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Abstract: Background: Brain-Computer Interface (BCI) is becoming more reliable, thanks to the
advantages of Artificial Intelligence (AI). Recently, hybrid Deep Learning (hDL), which combines
different DL algorithms, has gained momentum over the past five years. In this work, we proposed a
review on hDL-based BCI starting from the seminal studies in 2015. Objectives: We have reviewed
47 papers that apply hDL to the BCI system published between 2015 and 2020 extracting trends and
highlighting relevant aspects to the topic. Methods: We have queried four scientific search engines
(Google Scholar, PubMed, IEEE Xplore and Elsevier Science Direct) and different data items were
extracted from each paper such as the database used, kind of application, online/offline training,
tasks used for the BCI, pre-processing methodology adopted, type of normalization used, which
kind of features were extracted, type of DL architecture used, number of layers implemented and
which optimization approach were used as well. All these items were then investigated one by one to
uncover trends. Results: Our investigation reveals that Electroencephalography (EEG) has been the
most used technique. Interestingly, despite the lower Signal-to-Noise Ratio (SNR) of the EEG data
that makes pre-processing of that data mandatory, we have found that the pre-processing has only
been used in 21.28% of the cases by showing that hDL seems to be able to overcome this intrinsic
drawback of the EEG data. Temporal-features seem to be the most effective with 93.94% accuracy,
while spatial-temporal features are the most used with 33.33% of the cases investigated. The most
used architecture has been Convolutional Neural Network-Recurrent Neural Network CNN-RNN
with 47% of the cases. Moreover, half of the studies have used a low number of layers to achieve a
good compromise between the complexity of the network and computational efficiency. Significance:
To give useful information to the scientific community, we make our summary table of hDL-based
BCI papers available and invite the community to published work to contribute to it directly. We have
indicated a list of open challenges, emphasizing the need to use neuroimaging techniques other than
EEG, such as functional Near-Infrared Spectroscopy (fNIRS), deeper investigate the advantages and
disadvantages of using pre-processing and the relationship with the accuracy obtained. To implement
new combinations of architectures, such as RNN-based and Deep Belief Network DBN-based, it is
necessary to better explore the frequency and temporal-frequency features of the data at hand.

Keywords: Brain-Computer Interface (BCI); Hybrid Deep Learning; Electroencephalography (EEG);
Neural Networks; review; survey
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1. Introduction

The history of Brain-Computer Interfaces (BCIs) developed from the days of early
digital technology to today’s highly sophisticated approaches for signal detection, record-
ing, and analysis [1]. In recent years, it has attracted increasing attention from academics
and the public due to its potential clinical applications [2]. BCI is a technology that trans-
lates signals generated by brain activity into control signals without the involvement of
peripheral nerves and muscles and uses these signals to control external devices [3].

The BCI system is composed of different consecutive processes, which are sequenced
as signal acquisition, extraction of the desired features from the task, selection of more
relevant subset from the feature set, classification of the mental state, and generated
feedback signals. These brain signals are extracted, decoded, and studied with the help of
various monitoring non-invasive techniques like electroencephalography (EEG), functional
magnetic resonance imaging (fMRI), and functional near-infrared spectroscopy (fNIRS)
among others [4].

Among those neuroimaging techniques, EEG has several advantages in a BCI environ-
ment since it is portable, relatively inexpensive (especially if compared with fMRI), and
easy to use with high temporal resolution. The optimal temporal information and the direct
measure of the neuronal activity provided by EEG are strongly recommended, especially
in BCI involving real-time neurofeedback. In this respect, EEG overcomes the main fMRI
and fNIRS low temporal resolution limitation intrinsically related to those techniques that
indirectly measure the brain activity based on the principle of neurovascular coupling that
measures the increase in regional cerebral blood flow (i.e., increase in oxygenated and
decrease in deoxygenated hemoglobin) induced by neuronal activation.

These techniques suffer, in their nature, from a low Signal-to-Noise Ratio (SNR) [5], as
brain activity is often affected by multiple sources of environmental, physiological, and
activity-specific noise, called ‘artifacts’ [6–9]. Focusing on the EEG technique, the electric
potentials measured on the scalp reflect the neuronal activity and can be used to study a
wide array of brain process in many different applications, such as BCI. Thanks to the great
speed at which electric fields propagate, EEG signals have an excellent temporal resolution,
but at the same time, they present some limitations related to:

• non-stationarity, which is the reason why learning models trained on a temporally
limited amount of data, might generalize poorly with respect to data recorded at a
different time on the same individual;

• high inter-subject variability due to physiological artifacts differences between indi-
viduals. This aspect can severely affect the performance of learning models;

• data collection, time-consuming, and restricted. Medical data is not usually available
due to personal data regulation.

To solve these problems, time-consuming processing pipelines with domain-specific
approaches are often used to clean, extract relevant features and classify EEG data. Removal
of artifacts may be crucial to achieve good decoding performance. Consequently, some
studies attempted to only apply minimal preprocessing such as removing or interpolating
bad channels and leave the burden of learning from a potentially noisy signal on the
neural network to extract true brain activity from the recorded signals to be correctly
interpreted [10–12].

In this context, Artificial Intelligence (AI) provides a set of general approaches that
models intelligent behavior with minimal human intervention with a great help in pro-
cessing neural signals from the brain, including feature extraction and classification [13].
As a branch of AI, Machine Learning (ML) tools are often used to automate, extend, and
improve EEG data analysis with the final aim of partially or completely solving the above-
mentioned issues. Indeed, BCI systems are based, in many applications, on decoding
pipelines that use extensively different machine learning algorithms. Before the deep learn-
ing (DL) revolution, the standard pipeline to analyze the EEG data combined techniques
from signal processing and ML to enhance the SNR, dealing with EEG artifacts, extract
features, and interpreting or decoding signals. DL is part of the field of machine learning
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methods based on artificial neural networks with the ability to use techniques that allows a
system to automatically detect and classify features from raw data. DL models are deeper
variants of ANNs with multiple layers, whether linear or non-linear.

Artificial Neural Networks (ANNs) aim to simulate intelligent behavior by mimicking
the way that biological neural networks function [14]. The simplest artificial neural network
is a single-layer architecture, which is composed of an input layer and an output layer
that usually obtains poor performances in complicated data patterns [15]. In order to
overcome this limitation and to improve the obtained performance, two kinds of neural
network models were proposed: the Multi-Layer Perceptron (MLP) referred to as a Feed-
Forward Neural Network (FFNN), which includes a so-call hidden layer between the input
layer and the output layer and the Convolutional Neural Networks (CNNs), a natural
extension to MLP, and thus applied in this context. Unlike MLPs, CNN architectures
require computationally expensive operations, but they are appreciated to automatically
extract relevant features instead of manual extraction techniques from high dimensional
datasets [16]. CNNs are a sequence of layers, and each layer of the CNN transforms one
volume of activations to another through a differentiable function. Autoencoders (AEs)
are also often used: they earn the latent representations of input data (called encode) in
an unsupervised manner and then use these representations to reconstruct output data
(called decode) and Recurrent Neural Networks (RNNs), an extension of an FFNN, which
is able to learn features and long-term dependencies from sequential and time-series data.
Unfortunately, most of the existing machine learning studies focus on static data and cannot
classify the dynamic changes of brain signals accurately for practical uses. This aspect
requires novel learning methods to deal with dynamic data streams in BCI systems [17].

The diffusion of DL approaches has changed machine learning in many domains
(e.g., computer vision, speech recognition, etc.) by providing general purpose and flexible
models that can work with raw data to directly learn features and to capture the structure
of data in an efficient and adaptable way for many different tasks.

Recent advancements in DL frameworks, based on Deep Neural Networks (DNN),
drastically improve accuracy in image recognition, natural language processing and other
applications. DNN is the extension of a standard neural network with multiple hidden lay-
ers, which allows the model to learn more complex representations of the input data. The
key advantage of DL is a systematic approach of training groups of DNN layers, including
unsupervised training of auto-encoders for hierarchical representation of raw input data
(i.e., automatic feature selection and dimensionality reduction) and supervised re-training
of several final layers in the transfer learning that compensate for data incompleteness.
Deep learning works directly on raw brain signals, thus avoiding the time-consuming pre-
processing and feature extraction, so deep neural networks can capture both representative
high-level features and latent dependencies through deep structures [17]. Finally, one of
the most important motivations for using deep learning on EEG processing is automatic
feature learning [18].

DNN-based DL frameworks combine ultimate flexibility for data modeling with
hierarchical representations, unsupervised pre-training, transfer learning and overall layer-
by-layer training, which are all crucial for the discovery of viable models, even when data
are incomplete and very complex. However, DNNs training could be very challenging
due to a large number of data and hyper-parameters, ranging from the training algorithm
parameters such as learning rate, neural network topology, number of layers and the
number of nodes in each layer. It is extremely computationally expensive to train and more
importantly to determine the training method and the hyperparameters for deep learning,
which is still user dependent [18].

Among the different types of DL, such as unsupervised deep models or generative
learning, the hybrid Deep Learning (hDL) combines both generative and discriminative
models, which is the most used for human action recognition [19]. hDL was inspired by
the further problems introduced by BCI and many of them were resolved through the
use of action bank features [20]. hDL is often designed by the fusion of homogeneous
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CNNs and by the combination of those with other neural networks, such as RNN, Stacked
AutoEnconders (SAEs) and others.

With this review, we provide an overview of hDL-based BCI of the papers published
in the last five years, since no papers were found before 2015 on this topic (Figure 1). A list
of acronyms is reported in Appendix A—Table A1.
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We have also reported methodological details about the various steps of the pipeline
implemented for the different approaches, in order to give an idea of the most adopted
techniques and processing steps.

We have reported that different choices need to be considered when handling hDL-
based BCI. In particular, a careful choice needs to be made on the methodology used for
detecting mental tasks. Portable and non-invasive methodologies should be preferred,
such as EEG, Magnetoencephalography (MEG) or functional Magnetic Resonance Imaging
(fMRI). Among them, EEG alone was the most used in the revised papers, with 93.62% of
the case (44/47 papers) probably due to the low cost of the EEG system and the simple
way to record the brain signal (EEG in combination with other modalities reaching 100% of
the time). However, despite its advantages, such as portability, low cost and non-invasivity,
EEG needs strong data preprocessing such as data-filtering and channel interpolation
among other more advanced preprocessing methods such as Independent Component
Analysis (ICA) used to reduce biological and non-biological artifacts [6–9,21].

In this respect, 78.72% of the reviewed papers (37/47) used some of the above-
mentioned preprocessing methods. Once the recording technique is decided upon, it
is necessary to focus on the task to be implemented in order to capture the mental task,
since BCI is a system that should establish a direct communication pathway between
the users’ brain activity (mainly people disabled by neuromuscular disorders such as
amyotrophic lateral sclerosis, cerebral palsy, stroke, or spinal cord injury) and external
effectors [22]. Motor Imagery (MI) seems to be the most used task in the reviewed papers,
being used 55.32% of the time. After these considerations, it is necessary to identify the
best features to be extracted from the data

To answer these questions, our review is organized as follows: an extensive descrip-
tion of the analyzed papers has been presented in Section 2, summarizing the relevant
information for the proposed approaches and how the papers were selected and assessed.
The results of the study have been reported in Section 3, grouped in the main steps of a
standard pipeline, particularly focusing on the hybrid deep learning architecture, introduc-
ing applications and datasets. Section 4 introduces the discussions and Section 5 introduces
the possible future studies.

2. Materials and Methods

English papers, including full articles, were selected for the review. To collect data
from a variety of resources, four academic research databases were used: Google Scholar
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(https://scholar.google.com/), PubMed (https://pubmed.ncbi.nlm.nih.gov/), IEEE Xplore
(https://ieeexplore.ieee.org/Xplore/home.jsp), and Elsevier Science Direct (https://www.
sciencedirect.com/) using the following queries BCI + “Hybrid Deep Learning”; BCI AND
“Hybrid Deep Learning”; BCI Hybrid Deep Learning; and BCI + “Hybrid Deep Learning”,
respectively, for Google Scholar, PubMed, IEEE Xplore, and Elsevier Science Direct. We
have applied the Journal filter in IEEE Xplore and Research Articles for Engineering in
Elsevier Science Direct. Google scholar query produced 98 papers, while PubMed query
produced 9 papers, IEEE Xplore produced 4 papers, and Elsevier Science Direct produced
44 papers. The last query in all the databases was done on the 13th of November 2020.
The overall number of collected papers was 155 with 10 papers added to the list from the
literature review (165 papers in total). Papers that did not use a hybrid algorithm or were
not in the field of BCI were eliminated from the original 165 papers list. Duplicated papers
(i.e., papers that were found in more than one database) and reviews were eliminated as
well. The resulting list of papers consisted of 47 papers (see also Table A2 in Appendix B).
Figure 2 shows the flowchart for building the database considered in this review, which
consists of 47 original papers ranging from 2015 to 2020, which uses hDL algorithms in
BCI systems. There were no papers found before 2015: this is because the hybrid deep
learning methodology was applied to BCI for the first time in 2015 with the two seminal
studies [12,23].
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3. Results
3.1. Brain Intention Recordings

EEG is widely used in Brain-Computer Interfaces [24], as is highlighted by the 47 arti-
cles reviewed, here in which all of them have only used EEG, except three papers that used
EEG combined with EOG [4], EEG with ElectroOculoGraphy (EOG), ElectroMyoGraphy
(EMG), Skin Temperature (ST), Galvanic Skin Response (GSR), Blood Volume Pressure
(BVP), Respiration Signal (RS) [25] and EEG plus EOG [26]. While EEG has proven to be
a crucial tool in many domains, including BCI, it still suffers from some limitations that
hamper its effectiveness due to its long pre and post-processing. In this context, DL [5] was
introduced with the goal of simplifying the long pre and post-processing steps, which was
most of the time also user-dependent, employing its automatic end-to-end learning of pre-
processing, feature extraction, and classification modules, while also reaching competitive
performance on the target task. This high expectation was supported by the enormous suc-
cess obtained by DL in processing complex data such as images, text, and audio signals [27].
However, the same success seems to be far away in the context of EEG based BCI. The main
reason for that might be attributed to EEG peculiarities, such as low SNR [5], which makes
EEG data different from images, text, and speech data. Therefore, the architectures and
practices that are currently used in DL on other types of data may not be simply moved
to the EEG data. This was also supported by the results obtained in our review where we
have found that only 21.28% of the papers (10/47) did not use any preprocessing or they
did not declare any preprocessing step (N/A in Table A2—Appendix B, “Pre-processing”
column). Among the remaining 78.72% of the papers (37/47), at least a bandpass filter
or more advanced preprocessing methods, or even a combination of the two, has been
applied, as detailed in the section below.

3.2. Preprocessing of the Data

Since preprocessing seems to still be an important step that cannot be simply bypassed
by DL architecture, we divided the papers reviewed into three main categories: (i) No
preprocessing applied (N/A); (ii) Basic preprocessing such as filtering; and (iii) Advanced
preprocessing such as Blind Source Separation (BSS) methods or semi-BSS [28,29], as in
the case of wavelet-enhanced Independent Component Analysis (wICA) [30]. Among the
47 papers, 21.28% did not apply any preprocessing step, 61.7% applied basic preprocessing,
consisting mainly in Band-Pass Filter (BPF), and 17.02% applied a more advanced BSS
approach such as ICA or Principal Component Analysis (PCA) or Denoising Autoencoder
(DAE) or Common Spatial Pattern (CSP) in combination with BPF. However, since none of
the papers reviewed here compared the performance base on the presence and absence of
the preprocessing, we were not able to properly investigate whether the presence or the
absence of the preprocessing step can increase the accuracy performance. On this particular
aspect, studies that directly investigate this issue are more than welcome.

3.3. Normalization of the Data

Normalization of the data is the set of pre-processing steps aimed at eliminating
information redundancy and inconsistency from the database to control the complexity of
the neural network and to obtain performances that can be generalized for several fields
of application [31]. As can be seen from Appendix B—Table A2 and Figure 3, different
kinds of normalizations are applied in 59.57% of the cases (28 papers on 47). Among the
normalization methods, Batch Normalization (BN) is the most used, at 67.85% of the time,
followed by Z-score, used 17.85% of the time, Root Mean Square Error (RMSE) in 3.58%,
min/max Normalization in 3.58% of time, and Truncate normalization distributed function,
in 7.14% of the time. BN is a method used to make artificial neural networks faster and
more stable through the normalization of the input layer by re-centering and re-scaling [32].
The major benefit of BN is the training speed up of deep neural networks by reducing the
internal covariance shift, which is “the change in the distributions of internal nodes of a
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deep network” [32,33]. It also acts as a regulator, in some cases eliminating the need for
dropout and consequently avoiding overfitting [34].
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3.4. Features Extraction

Generally, the BCI system is considered to be a pattern recognition problem, where
the main two tasks for the BCI system are feature extraction and classification. The features
are a set of information that represents the main characteristics of the data in hand. Those
features are used as input for the classifier to perform the pattern recognition task, translat-
ing the mental state in information for BCI [35–37]. Feature extraction is a very sensitive
step in the BCI system since reduces the data into a limited number of data that should
accurately represent the full data, which has a tremendous effect on the efficiency of the
classification phase. Choosing the most significant features is important to achieve high
recognition performance [7,38]. Features are normally extracted using statistical and signal
processing tools. Lately, thanks to the advent of deep learning, feature extraction is done
automatically by the chosen architecture. For example, CNN takes a 2-D matrix as input
and automatically extracts hidden features using spatial filters [39].

Tang and colleagues [40] used the Short-Time Fourier Transform (STFT) as a 2-
dimensional EEG representation as input for the feature extraction step done by CNN. Sim-
ilarly, Dai and colleagues [41] used a time-frequency domain representation (Spectrogram
image) of the EEG obtained via the STFT. In Jingxia and colleagues [42], frequency-domain
features were also used. They extracted 64 Power Spectral Density (PSD) features by using
Hamming window with a width of 0.5 s in 1–47 Hz frequency. Another direction was taken
by Maryanovsky and colleagues [43] towards statistical features like variance.

As we have seen in the reviewed studies, we can cluster the features extraction into
nine groups, with their respective usage percentages: spatial features (10.61%), temporal
features (6.06%), frequency features (6.06%), temporal-frequency features (3.03%), spatial-
temporal features (33.33%), spatial-temporal-frequency features (7.58%) power-related
features (7.58%), statistical-related features (9.09%), and another group of features that are
not related to any of the previous groups (16.67%). These data are shown in Figure 4a,
through which it is possible to notice the dominance in the use of the CNN-RNN hybrid
architecture for the automatic extraction of spatial-temporal features. Moreover, it is
possible to see how CNN-based architectures are used to extract the different categories
of features, except for the temporal ones, for which the use of RNN-based architectures
is preferred. Besides, RNN-based architectures are not used for both spatial and power-
related features. Based on these results, we can say that temporal features achieved the
best results for the mean (93.94%), followed by spatial features (88.73%). Interestingly, the
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spatial-temporal features were used by most of the studies achieved (81.63%), as illustrated
in Figure 4b.
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3.5. Hybrid Deep Learning Architecture

In the last years, many types of architectures were developed. Each architecture has
its special characteristics regarding a field of information. By merging different kinds of
networks, we can extract deeper features than using the deep learning algorithm alone [44]
(see Appendix C for a more detailed overview of Deep Learning). Thus, the choice of
hDL architecture becomes an important point in the hDL pipeline. Figure 5a shows the
percentage of the studies that used different hDL architectures. CNN-RNN is the most
used architecture with 47% of the cases. It combines the spatial features extracted from
CNN and temporal features extracted from RNN. CNN-based architecture instead uses
spatial features than temporal ones and is the second choice on the reviewed papers (it
is chosen in 22% of the case). The other architectures are DBN-based, chosen in 9% of
the cases, RNN-based chosen on 15% of the cases and CNN-DBN was chosen in 7% of
the cases.
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In Figure 5b, it is provided with the distribution of the different architectures used
across the years. To the best of our knowledge, two seminal studies [12,23] in 2015 intro-
duced the hDL-based BCI using CNN-based and RNN-based, respectively. The success
of CNN might be due to its capabilities to extract spatial information from images (2D
input) in a hierarchical structure as it showed great success in the computer vision field [45].
However, from 2017, a modified version of the CNN architecture seems to be predom-
inantly used in the field, i.e., CNN-RNN with a constant increase in its presence in the
studies ranging from 2017 until 2020 with three papers in 2017 (i.e., 60% of the case),
four papers in 2018 (i.e., 36.36% of the case), six papers in 2019 (i.e., 40% of the case) and
10 papers in 2020 (i.e., 55.55% of the case). Despite the advents across these years of other
types of architectures such as DBN [46], and a combination of CNN and DBN named
CNN-DBN [41]. Figure 5b also clearly shows an increasing trend in the last five years in
the use of hDL-based BCI. Interestingly, in 2020, the number of papers using CNN or a
combination of it with RNN or DBN was 72.20% (i.e., 13 papers on 18), with a performance
(mean ± standard deviation) of 82.54 ± 6.04% in the case of the MI task, 94.74 ± 4.62% in
the case of the SSEP task.

Figure 6a shows the accuracy with respect to the different architectures. The standard
deviation and the mean are evaluated by considering all data and it is worth noting that
the best results are achieved, considering CNN-DBN-based architectures, whereas the
lowest performances in terms of average accuracy are the CNN-based architecture. Since
BCI Competition IV is considered to be a benchmark to test hDNN approaches, the same
analysis is only reported for this benchmark in Figure 6b. In this case, only one sample is
related to the CNN-DBN-based architecture.
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3.6. Optimization

Optimization is one of the fundamental steps of machine learning. The idea behind
most machine learning algorithms is to build an optimization model and to set-up the
parameters throughout the training session. As can be guessed, there are several ways to
approach this step; however, the best way to proceed is still an open research question in
the deep learning literature [47]. The difficulty to find the optimal solution lies in searching
the balance between the minimization of the cost function and the performance, which
in turn minimizes the difference between the training error and the actual error obtained
from the test set (i.e., the training set). It becomes clear that the obtained results strictly
depend on the choice made in this step.

While this step is a crucial step for achieving good results, in 23.40% of the papers;
however, they did not report the used optimization algorithm (see Figure 7a). From the
remaining 76.6% that declared that the optimization algorithm was used, the most used
was the ADAptive Momentum (ADAM) optimizer that was used in 55.3% of the cases.
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ADAM estimation is an advanced Stochastic Gradient Descendent (SGD) method,
which combines adaptive methods and the momentum method [48]. It uses first-order
momentum estimation and second-order gradient estimation to dynamically adjust the
learning speed of each parameter; it also adds bias correction. ADAM is very stable in
practice, and it is suitable for most non-convex optimization problems with large data sets
and high dimensional space [47]. Despite its massive use, the algorithm may not converge
in some cases. After the ADAM optimizer, the other optimization algorithm mostly used
is the SGD in 14.89% of the cases. The SGD [47] is an iterative method for optimizing an
objective function with suitable smoothness properties. The biggest advantage of using
these methods with respect to other methods rely on the fact that the calculation time for
each update does not depend on the total number of training samples. The calculation
could be significantly sped up by removing the computational redundancy [47]. However,
the main limitation of SGD is choosing the optimal learning rate. To do so, the trial and error
method is suggested, since there is no predefined standard [49]. Among the other optimizer
methods, the most relevant is the SGD, used in 14.89% of the papers, Root Mean Square
Propagation (RMSProp) used 6.38% of the time, mini-batch used 2.30% of the time, and
Gray Wolf Optimizer (GWO) used 2.30% of the time. To be noted, as reported in Figure 7b,
the ADAM algorithm steadily increased across years, showing that the community more
and more often uses that algorithm.

3.7. Number of Layers

The adjective “deep” in deep learning refers to the number of layers through which
the data are transformed from the first layer to the second one and so on in a hierarchical
fashion [27]. Despite the adjective “deep” in deep neuronal networks, which might be
induce the idea of a large number of layers in the architecture, this is not always the case.
Here, we reviewed this aspect and showed that the number of layers is lower or equal to
10 in 50.90% of the cases and just 16.36% higher than 20 layers; this matches what Roy and
colleagues also reported [18]. In Figure 8, we showed the accuracy in respect to the number
of layers, for each architecture. Regarding the studies that proposed different architectures,
we only considered the number of networks. From Figure 8 and in Appendix B—Table A2,
our results support Roy and colleagues’ results [18] that there is no standard procedure to
choose the number of layers, since the choice depends on many factors, such as the data
in hand, which was used as an input, the type of task to be performed, hyperparameters
tuning, etc. A Person’s correlation test was performed between the number of layers
and the performance of each architecture separately to test if the increasing number of
layers corresponds to an increase in accuracy (CNN-based: R = −0.53; p-value = 0.089,
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RNN-based: R = −0.51; p-value = 0.16, DBN-based: R = 0.28; p-value = 0.65, DBN-CNN:
R = 0.16; p-value = 0.89, and CNN-RNN: R = −0.21; p-value = 0.28).
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3.8. Application, Datasets and Task/Protocol

Figure 9 shows that 57.45% of the reviewed papers have a specific BCI application,
such as medical care, communication, mental state detection, person identification, emotion
recognition, motor imagery recognition, and data augmentation. The remaining papers do
not have a specific application: this category aims to develop the classification algorithm
and to evaluate its performance, regardless of the application by tackling the challenges
faced by BCI with respect to the accuracy of classification and precision. In other words,
those studies were conducted more for classification and accuracy than for applicable BCI.
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Figure 9. Specified vs. not specified BCI application.

Figure 10a shows the datasets used in the reviewed papers. We have classified the pa-
pers into three classes: papers that used a public dataset (68.09%), such as BCI competitions
datasets, papers that used their dataset (19.15%), named local datasets, and papers that used
both public and local datasets (12.77%). In Figure 10b, how the databases were used among
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the paper reviewed is illustrated. BCI-competition IV was used 17/47 times, which makes
it the most used public dataset. This might refer to the reliability and flexibility of this
dataset. Database for Emotion Analysis using Physiological Signals (DEAP) was used by
six papers, while both Physionet eegmmidb (EEG Motor Movement/Imagery Dataset) and
BCI competition III were used in five and four papers, respectively. Bashivan, Bidelman,
Yeasin EEG data set was used twice, while the other datasets were only used once.
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Figure 11 shows the accuracy with respect to the tasks, where the task SSAEP has been
removed from the analysis, since only one paper has used it. Mean ± standard deviation
was evaluated by considering all datasets. The best accuracy level was achieved during a
cognitive task.
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3.9. Hybrid Deep Learning (hDL) Performance

The hDL performance has been and was measured using different metrics (see Figure 12a):
(i) classification accuracy was the most used (87.50% of the time); (ii) Kappa value, which
was used 8.33% of the time, indicates the agreement of the evaluated classification with
respect to different studies in the same conditions. In other words, it measures the
inter-rater reliability that can be considered as a score of consistency given by the same
dataset/subjects across different architectures [50]; (iii) Freéchet Inception Distances (FIDs),
which measures similarity between augmented EEG data and real EEG data [51], which
was used 2.08% of the time, as well as the success rate. Concerning the accuracy, the
box and whisker chart has also been shown in Figure 12b. It shows information about
the statistical quartiles (74.15%, 93.10%), median (84.45%), mean (82.65%), the maximum
(99.74%), and the minimum (59.00%). Two networks were treated as outliers since it suffers
from very low accuracy (40.00% and 35.00%). The average accuracy ± standard deviation
is 82.6 ±14.18%.
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To better test the accuracy performance among hDL architectures and the accuracy
obtained across the different features, we have calculated those metrics on the same
dataset (i.e., the BCI competition IV dataset, the most used in the reviewed papers).
We have found that the best accuracy was obtained by CNN-DBN (92.00%), which was
only used in one study with BCI competition IV dataset, while CNN-based and CNN-
RNN achieved 77.88% and 76.63%, respectively (Figure 13a). Temporal features reported
the best performance, 95.62%, which was achieved by using the CNN-RNN architecture,
while spatial features reached 89.68%; CNN-RNN also achieved this (see Figure 13b).
Notably, the results obtained in Figure 13b (i.e., results obtained for the BCI IV dataset
using MI task) follows the trend of the results obtained for all the datasets shown in
Figure 5b. However, this comparison might not be very accurate, since only two studies
use CNN-DBN in comparison to three papers in CNN-based, and five papers in CNN-
RNN. Therefore, more studies regarding the CNN-DBN are encouraged to be conducted
since it shows promising results. There are no studies that used frequency features or
temporal-frequency features extracted from BCI-competition IV. Additionally, no papers
studied the RNN-Based or DBN-Based in the same database. This opens the door to
making more hDL combinations.
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4. Discussion

In this work, we have reviewed the main results published from the seminal studies in
2015 [12,23] to the end of 2020, with the aim of elucidating the main aspects of hDL-based
BCI. Our goal was to give an overview of the hDL architecture that was the most used
in BCI. We have also given information about the trends across the years regarding the
hDL-based BCI. Our challenge was to provide a guide on the choice to be made when an
hDL-based BCI approach is implemented, based on the choices that have been made in the
last five years in this field.

4.1. Preprocessing

One of the main reasons for using hDL is the growing trend to use raw EEG data
directly as an input of the hDL without external preprocessing and feature extraction. Even
though preprocessing is a very important step in the BCI system and physiological signals
analysis. Some efforts have been made to automate preprocessing [6,9,52,53] and this could
be a step towards BCI systems [54–56]. We expect this automatization, which goes beyond
the use of hDL, to gain popularity as a replacement for traditional processing pipelines.
In this respect, we have shown that only 21.28% of the papers did not use any type of
pre-processing, despite the use of hDL architectures. This trend was also highlighted by
Roy and colleagues [18]. The use or not use of preprocessing before hDL-based BCI is
still under debate, since the performance obtained is not clearly in favor of one of the
two. For example, some papers [10,11,57] obtained good performance, 98.81%, 95.33%
and 92%, respectively, even though they did not use any preprocessing step. However,
Jeong and colleagues and Saidutta and colleagues [26,58], using automated and advanced
preprocessing, reached a performance of 87% and 81%, respectively.

One point to take into account is the shape of the input used for the hDL; most of
the papers used a matrix as input for CNN. This is not an unexpected result since CNN
was designed to classify RGB images, and usually, most frameworks for deep neural
networks present examples of CNN 2D convolutional. Some papers used a matrix of raw
EEG signals (signals in rows, and channels in columns) as a 2D input for CNN, while Dai
and Colleagues [41] transformed EEG into spectrogram images and used it as a 2D input
to the CNN using Short Time Fourier Transform (STFT). Others, such as Chuanqi and
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colleagues and Tan and colleagues, [20,59], prepared their data as a sequence of images
to create an EEG video where each frame is an image and each pixel represents a channel
location. The color of each pixel refers to an extracted feature, for example, PSD. However,
among the papers that have transformed the EEG data into images and have used the
same architecture, but with different preprocessing types, the paper that used advanced
preprocessing data [20] achieved higher accuracy (72.22%) concerning the one without
preprocessing [59], which only achieved 35% accuracy. In the latter case, however, different
datasets were used, which means we cannot decide whether the difference in the accuracy
is due to the dataset or the preprocessing. What we can say is that the input shape might
determine whether or not the preprocessing is needed and at the same time, which kind of
hDL architecture is the more appropriate for the data in hand.

To shed new light on this point, we have investigated the papers that have used the
same datasets, in particular the BCI competition IV used in 36.1% (17/47) of the papers.
In this subset of the revised papers, only one study [60] avoided any type of preprocessing,
reaching a performance of 59%. The others that used preprocessing reached 74.58% accu-
racy on average. Based on this, we can conclude that it is advisable to preprocess the data,
even though the hDL framework is used.

4.2. hDL Framework

4.2.1. Feature Extraction

Referring to the papers inspected in this review, we can observe that the temporal
features have obtained the best performance (93.94%). Additionally, spatial (88.73%) and
temporal-frequency (88.71%) features also have good performance. We can associate these
results with the intrinsic nature of the EEG data and its high temporal resolution. On the
contrary, frequency features reached a lower accuracy performance of 88.36%. We can also
observe that by merging spatial and temporal features, the mean accuracy was reduced
to 81.63% with respect to the 93.94% obtained using only temporal features. We are
also aware that this comparison is not very accurate because of the lack of data, since
temporal features and spatial features were used by four and seven papers, respectively,
while spatial-temporal features were used in 22 papers. This encourages more exploration
toward temporal features and spatial features separately.

4.2.2. Normalization

It is worth noting, from Figure 4, that there is an increasing trend toward the use of
Batch Normalization (BN) among other algorithms. While BN is the most used, 67.85%,
there is still a lack of understanding of its working mechanism. This debate is carried
between some researchers who claim that the internal covariate shift is not reduced signifi-
cantly by batch normalization, despite common belief [33]. Others argue for attributing the
good performance to smoothing the objective function, while others propose that length-
direction decoupling is the reason behind its effectiveness [61,62]. From what has been
observed, the architecture that used BN did not suffer from weak performance; therefore,
BN is encouraged to be used in hDL-based BCI, since it was tested in the majority of papers.

4.2.3. Architecture

As seen in Figure 6, CNN-RNN and CNN-based are the most used architectures (47%
and 22%, respectively), CNN is known to work well when there is a spatial relationship
between the input data. This characteristic seems to be counterintuitive for the EEG data.
Instead, RNN performs well with sequences of data, like time-series that are more suitable
for the EEG characteristics and its high temporal resolution. Combining, both architectures
(i.e., CNN and RNN), we merge the spatial and temporal characteristics of the EEG as well.
By comparing CNN-based and RNN-based with DBN-based, we can see that DBN has
been used less often in the hDL-based BCI system, despite DBN being a good choice when
continuous values are presented as an input that looks perfect for EEG data. However,
it does not benefit from any data spatial relationship [63]. From the architectural point of
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view, this DBN lack has been recovered by merging it with CNN. However, this choice
has been adopted in only 7% of cases, and so more investigation attempts are encouraged
using CNN-DBN architecture.

As we have seen, CNN alone or in combination with other architectures are the most
used. We believe that this is more because of the fact that CNN is considered an automated
feature extractor with respect to its ability to handle spatial information, at least for the
EEG data. The ability to extract features automatically is due to its embedded image filters
implemented on CNN.

We could summarize that hDL is a subset of machine learning that uses a complex
combination of layers [27]. The main advantage of hDL in respect to ML is less needed
for human intervention [17]. However, the cost of this advantage could be summarized
in two steps: the need for larger training sets [43] and the high computational efforts
required [64–66].

4.2.4. Number of Layers

There is no specific rule to decide the number of layers. Generally, the main goal
is to minimize the number of layers to as minimum as possible to reduce the required
computational efforts. However, the trials and error approach is the most used to decide
the number of layers [67]. Some claims say that number of layers should be lower than the
number of the inputs [67]. From what we have found, there is no relationship between the
number of layers and the performance. Therefore, it is encouraged to reduce the number
of layers with the aim to reduce computational time cost. From the papers reviewed
here, we did not find any relationship between the number of layers and the accuracy
performance, suggesting that a tradeoff between accuracy performance and computational
time by trial-and-error approach is recommendable. Our study does not cover the effect of
the number of neurons in each layer, which will be an interesting topic to explore.

4.2.5. Optimization

From the reviewed papers, it is noticeable that ADAM is more desirable to be used in
hDL-based BCI systems. This is due to its stability in comparison to other optimization
methods. Empirically, it was shown that ADAM outperformed other optimizers in hDL-
based BCI systems [68,69].

Generally, optimizers perform better on preprocessed EEG data since they have a
higher signal-to-noise ratio. Instead, according to Kingma and colleagues [48], ADAM
optimizer performs better than other optimizers with data that has low SNR. Based on that,
it seems mandatory to use ADAM, especially in the case raw EEG data are used. Another
reason why ADAM should be more attractive with respect to others is that it combines the
advantages of other optimizers like AdaGrad and RMSProp [48].

5. Conclusions

In this review, we have highlighted the features necessary to develop a pipeline for
hDL based BCI, starting from the seminal studies proposed in 2015. Our investigation
revealed that electroencephalography is the most used signal to record human intentions.
This choice, in our view, is more due to the comfort of using EEG and its low cost rather
than a real choice based on the quality of the recorded data. In any case, the intrinsic EEG
low signal-to-noise ratio requires the pre-processing of EEG data intending to increase the
SNR, with a huge investment of time and dedicated expert personnel. Pre-processing of
the data might be a characteristic in favor of using hDL architecture charging this aspect
on the hDL architecture itself. Unfortunately, our results showed that, among the papers
that did not use data pre-processing (about 79%), the accuracy of the results was lower, on
the basis of the same architecture used. Furthermore, among those that have used data
pre-processing, the works that have implemented advanced pre-processing methodologies,
such as Blind Source Separation, are those that have obtained the best accuracy results.
This trend was also observed by fixing the dataset used.
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Another noteworthy observation concerns the features used. Time features appear to
be the most effective with 93.94% accuracy. This aspect is in line with the EEG technique
used, which is known to have a strong point in its temporal information. Finally, the
most widely used architecture was the Convolutional Neural Network, combined with
the Recurrent Neural Network, which combines the spatial (CNN) and temporal (RNN)
characteristics of the EEG. In this case, the spatial characteristics refer to the time-frequency
images generated, starting from the EEG data, and not the spatial accuracy in terms of
localization of the electrical neuronal activity that is disreputably weak in EEG.

In conclusion, we can say that it is still advisable to pre-process the data, even if hDL
architectures are used, and that the best architecture to be used strictly depends on the data
in hand.

6. Open Challenges

Overall, the hDL-based BCI system is a promising framework due to its flexibility,
reliability and high accuracy. However, this field is not fully explored and has many gaps
that need to be bridged. As a conclusion of our review, we provide a list of open challenges:

1. More research is needed that uses other brain imaging techniques like functional
Near-Infrared Spectroscopy (fNIRS), fMRI and MEG with the aim to investigate the
richness of the information that the brain signal is able to bring.

2. Investigating the effect of the presence or absence of preprocessing on the data and
the performance of hDL architecture.

3. Investigate the effects of the data’s input shape and their dimensionality.
4. Automating the entire pipeline of the hDL-based BCI system.
5. More exploration towards spatial and temporal features because it achieved high performance.
6. New architecture combinations are encouraged to be explored between frequency fea-

tures and temporal-frequency features with RNN-based and DBN-based architectures.
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Appendix A

Table A1. Abbreviations.

Abbreviations Meaning Note

AE Autoencoder Artificial Neural Network
AEP Azimuthal equidistant projection Projecting Algorithm
AI Artificial Intelligence -

ADAM ADAptive Momentum Optimization Algorithm
ALPS Age-Layered Population Structure Genetic Algorithm
BCI Brain-Computer Interface -

BGRU Bidirectional GRU Recurrent Neural Network Structure
BN Batch Normalization Normalization Algorithm
BPF Band Pass Filter Signal Processing tool (Filter)
BSF Band Stop Filter Signal Processing tool (Filter)
BSS Blind Source Separation Signal Processing tool
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Table A1. Cont.

Abbreviations Meaning Note

BVP Blood volume pressure Physiological Signal
CAR Common Average Reference Signal Processing tool
CCV Channel cross-covariance Statistical Extracted Feature
CNN Convolutional Neural Network Deep Learning Neural Network

CRAM Convolutional Recurrent Attention Model Convolutional Recurrent Neural Network
CSP Common Spatial Pattern Signal Processing tool

CSTP-NN Common Spatiotemporal Pattern Neural Network Artificial Neural Network
D-AE Denoising Autoencoder Artificial Neural Network
DBN Deep Belief Network Deep Learning Neural Network

DBN-GC Deep Belief Network Glia Cell Deep Learning Neural Network
DE Deferential Entropy Extracted Feature

DEAP Database for Emotion Analysis using
Physiological Signals Dataset Name

DL Deep learning -
DNN Deep Neural Network -
DWT Discreet Wavelet Transformation Signal Processing tool
EEG Electroencephalography Physiological Signal

eegmmidb EEG Motor Movement/Imagery DataBase Dataset Name
ERP Event-Related Potential Pattern in Electroencephalography
MI Motor Imagery Task/Protocol

EMG Electromyography Physiological Signal
EOG Electrooculography Physiological Signal
FC Fully Connected A layer in Deep learning Neural Network

FBCSP Filter Bank Common Spatial Pattern Signal Processing tool
FIDs Freéchet inception distances Evaluation metric
FIR Finite Impulse Response Signal Processing tool (Filter)

fNIRS Functional Near Infra-red signal Physiological Signal
GA Genetic Algorithm Artificial Intelligence Algorithm

GRU Gated recurrent unit Recurrent Neural Network Structure
GWO Gray Wolf Optimizer Optimization Algorithm
GSR Galvanic skin response Physiological Signal
HDL Hybrid Deep Learning -
HHS Hilbert–Huang spectrum Extracted Feature

HMM Hidden Markov Model Artificial Neural Network
ICA Independent Component Analysis Signal Processing tool
iid independent identically distributed Statistical Function

LPF Low Pass Filter Signal Processing tool (Filter)
LSTM Long Short-Term Memory Recurrent Neural Network Structure

MESAE Multiple-fusion-layer based ensemble classifier of SAE Deep Learning Neural Network
ML Machine Learning -

MLP Multilayer Perceptron Artificial Neural Network
MTRBM Multichannel temporal Restricted Boltzmann Machine Artificial Neural Network

NN Neural Network -
OVR-FBCSP One-versus rest filter bank common spatial pattern Signal Processing Tool

P300 Potential after 300 ms Pattern in Electroencephalography
PCA Principal Component Analysis Signal Processing Tool
PSD Power Spectral Density Signal Measure
RBN Restricted Boltzmann Machine Artificial Neural Network
ReLU Rectified Linear Unit Activation function in Neural Networks
RMSE Root Mean Square Error Statistical Function

RMSProp Root Mean Square Propagation Optimization Algorithm
RNN Recurrent Neural Network Deep Learning Neural Networks

RS Respiration signal Physiological Signal
SAE Stacked Autoencoder Deep Learning Neural Networks
SAM Selective Attention Mechanism Feature Extraction tool
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Table A1. Cont.

Abbreviations Meaning Note

SBD Stop Band Filter Signal Processing tool (Filter)
SGD Stochastic Gradient Descendent Optimization Algorithm

SI Speech Imagery Task/Protocol
SIMKAP Simultaneous capacity Task/Protocol

SNR Signal to Noise Ratio Signal Measure
SSAEP Steady-state Auditory Evoked Potential Task/Protocol
SSEP Steady-state Evoked Potential Task/Protocol

ST Skin temperature Physiological Signal
STFT Short-Time Fourier Transform Signal Processing tool
SVAE Stacked Variational AutoEncoder Deep Learning Neural Networks
VAE Variational Autoencoder Deep Learning Neural Networks

WAS-LSTM Weighted Average Spatial-LSTM Deep Learning Neural Networks
wICA wavelet-enhanced independent component analysis Signal Processing tool

Appendix B

Table A2 was designed to summarize relevant information from the reviewed articles
such as database used, BCI application, techniques used to record the brain activity, task
implemented, data preprocessing used, normalization used, features extracted, hDL archi-
tecture used, number of layers, optimization algorithm used and finally the performance
obtained. All the different hDL architectures were classified into the following five sub-
classes: Deep Belief Network (DBN)-based, Convolution Neural Network (CNN)-based,
Recurrent Neural Network (RNN)-based, CNN-RNN and CNN-DBN.

This table details the significant characteristics from the reviewed studies, as fol-
low: (1) Dataset used in the studies, where local dataset indicates that the authors have
recorded their own dataset, (2) The study application (N/A: study did not represent a
clear application and focusing on the classification algorithm), (3) Techniques of bio-signal
acquisitioning (BVP: Blood Volume Pressure, EEG: ElectroEncephaloGraphy, EMG: Elec-
troMyoGraphy, EOG: ElectroOculoGraphy, GSR: Galvanic Skin Response, RS: Respiration
Signal, ST: Skin Temperature), (4) Task/Protocol of the experiment (MI: Motor Imagery,
SIMKAP: simultaneous capacity, SSAEV: Steady State Auditory Evoked Potential, SSEV:
Steady State Evoked Potential), (5) Pre-processing for cleaning and denoising the data
(BPF: Band Pass Filter, CAR: Common Average Reference, CSP: Common Spatial Pattern,
DAE: Denoising AutoEncoder, FIR: Finite Impulse Response, ICA: Independent Com-
ponent Analysis, LPF: Low Pass Filter, PCA: Principal Component Analysis, SBF: Stop
Band Filter), (6) Normalization (RMSE: Root Mean Square Error), (7) Extracting the fea-
tures that represent the mental state (CCV: Channel Cross Variance, CNN: Convolutional
Neuronal Network, DE: differential Entropy, DWT: Discreet Wavelet Transformation,
HHS: Hilbert–Huang spectrum, PSD: Power Spectrum Density, SAM: Selective Attention
Mechanism), (8) Architecture of the classification models: CNN-based: Convolutional
Neuronal Network, CNN-DBN: Convolutional Neuronal Network-Deep Belief Network,
CNN-RNN: Convolutional Neuronal Network-Recurrent Neuronal Network, DBN-based:
Deep Belief Network, RNN-based: Recurrent Neuronal Network, (9) Number of layer of
each architecture, (10) Optimization (ADAM: ADAptive Momentum, GWO: Gray Wolf
Optimizer, RMSprop: Root Mean Square Propagation, SGD: Stochastic Gradient Descent),
(11) Results: How the method are evaluated. For a better presentation, each dataset was
put between parentheses.
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Table A2. A survey of the selected studies in hybrid Deep Learning-based Brain-Computer Interface (hDL-based BCI).
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2015 [23] BCI
competition IV N/A Offline MI

Filter-Bank CSP
(FBCSP)

A bank of 9 filters
from 4 to 40 Hz
with a width of

4 Hz

N/A
Static &

Dynamic
Energy

CNN-
Based 9 SGD 70.60%

2015 [12] Local Dataset Communication Online MI N/A
Batch

normal-
ization

Selective
Attention

Mechanism
(SAM)

RNN-
Based 7 Adam Optimizer 93.63%

2017 [20]
Local Dataset

BCI
competition IV

Medical Care Offline MI

Filtering
(BPF: Butterworth

filter:0.5–50 Hz)
DAE

N/A
Optical Flow
from the EEG

video

CNN-
RNN
CNN-
RNN

8 N/A 72.22%
70.34%

2017 [43] Local Dataset Communication Online MI

Filtering
(BPF: FIR:
1–200 Hz)

CSP
ICA

N/A Variance

CNN-
Based
CNN-
Based

27
27 SGD 70.80%

70.79%

2017 [25] DEAP dataset Emotion
recognition Offline SSEP

Filtering
(BPF: 4–45 Hz)

ICA
Z-Score

425 silent
physiological
features from
the 7 signals

DBN-
Based 10 N/A 73.70%
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2017 [46] Local Dataset N/A Offline P300

Filtering
(BPF: FIR:
2–35 Hz)

(SBF: 0.1 & 40 Hz)

N/A
Spatial and
temporal
features

CNN-
RNN
CNN-
RNN
CNN-
RNN

10
15
15

Adam Optimizer
67.25%
68.75%
70.00%

2017 [70] EEGmmidb Communication Online MI N/A N/A
Spatial and
temporal
features

CNN-
RNN 18 Adam Optimizer

RMSPropOptimizer 95.53%

2018 [71]

Local Datasets
BCI

competition III
BCI

competition IV

N/A Online MI

Referencing
Electrode
Selection

Artifact removal
(ICA & PCA)

Filtering
(BPF: 8–12 Hz &

18–26 Hz)

Batch
normal-
ization

16 spatial
features

through CNN
+ DWT

CNN-
RNN 8 N/A 87.36%

2018 [72] EEGmmidb N/A Offline MI N/A N/A
Spatial and
temporal
features

RNN-
Based 14 Adam Optimizer 68.20%

2018 [58] BCI
competition IV N/A Offline MI

Filtering
(68 BPF: 4–40 Hz)

CSP

Batch
normal-
ization

Variance
(Abstracted

Features
through
CNN)

CNN-
Based 8 Adam Optimizer 81%.
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2018 [65] Local Dataset Medical Care Online MI Filtering
(LPF: 40 Hz) N/A

Abstracted
Features

through CNN

CNN-
Based 13 Adam Optimizer 76.90%

2018 [59] OpenMIIR Medical Care Online SSAEP

Filtering
5 BPF

(α: 8–13 Hz, β:
14–30 Hz, γ:
31–51 Hz, δ:
0.5–3 Hz, θ:

4–7 Hz)

N/A
Optical Flow
from the EEG

video

CNN-
RNN 13 N/A 35%

2018 [73]

BCI
competition II

BCI
Competition III

N/A Offline P300

Filtering
(BPF: Butterworth

filter:
0.1–30 Hz)

Z-Score
Spatial and
temporal
features

DBN-
Based 4 Mini-batch 88.90%

2018 [69] DEAP dataset Emotion
recognition Offline SSEP

Filtering
BPF: Butterworth

filter
(α: 8–12 Hz, β:

12–30 Hz, γ:
30–100 Hz, θ:

4–8 Hz)

Z-score Differential
Entropy (DE)

CNN-
RNN 6 Adam Optimizer 90.24%

2018 [74] DEAP dataset Emotion
recognition Offline SSEP N/A Z-score

Spatial and
temporal
features

CNN-
RNN 5 Adam Optimizer 91.03%
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2018 [75] DEAP dataset Emotion
recognition Offline SSEP Filtering

(BPF: 4–45 Hz) N/A

(Statistical
measures)

(Power
features)
(Power

differences)
(Hilbert–
Huang

spectrum
(HHS))

DBN-
Based 7 N/A 76.36%

2018 [76]

Public
(Bashivan,
Bidelman,

Yeasin EEG
data set)

Mental state
detection Offline Cognitive

Filtering
(BPF 4–7, 8–13,

13–30 Hz)
N/A High-level

features
CNN-
DBN

14
17 SGD 91.32%

92.37%

2019 [60] BCI
competition IV N/A Offline MI N/A

Batch
normal-
ization

Spatial and
temporal
features

CNN-
RNN 9 Adam Optimizer

SGD 59%

2019 [77] BCI
competition IV N/A Offline MI

Filtering
(16 BPF:

Chebyshev Type II
4–38 Hz)

Truncated
normal
distribu-

tion
function

Spatial and
temporal
features

CNN-
RNN 8 Adam Optimizer 83%

2019 [66]
Local Dataset

BCI
competition IV

N/A Offline MI

Remove the
average
Filtering

(BPF: 8–13 Hz)

N/A Spatial
Features

CNN-
DBN 8 N/A 92%
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2019 [78] BCI
competition IV N/A Offline MI Filtering

(BPF: 0.5–100 Hz)

Batch
normal-
ization

Spatial and
temporal
features

CNN-
RNN 18 Adam Optimizer 40%

2019 [79] BCI
competition IV N/A Offline MI

Filtering
(1 Hz-45 Hz based

on
Morlet wavelet
transformation)

Batch
normal-
ization

Spatial and
temporal
features

CNN-
Based 4 SGD 76.62%

2019 [41]
Local Dataset

BCI
competition IV

N/A Offline MI
Filtering

(BPF: 6–13 &
17–30 Hz)

Batch
normal-
ization

Spatial
Features

through CNN

CNN-
DBN 10 SGD 56.4

(Kappa)

2019 [80] EEG based
speech database Medical Care Offline SI N/A N/A

Spatial and
temporal
features
Channel

cross-
covariance

(CCV)

RNN-
Based 18 Adam Optimizer 79.98%

2019 [17]
EEGmmidb

EEG-S
TUH

Motor Imagery
Recognition

Person
Identification

(PI)
Medical Care

Online Cognitive N/A N/A Spatial
features

CNN-
Based 5 Adam Optimizer 98.64%

2019 [57] Local Dataset Mental State
Detection Offline Cognitive N/A N/A DWT CNN-

Based 7 Adam Optimizer 92%
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2019 [81]

(Exploiting P300
Amplitude

changes)
(BCI

Competition III)
(Auditory

multi-class BCI)
(BCI-Spelling
using Rapid
Serial Visual
Presentation)
(Examining

EEG-
Alcoholism
Correlation)
(Decoding
auditory

attention)

N/A Offline P300

Filtering
(BPF:

0.15–5 Hz
0.1–60 Hz

0.1–250 Hz
0.016–250 Hz

0.02–50 Hz
0.016–250 Hz)

Batch
normal-
ization

Spatial and
temporal
features

DBN-
Based 62 RMSprop

optimizer
79.37%
88.52%

2019 [26] Local Dataset Mental
stateDetection Offline Cognitive

Filtering
(BPF: Butterworth

filter
1–50 Hz)

ICA

Batch
normal-
ization

Spatial and
temporal
features

CNN-
RNN 23 N/A 87%

2019 [11] Local dataset
Public dataset Communication Offline SI N/A N/A

Spatial and
temporal
features

CNN-
RNN 6 N/A 95.53%
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2019 [82] Local Person
identification Offline Resting

state DWT
Batch

Normal-
ization

Temporal
features

RNN-
Based 9 N/A 95.60%

2019 [83] Local Comunications
(Robotics) Online MI Filtering (LPF

40 Hz)

Batch
Normal-
ization

Spatial
features

CNN-
Based 19 Adam Optimizer 76.90%

2019 [84]

Public
(Bashivan,
Bidelman,

Yeasin EEG
data set)

Mental state
detection Offline Cognitive Filtering (BPF 0–7,

7–14, 14–49 Hz) N/A

Spatial
temporal
frequency
features

CNN-
RNN 13 RMSProp

Optimizer 96.30%

2020 [85] Local Dataset Medical Care Online MI

Filtering
(BPF: 0.2

Notch filter:
60 Hz)–45 Hz

Mini-max
normal-
ization

Temporal
features

RNN-
Based 6 Adam Optimizer 97.50%

2020 [86]
MAKAUT

Dataset
AI Dataset

Emotion
recognition Online SSEP

Filtering
(BPF 10 order:
Chebyshev)

N/A

(Time domain
EEG features)

(Frequency
domain EEG

features)
(Time-

frequency
domain EEG

features)
(The standard
CSP features)

RNN-
Based 6 Adam Optimizer 88.71%
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2020 [10] EEGmmidb N/A Offline MI N/A
Batch

normal-
ization

Spatial and
temporal
features

RNN-
Based 13 Adam Optimizer 98.81%

94.64%

2020 [42] DEAP dataset Emotion
recognition Online SSEP

Filtering
(BPF: 4–47 Hz)

Common average
referencing ocular
artifacts removing

by blind source
separation
algorithms

Z-score

Spatial and
temporal
features

PSD

CNN-
RNN 7 Adam Optimizer 93.20%

93.00%

2020 [64]

(Graz University
Dataset)

(BCI
competition IV)

N/A Offline MI
Filtering

(BPF: 8–24 Hz,
8–30 Hz, 8–40 Hz)

Batch
normal-
ization

Spatial and
temporal
features

CNN-
Based 19 Adam Optimizer 76.07%

2020 [4] BCI
competition IV N/A Offline MI Filtering

notch filter 50 Hz)

Batch
normal-
ization

Temporal
features

CNN-
RNN 8 Adam Optimizer 95.62%

2020 [87] BCI
competition IV N/A Offline MI

Filtering
(FBCSP: 12BPF:

6–40 Hz)
Hilbert transform

algorithm

Batch
normal-
ization

Spatial
features

DBN-
Based 29 N/A 0.630

Kappa

2020 [88] DEAP dataset Emotion
recognition Offline SSEP Filtering

(BPF: 4–45 Hz)

Batch
normal-
ization

Spatial and
temporal
features

CNN-
RNN 9 Adam Optimizer 99.10%

99.70%
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2020 [89] BCI
competition IV N/A Offline MI

Filtering
(BPF 4th order

Butterworth
4–7 Hz, 8–13 Hz,

13–32 Hz)

N/A High-level
features

CNN-
Based 5 N/A 74.60%

2020 [90] BCI
competition III Communication Online MI

Filtering
(BPF: FIR:
Hamming-
windowed:

4–40 Hz)
ICA

Common average
reference (CAR)

RMSE (root
mean
square
error)

Spatial and
temporal features

CNN-
RNN 9 Adam

Optimizer

0.6
0.43

Success
rates

2020 [91] EEGmmidb N/A Offline MI
Filtering

(BPF: 8–13 Hz
&13–30 Hz)

N/A Spatial and
temporal features

CNN-
RNN 20 SGD 82.10%

83.50%

2020 [92] BCI
competition IV

Data
Augmentation Offline MI

Filtering
(BPF: 8–30 Hz)
Spectrogram

Batch nor-
malization

Images features
from

Spectrogram

CNN-
Based 24 Adam

Optimizer

126.4
98.2

(FIDs)

2020 [93] BCI
competition IV

Person
identification offline MI

Filtering
(Chebyshev

4–8 Hz, 8–12 Hz...)

Truncated
normal

distribution

Spatial and
temporal features

CNN-
RNN 13 Adam

Optimizer Kappa 0.8
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2020 [94] “STEW” dataset
Mental

state
detection

Offline

“No
task”

&
(SIMKAP)

Filtering (BPF
4–32 Hz)

Batch
Normal-
ization

(Frequency
features (PSD))
(Linear domain

features
(Autoregressive

coefficient))
(Non -Linear

domain features
(approximate
entropy, Hurst

Exponent)
(Time domain)

RNN-
Based 11

Gray Wolf
Optimizer

(GWO)
84.45%

2020 [95]
BCI competition

IV
Local Dataset

N/A Offline MI
SI

Filtering
(Butterworth BPF

4–35 Hz)

Batch
Normal-
ization

Temporal-spatial-
frequency
features

CNN-
RNN
CNN-
RNN
CNN-
RNN
CNN-
RNN

20
15
20
15

Adam Optimizer

86%
82%
82%
71%

Kappa:
0.64
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Appendix C

Appendix C.1. Deep Learning Overview

The starting point to DL algorithms is Multilayer Perceptron (MLP) which is an
Artificial Neural Network (ANN) with more than one hidden layer, and this represents the
simplest DL algorithm. DL algorithms are categorized into discriminative, representative,
generative and hybrid.

Discriminative algorithms are used for combining feature extraction and classification
steps and act as supervised learning including Convolutional Neural Network (CNN) and
Recurrent Neural Network (RNN). Firstly, CNN is used to extract the hidden latent spatial
information, from images mainly, and classify that information depending on the fully
connected layer and SoftMax layer (a decision-making layer). The main structure of CNN
is composed of a series of convolutional and pooling layers with different parameters.
Secondly, RNN is a neural network that receives information not only from the present
state but also from the previous state. This unique feature of RNN makes it excellent for
time-related problems. Two substructures of RNN are used, Long Short-Term Memory
(LSTM) and Gated Recurrent Units (GRU).

Representative algorithms are used for encoding features from the input and work
as unsupervised learning. The simplest algorithm is Autoencoder (AE) which is consists
of symmetric input and output layers and hidden layer, more than two hidden layers to
be considered as Deep Autoencoder (D-AE) and it must be an odd number of layers. By
making the weights of the connection input-hidden and hidden-output similar, Restrict
Boltzmann Machine (RBM) is defined. It is represented as one visual layer, input, and
output together, and hidden layers with bidirectional connection all along with the network.
By Stacking AEs or RBMs, we got a new kind of network known as Deep Belief Network
(DBN).

Generative algorithms are not yet widely applied in BCIs. It could be considered as
an enhanced model of AEs with probabilistic features. Hybrid deep learning algorithms
are obtained by combining two or more of the simple deep learning algorithms.

Appendix C.2. Deep Belief Networks-Based Hybrid Deep Learning Algorithms

Previous Hybrid DBN-based methods used in BCI systems could be categorized into
three structures:

• DBN assisted by Glia cells (GC-DBN)
• Multiple-fusion-layer based ensemble classifier of stacked autoencoders (MESAE)
• Event-Related Potential Network (ERP-NET)

Appendix C.2.1. DBN Assisted by Glia Cells (GC-DBN)

This method improves the DBN by adding assisting Glia Cells (GC). Since DBN is a
group of stacked RBMs, each glia cell is connected to a unit in the hidden layer of RBM.
GC could be considered as a thresholding reference for activating each neuron. The GC
activity depends on the corresponding neuron, i.e., the GC passes or decays the activation,
depending on whether the corresponding neuron signal reaches a prespecified threshold,
before conveying it to the next GC.

From a mathematical point of view, the activation functions turn into Equation (A1)

hj = σ (hj* +α.gi), (A1)

where hj is the output of the hidden node j. σ is the activation function, hj* is related to the
connection weight of the visual unite i and the hidden unit j, α is the weight coefficient of
glia effect value, gi is the glia effect value.

Despite the fact that DBN is hard to work for mining inter-frequency and inter-
channel correlation information, the role of GCs in DBN can overcome this issue in emotion
recognition BCI systems [75].
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Appendix C.2.2. Multiple-Fusion-Layer Based Ensemble Classifier of Stacked
Autoencoders (MESAE)

This method depends on using 3-layers stacked autoencoders (SAEs), and its output
is fed to a feature fusion network creating multiple-fusion-layer based ensemble classifier
of SAEs (MESAE).

To create this network, three steps are required:

• Initialize member SAEs.
• Model structure identification for member SAEs.
• Construct a hierarchical feature fusion network.

This hybrid deep learning method was applied for emotion recognition task.
It has a higher generalization capability than the shallow emotion recognition methods

due to its complexity in comparison with the shallow ones.
One previous experiment on this net depended on six sets of abstracted features ex-

tracted from EEG, Electrooculography (EOG), Electromyography (EMG), skin temperature,
galvanic skin response (GSR), blood volume pressure and respiration signal by using a
specific way related to K-means clustering [25,81].

Appendix C.2.3. Event-Related Potential Network (ERP-NET)

This method aims to detect the ERP patterns in EEG signals depending on the tem-
poral and spatial pattern. The method name is ERP-Net which consist of five layers of
Multichannel Temporal Restricted Boltzmann Machine (MTRBM). The network was tested
on data set IIb in BCI competition II and data set II in BCI Competition III and the results
were compared against many other algorithms, namely, SVM, CNN, Lasso, BLDA, STDA,
gLasso and gsBLDA. The ERP-NET could be considered as a promising analytical tool for
the research on ERP signals [73].

Appendix C.3. CNN-Based Hybrid Deep Learning Algorithms

Convolutional Neural Networks is one of the most admired deep learning models
specialized in spatial information exploration. CNN is widely used, in the reviewed
literature, to discover the latent spatial information in applications such as the analysis
of motor imagery data [40], robotics [65,83]. increasing the learning capacity of BCI
systems [58], detecting depression with EEG signals and to evaluate a novel deep learning
method for classifying binary motor imagery data [41].

Some studies propose new network structures that mix CNN with representation
algorithms for feature extraction and classification. Firstly, linear and nonlinear classifiers
merge the simplicity of machine learning algorithms and the efficiency of CNN since it
avoids the traditional feature engineering process by learning high-level features automati-
cally. Linear classifiers collect discriminant classifiers that use linear decision boundaries
between the feature vectors of each class. They include Linear Discriminant Analysis
(LDA), and Support Vector Machines (SVMs) [23]. On the other hand, Nonlinear Bayesian
classifiers are classifiers modelling the probability distributions of each class and use the
Bayes rule to select the class to assign to the current feature vector. The Hidden Markov
Model (HMMs) [58] can be represented as the simplest dynamic Bayesian network. Sec-
ondly, Neural Networks (NN) [43] can be used to approximate any non-linear decision
boundary. A type of NN is the Multi-Layer Perceptron (MLP), typically employing only
one or two hidden layers and long-short term memory (LSTM). Finally, probabilistic-based
methods are used to capture the most hidden features of the training data such as stacked
autoencoder (SAE) [40] and Variational autoencoder (VAE) [41]. As a whole overview of
hybrid-DL Based BCIs, according to the type of combination, boosting, voting, or stacking,
we can note that the combination of these methods results in consistent increases of the
accuracy in almost all studies. Lastly, the classifier combination seemed to be the best
performing classifiers for EEG-based BCIs.
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A further method depended on Reinforced-CNN aims to classify Cognitive Activity
Recognition into Movement Intention Recognition (MIR), Person Identification (PI) and
Neurological Diagnosis (ND), this method goes into extracting the robust and distinct
deep features automatically by combining the deep reinforcement learning and attention
mechanism. The proposed Reinforced CNN selects the best attention area that leads to the
highest classification accuracy using a non-linear reward function to encourage the model.
Comparing the results of this method with literature shows an improvement of 2.3% in
classification accuracy an average over three datasets [96].

Another companion to CNN is a Genetic algorithm. This method based on Merging
CNN with an Evolutionary Algorithm (EA) to classify EEG signals when seeing an object
(Visible Mode) and imagining an object (Invisible Mode). The proposed models filter the
output of CNN using Discrete Wavelet Transform (DWT) with Coiflet wavelet mother
signal. And the output of the filter is fed into an Age-Layered Population Structure (ALPS)
Genetic Algorithm (GA). The results compared with five CNN-based algorithms resulting
in 92% accuracy [57].

Appendix C.4. RNN-Based Hybrid Deep Learning Algorithms

The use of Hybrid-DL based on RNN has two main structures:

• Weighted Average Spatial-LSTM (WAS-LSTM)
• Stacked RNN

Appendix C.4.1. Weighted Average Spatial-LSTM (WAS-LSTM)

It focuses on the spatial dependency between different dimensions at the same time-
point instead of the temporal dependency between a sequence of samples collected at
different time-points in normal LSTM [12].

To obtain the optimal dependency which includes the most distinctive activates was
proposed alternative composed of three components:

• The autoregressive model.
• The Silhouette Score.
• The reward functions.

The main reasons for WAS-LSTM usage:

1. To capture the cross-relationship among feature dimensions, which is extracted using
Selective Attention Mechanism (SAM), in the optimized focal zone.

2. It could stabilize the performance of LSTM via average methods.

This makes WAS-LSTM an efficient method.

Appendix C.4.2. Stacked RNN

RNN is extended by LSTM by adding three gates to an RNN, which enable LSTM to
learn long-term dependency in a sequence and make it easier to be optimized [72,85].

A bidirectional LSTM is a combination of two normal LSTM which allows depen-
dencies in the reverse directions, so it encodes spatial information, in comparison with
standard LSTM that flows in the forward time direction and encodes temporal information.

Consequently, the combination of the two types encodes both temporal and spatial
information.

The steps following are applied in order to meet two conditions, independent identi-
cally distributed (i.i.d) and to fully utilize the RNNs’ potential:

1. Rearrange the index of recorded electrodes according to their spatial positions so the
data can be viewed as a spatial sequential stream.

2. Spilt the samples according to the trial index.
3. A parallel RNNs model was proposed.
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The advantages of this method could be summarized by transforming EEG into a
spatial and temporal sequence which outperforming older methods by over 8.25% in
intention recognition accuracy.

Appendix C.5. CNN-RNN Hybrid Deep Leering Algorithms

A great method to extract spatial and temporal features from raw EEG signal is the
combination of two mostly used DL algorithms, CNN and RNN. CNN-RNN structure is
used in many BCI systems, which could be divided into different specialized structures as
follows.

The first one is the IncepCNN built combining BGRU as RNN structure with CNN.
Four levels of the convolutional kernel are stacked, with ReLU activation function, followed
by a fully connected layer. Afterwards, it is used BGRU, a bidirectional mechanism to
transfer information in both directions. Thanks to this hybrid CNN-BGRU all features
extracted can be well separated [26,79].

On the same side, there is the CNN-LSTM-DWT-BN structure that fuses spatial-
temporal features to catch temporal correlation and incorporate it into the system. It
combines a hierarchical feature extractor and spatial convolution layer with DWT and
LSTM that capture all temporal dynamics in the data [69,71] Very similar to this, is CRAM,
a Convolutional Recurrent Attention Model that uses CNN to encode the representation
of EEG signals, starting with Encoded EEG Temporal slices, a mechanism is introduced
to discover the attentive temporal dynamics of them, using also LSTM to construct RNN
layers [60].

Another way is followed by the hybrid structure that converts EEG signal into an EEG
Video following many steps:

• projecting the 3D locations of the electrodes into two dimensions using azimuthal
equidistant projection (AEP);

• interpolating these locations into a 2D grey image;
• Show those images in a timeline that produce the EEG-video.

This technique allows to extract information from the video and applied to a symmetric
CNN. Afterwards, the output of RNN passes through two RNNs (LSTM or GRU) with a
memory cell after being reshaped. [20,78].

Up to date, BCI system depends on Speech Imagery to be decoded using EEG signal
depending on channel cross-covariance (CCV). The algorithm called Hierarchical Struc-
ture is based on three hierarchical levels. Firstly, the first four layers are two different
independent networks. One branch is CNN, and the other branch consists of two fully
connected hidden layers stacked with two LSTM layers. Secondly, the fifth layer is the
deep autoencoder layer followed by the fully connected layer. Finally, the output layer is
represented by a SoftMax layer [80]. It is also important to reduce the time-training of a
Deep classification, to do that there is a Deep Transfer Learning framework built on two
steps to achieve the final EEG category labels. Starting from EEG data, all features are
extracted by the transfer network. After that, the features pass in two RNN layers, two
full-connected layers and LSTM to avoid vanishing gradient problems during the training.
In the end, are applied two full-connected layers and the last layer use a SoftMax to achieve
the final EEG label [11,59].

For classifying P300 BCI Signals, there are also hybrid structures like the Multidimen-
sional CNN that combine a deep hierarchical feature extractor with the one that can learn
to recognize and synthesize the temporal features. This structure depends on combining
different architectures of 2D-CNN and 3D-CNN with RNN-LSTM [46,69].

The hybrid structures could be used for many aims, one of these is to decodes the
brain activity into a text with the ability to implicate this method in real-world applications.
Depends on a framework that merges CNN with RNN using a dataset called Eegmmidb,
this method results in an accuracy of 95.53% [70]
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