the Costa Rican

ataset are depicted in Table 2. The base-line accuracy is rather
igh for very limited labelled settings, even with the base-line
upervised model, with accuracies ranging from 87% to 95%, using
0 and 20 labels, respectively. SSDL is more attractive when using
0 labels, with an accuracy gain of around 7%, as displayed in
able 6. The accuracy gain from implementing PBC vs. using the
on-balanced MixMatch approach remained similar in disregard
f the number of labels used, always with statistical significance.
owever, the accuracy gain of using MixMatch, even with the PBC
odification, diminishes as the number of labels increases. The
ccuracy gain was rather similar for both of the data imbalance
onfigurations tested. As seen in Table 2, the implemented PBC
orrects the data imbalance impact, yielding similar results when
sing the completely balanced dataset.
Regarding the test results using the Chinese paediatric dataset,

he base-line supervised accuracy results were initially low (from
6% to 92%), giving more room for SSDL accuracy gain, as seen in
10
able 3. The usage of MixMatch with the proposed PBC over reg-
lar supervised learning yielded an accuracy gain over +11% as

seen in Table 6. Similar to the Costa Rican dataset, as the number
of labels increases, the accuracy gain decreased. The benefit of
using the PBC over the off-the-shelf MixMatch implementation is
higher when facing a more imbalanced dataset scenario, as seen
in Table 6 for the Chinese dataset. The accuracy gain was almost
three times higher when using the 80%/20% configuration, in-
creasing from around +3% to +10%, for the 70%/30% and 80%/20%
mbalance scenarios, respectively. The PBC was able to almost
orrect the impact of data imbalance, as its accuracy shown in
able 3 often was similar to the base-line MixMatch accuracy
ith a balanced dataset.
Table 4 summarizes the results yielded for the Chest X-ray8

ataset. The base-line accuracy for the supervised model was
he lowest from the tested datasets, sitting at around 75%. The
ccuracy gain of using MixMatch with PBC versus the usual
upervised model ranged from +5% to +9.6%, as seen in Table 6,
n the row for the Chest X-ray8 dataset. As for the accuracy
ain of using MixMatch with PBC vs. MixMatch with no balance
orrection, it stayed around +3 to +5% for the 70%/30% imbalance
onfiguration. Higher accuracy gains were obtained when dealing
ith the more challenging imbalance scenario of 80%/20%, with
ains up to 14%. Similar to other datasets, the PBC was able to
orrect MixMatch’s accuracy impact of data imbalance most of
he times, as seen in Table 4.

The test results for the Indiana dataset are depicted in Table 5.
he base-line accuracy for the Indiana chest x-ray dataset ranged
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Table 10
Averaged and truncated confusion matrix for multi-class classification using the standard-sized test dataset, for 10 runs, using
nl = 50 labels. From left to right, using 10/35/35, 20/40/40 and 30/35/35 percent of the labels for COVID-19, Pneumonia and normal
diagnostics, respectively. From top to bottom, the supervised model, the SSDL model with no PBC, and the SSDL model with the
PBC.
from 84% to 88%. The accuracy gain from implementing MixMatch
with PBC ranged from 4% and to 5.6% versus the base-line super-
vised model. Implementing the PBC versus the original MixMatch
yielded an accuracy gain from +4.5% to +14%. In the case of this
ataset, data imbalance seems to further decrease MixMatch’s
ccuracy, as we seen in Table 5 when comparing the accuracy
esults of the 50%/50% configuration to the 70%/30% and 80%/20%
mbalance settings.

For the tested datasets in the binary classification setting, the
ccuracy can be considered to be very similar when evaluating
he base-line supervised model under different data imbalance
onditions, as seen in Tables 2–5, suggesting a higher sensitivity
f MixMatch when trained with imbalanced data. The overall
rend of the accuracy gain of using the proposed MixMatch with
BC over its original implementation was positive, as seen in 6,
ccross all the datasets tested. Most of the accuracy gains were
igher than 3%, and also most of them are statistically significant,
fter performing a non parametric Wilcoxon test, with an accep-
ance criteria of the hypothesis of significant difference between
he accuracies of both configurations of p > 0.1. There were some
cases where the default MixMatch implementation did not bring
any accuracy gain when facing an imbalanced dataset, as seen
for instance in the test results of the Indiana dataset, detailed
in Table 5. For example the accuracy of the supervised model
with 10 labels was around 83%, and the accuracy of the MixMatch
model with no PBC is no higher than 83%. This implies the
mandatory need of correcting data imbalancing for the MixMatch
model, given its high sensitivity to data imbalance.

Regarding the test-results for the extended-sized test dataset
for binary classification, its results are depicted in Table 9. In
11
general, the accuracy for all the tested model variations in this
test-bed remains significantly lower than previous tested datasets
for the binary classification setting. Such results were expected as
the negative COVID-19 data sources were mixed. Nevertheless, in
this challenging setting, our simple PBC method proves to signifi-
cantly improve the model’s accuracy (with statistical significance,
according to our Wilcoxon test results), when compared to both
the supervised model with balanced labelled data and the semi-
supervised model with no imbalance correction. The accuracy
gains go to up to +12%. No significant accuracy difference is
perceived when increasing the number of labels in the tested
settings. The sampled ROC curves show an important area under
the curve gain for the semi-supervised model using the proposed
PBC, as seen in Fig. 3.

Finally, regarding the qualitative experiments proposed, Fig. 4
show sample heatmaps for the Indiana and chest X-ray8 datasets,
respectively. Both figures reveal how the neural network tend to
focus more on lung areas when using the semi-supervised model
trained with both datasets. The Densenet121 model trained with
MixMatch including the PBC modification yielded an accuracy of
91.3% for the tested sample from the Indiana dataset, and 67.74%
for the supervised model. For chest X-ray8 dataset, an accuracy
of 93.4% was yielded for the MixMatch framework with PBC,
and 77.4% for the supervised model. We can see in Fig. 4 how
the hot pixels move towards lung regions when using the semi-
supervised model. This tends to happen even when the resulting

predictions in both models are correct.
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Table 11
Averaged and truncated confusion matrix for multi classification using the Valencian-Cohen dataset for multi-class
classification with 300 test images (extended-sized test dataset), for 10 runs, using 40/40/20 percent of imbalance
setting (for SSDL). From left to right, using nl = 70, and nl = 90 labels respectively. From top to bottom, the
supervised model (with completely balanced labels), the SSDL model with no PBC, and the SSDL model with the
PBC.
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6.2. Multi-class classification test results

Regarding the results depicted in Table 7 for multi-class clas-
ification using the standard-sized dataset (90 test images), the
roposed PBC method also yielded significant accuracy gains.
he highest accuracy boost (of around 18%) was yielded under
he most imbalanced setting tested (10% of the labels for the
OVID-19+ class), when comparing the model with PBC to the
emi-supervised model with no imbalance correction. In very
mbalanced scenarios with few labels, the semi-supervised model
ends to have similar results when compared to the supervised
odel. For the 20/40/40 percent imbalance scenario, the accuracy
ain of the proposed PBC method decreased, yielding a boost
f around 6% when compared to the semi-supervised model
ith no balance correction. The tendency of a decrease in the
ccuracy gain of the proposed balance correction method gets
ore clear for the 30/35/35 setting, with no statistically signif-

cant accuracy gain yielded over the semi-supervised model with
o balance correction. To complement the analysis, the average
onfusion matrices for multi-class classification are depicted in
able 10, calculated across the tested imbalance configurations,
ith nl = 50. For the 10/45/45 setting, the true positives for
he COVID-19+ class increased dramatically in the case of the
emi-supervised model with the PBC, compared to the supervised
nd semi-supervised models with no balance correction. This
ccurred along with a very small decrease of the average of true
12
positives for the rest of the classes. As the imbalance between the
COVID-19+ class and the rest of them gets smaller, the gain in the
verage true positives for the COVID-19+ class decreases for the
roposed method.
As for the multi-class classification test-bed, the results are

epicted in Table 8. As expected, the yielded accuracy trend
s lower when compared to the standard-sized dataset, as two
ifferent positive COVID-19 data sources were used. However,
ur proposed PBC method yields statistically significant accuracy
ains for the 10%/45%/45% and 20%/40%/40% imbalance settings.
hen compared to the semi-supervised model with no imbal-

nce correction, our method yields an accuracy gain of up to
%. Increasing the number of labels decreases the advantage of
sing semi-supervised models (as also the number of unlabelled
bservations is decreased when using more labels). The averaged
onfusion matrices show a large accuracy gain for the COVID-19+

lass for the semi-supervised model using our proposed PBC, with
slight accuracy decrease for the remaining classes, as seen in
able 11. This is consistent with the improvement seen in the ROC
urves in the case for the binary classification tests.

. Conclusions

In this work we have analysed the impact of data imbalance
or the detection of COVID-19 using chest X-ray images. This is
real-world problem, which can arise frequently in the context
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Fig. 3. Sample of Receiver Operator Curves (ROCs) for binary classification using
he Valencia dataset (400 test images), for the semi-supervised and supervised
odels with nl = 10, nl = 15 and nl = 20 (from top to bottom), for the 20/80
ercent imbalance settings (COVID and non COVID classes). The yellow ‘x’ line
orresponds to the SSDL with PBC ROC curve, the red dashed line to the SSDL
ith no imbalance correction, and the blue continuous curve to the supervised
odel ROC curve. As usual, the x-axis corresponds to the false positive ratio,
nd the y-axis to the true positive ratio.

f a pandemic, where few observations are available for the new
athology. To our knowledge, this is the first data imbalance
nalysis of a SSDL designed to perform COVID-19 detection using
hest X-ray images, for both binary and multi-class classification.
he experiment results suggest a strong impact of data imbalance
n the overall MixMatch accuracy, since results in Table 6 reveal
stronger sensitivity of SSDL when compared to a supervised
pproach. The accuracy hit of training MixMatch with an im-
alanced labelled dataset lies in the 2%–18% range, as seen in
ables 2, 3, 4, 5, 9, 8 and 7. Moreover, for the complex test-
eds, mixing different data sources for a single class, for both
inary and multi-class classification, the accuracy tends to be
ower compared to the standard-sized datasets. This enforces the
rgument developed in [19,49] which draws the attention upon
ata distribution mismatch between the labelled and the unla-
elled datasets, as a frequent real-world challenge when training
SSDL model.
Moreover, a simple and effective approach for correcting data

mbalance by modifying Mix Match’s loss function was proposed
nd tested in this work. The proposed method gives a smaller
eight to the observations belonging to the under-represented
lass in the labelled dataset. Both the unlabelled and the labelled
oss terms were re-weighted. This opposed to the unlabelled
e-weighting developed for the mean teacher model in [51],
hich only modifies the weights of the unlabelled term. We
13
Fig. 4. From top to bottom: Two sample heatmaps for correct predictions using
the Indiana dataset and two samples from the chest X-ray8 dataset, respectively.
From left to right: the original image, the heatmap of the MixMatch trained
model with the proposed PBC and the output of the supervised model.

implemented such approach since in our empirical tests the un-
labelled term had less impact in the overall model accuracy.
For the pseudo-labelled and MixUp augmented observations, we
assigned the weights using the pseudo and augmented labels.
The proposed method is computationally cheap, and avoids the
need of complex and expensive generative approaches to correct
data imbalance [47,48]. Our proposed method is simple and does
not incur in an additional computational cost over the original
Mix Match algorithm, as the weights are calculated once and
assigned according to the pseudo-labels. A systematic accuracy
gain is yielded when comparing the original MixMatch imple-
mentation with the proposed PBC for data imbalance correction,
and also compared against data over-sampling. For the tested
datasets, often the proposed PBC leads to significant accuracy
gains from the supervised model, as data imbalance can even
hinder any accuracy gain of using MixMatch, as seen in Ta-
bles 2–5. The accuracy gain ranges between 3% and 18%, with
statistical significance for most of the datasets tested. In most of
the datasets, the accuracy gain is higher for the more challenging
80%/20% 10%/45%/45% imbalance settings. Nevertheless, even in
the more challenging extended-sized datasets with much larger
test datasets than training and labelled datasets, with different
data sources for the observations in the same class, a systematic
accuracy gain was yielded using the proposed PBC method. The
improvement of the ROC curves is usually achieved by class
imbalance correction techniques commonly implemented for su-
pervised methods [62]. Among the tested datasets, we included
a new one with digital X-rays from healthy Costa Rican patients,
which we will make available for the community. In our work,
we have shown how the usage of pseudo labels for selecting the
label imbalance correction weights is able to yield positive results
also for the ROC curves, confirming a similar behaviour as seen
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reviously for supervised models, as the minority class is better
redicted.
As stated in [24], using the target dataset is vital for training
model, as using a different source dataset from other hospi-

als/clinics to train the model might yield poor test performance
n the target dataset. Such distribution mismatch among differ-
nt data sources is a frequent short-coming of deep learning
olutions in the context of medical imaging. This is caused by
ata often presenting high heterogeneity due to patient diversity
nd different imaging protocols implemented [24]. Frequent low
obustness distribution mismatch in deep learning systems raises
he urgent need of training data from the specific clinic/hospital
here the model is intended to be used. The challenge of labelling
ata becomes harder in the context of the pandemic, where a
imited number of available high-quality labelled observations is
sually available. Training a model with few labelled observations
nd an unlabelled dataset gathered from the target clinic/hospital,
long with transfer learning and data augmentation as done in
his work, might prove to be a practical solution in the context of
pandemic, where scarce labelled data is available. Moreover, we
lan to test in the future the interaction between transfer learning
rom a source dataset with SSDL.

This work can be extended by using the customized fea-
ure extractors proposed in [36], as our architecture uses the
ore common transfer learning approach from a generic dataset

Imagenet), to later refine the feature extractor. The semantic
elevance of the extracted features can be improved along with
he model explainability, as seen in Fig. 4. Hence, the proposed
olution in this work can be ported to use a more specific fea-
ure extractor. Therefore, we plan to test its usage under dif-
erent customized feature extractors. Furthermore, it is interest-
ng to investigate the impact of SSDL on deep learning explain-
bility/uncertainty measures. We suspect that unlabelled data
an improve models’ uncertainty estimations and explainability
ccuracy.
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