
Targeting splicing factors for cancer therapy

ARIEL BASHARI, ZAHAVA SIEGFRIED, and ROTEM KARNI

Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University
Hadassah Medical School, Jerusalem 9112001, Israel

ABSTRACT

Alternative splicing (AS) of mRNAs is an essential regulatory mechanism in eukaryotic gene expression. AS misregulation,
caused by either dysregulation or mutation of splicing factors, has been shown to be involved in cancer development and
progression, making splicing factors suitable targets for cancer therapy. In recent years, various types of pharmacological
modulators, such as small molecules and oligonucleotides, targeting distinct components of the splicing machinery, have
been under development to treatmultiple disorders. Although these approaches have promise, targeting the core spliceo-
some components disrupts the early stages of spliceosome assembly and can lead to nonspecific and toxic effects.
New research directions have been focused on targeting specific splicing factors for a more precise effect. In this
Perspective, wewill highlight several approaches for targeting splicing factors and their functions and suggest ways to im-
prove their specificity.
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INTRODUCTION

Splicing of protein-coding genes is an essential regulatory
mechanism in eukaryotic gene expression. Alternative
splicing (AS) utilizes exon skipping, intron retention, mutu-
ally exclusive exons and differential 5′ or 3′ splice sites to
generate mRNA and protein isoforms with distinct proper-
ties, originating from the same gene, thereby diversifying
the proteome. AS is a highly regulated process, andmisre-
gulation of this process contributes significantly to the sus-
ceptibility for and development of diseases, including
cardiovascular diseases, immune diseases, neurodegener-
ation, metabolic diseases, and cancer (for review, see
Zhang et al. 2021).

Specifically in cancer, AS misregulation was shown to
contribute to tumor initiation, progression and invasion
by modifying the relative expression of isoforms of various
oncogenes and tumor suppressors (for reviews, see Shilo
et al. 2015; Kozlovski et al. 2017; Siegfried and Karni
2018; Yoshimi et al. 2021). A comprehensive study of 32
cancer types has demonstrated that themajority of cancers
have up to 30% more AS events in tumor samples com-
pared to the corresponding normal tissue (Kahles et al.
2018). Using transcriptomic analyses, cancer-specific splic-
ing patterns, including nonsense-mediated mRNA decay
(NMD) events induced by intron retention and intronic

cryptic splice-site activation, were discovered in thousands
of genes in both hematological malignancies and solid tu-
mors (Graubert et al. 2012; Furney et al. 2013; Brooks et al.
2014; Ferreira et al. 2014; Danan-Gotthold et al. 2015;
Jung et al. 2015; Yoshimi et al. 2019; Calabrese et al.
2020). Differentially spliced genes were shown to contrib-
ute to cancer initiation and progression (Brown et al.
2011; Ben-Hur et al. 2013; Maimon et al. 2014; Shilo
et al. 2014; Climente-González et al. 2017; Mogilevsky
et al. 2018; Yoshimi et al. 2019), alter tumor sensitivity to
chemotherapy and hormonal treatment (Calabretta et al.
2016; Paschalis et al. 2018; Tripathi et al. 2019), and
can be used as diagnostic or prognostic biomarkers
(Hofstetter et al. 2010; Zhanget al. 2019). Among thediffer-
entially spliced genes linked to the development of neo-
plasms are genes involved in proliferation and apoptosis
(Bechara et al. 2013; Maimon et al. 2014; Pavlyukov et al.
2018), telomere elongation (Wang et al. 2016), cell cycle
regulation (Yeoet al. 2016; Bakeret al. 2021), tumormetab-
olism (Christofk et al. 2008; Ben-Hur et al. 2013), and angio-
genesis (Pradella et al. 2021).

AS is controlled by both cis-acting regulatory elements
within the pre-mRNA and trans-acting splicing factors
(Fig. 1A). Accordingly, cancer-specific misregulation can
be induced either by mutations in intronic/exonic cis-act-
ing regulatory sequences of the spliced gene, often gener-
ating novel splice sites and thereby affecting splicing (Roca
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et al. 2013; Supek et al. 2014; Frampton et al. 2015; Jung
et al. 2015), or bymisregulation of trans-acting splicing fac-
tors (e.g., over- or underexpression, copy-number varia-
tion or mutations) that may affect their function (for
review, see Lee and Abdel-Wahab 2016; Urbanski et al.
2018). Thus, targeting AS has become a desirable goal
in cancer therapy, and multiple therapeutic strategies tar-
geting AS misregulation in cancer are in different stages
of development. In this Perspective, we will discuss recent
advances in AS modulation, focusing on methods to spe-
cifically target splicing factor activity. In addition, we will
suggest ways to develop these approaches to be safer
and more efficient.

SPLICING FACTORS AND CANCER

Trans-acting splicing factors are the most prominent medi-
ators of splice-site recognition, selection and alternative
splicing regulation. In general, the splicing machinery can
be divided into two groups of components. The first group
is represented by core spliceosomal components that bind
and assemble around the 5′ splice site (the U1 complex)
and the 3′ splice site and branch site (U2 complex) and con-
sist of small nuclear ribonucleoproteins (snRNPs) and pro-
teins (for reviews, see Patel and Steitz 2003; Wahl et al.

2009). The second group is comprised of splicing factors
that interact with cis-elements within exons or introns and
enhance or suppress spliceosome assembly leading to
splicing activation or inhibition, respectively (for reviews,
see Cartegni et al. 2002; Black 2003). Two important fami-
lies of splicing regulators are serine/arginine-rich (SR) pro-
teins and heterogeneous nuclear ribonucleoproteins
(hnRNPs). Some of the other splicing factors relevant to
cancer biology are the RBFOX1/2/3 proteins, CELF pro-
teins, MBNL1, NOVA proteins, and STAR (signal transduc-
tion and activation of RNAmetabolism) proteins, including
SAM68 (Chen and Manley 2009). SR proteins mediate
splicing, in part, by recognizing exonic and intronic splicing
enhancers (ESEs and ISEs, respectively), stabilizing the in-
teractions of the splicing machinery on the splice sites.
hnRNPs, on the other hand, recognize exonic and intronic
splicing silencers (ESSs and ISSs, respectively), compete
with SR protein binding and, in most cases, inhibit splicing
by various mechanisms, that are only partially understood
(Black 2003; Busch and Hertel 2012). The orchestrated
binding andcompetition ofmultiple splicing factors, some-
timeswith opposing functions, on a targetmRNA, results in
the tight regulation of AS. This fine-tuning is disrupted in
cancer, where certain SR proteins and hnRNPs have been
shown to be dysregulated, acting as either oncoproteins
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FIGURE 1. Targeting splicing factors by small molecules. (A) Scheme showing both cis and trans components involved in alternative splicing. (B)
Inhibition of SF3B/U2 snRNP by a small molecule. (C ) Inhibition of CLK protein by a small molecule. (D) Recruitment of RBM39 to the E3 ligase
CRL4 substrate receptor DCAF15 by a small molecule, leading to its ubiquitination and degradation. (E) Direct inhibition of a splicing factor by a
small molecule. (F ) Inhibition of the UHM–ULMbond between two splicing factors by a small molecule. (G) Direct inhibition of a splicing factor by
a small molecule targeting specific RRM. (H) Direct binding of a small molecule to a splicing factor causing allosteric modulation resulting in either
inhibition or activation of the splicing factor.
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or tumor suppressors (Karni et al. 2007; Golan-Gerstl et al.
2011; Anczuków et al. 2012; Cohen-Eliav et al. 2013; Jbara
et al. 2021).

The activity of both SR proteins and hnRNPs is regulated
at the transcriptional level (e.g., activation of SRSF1 tran-
scription by c-Myc) (Das et al. 2012) and post-transcription-
ally by multiple modifications such as phosphorylation,
methylation and ubiquitination (de Kesel et al. 2022), and
by mechanisms such as NMD (Lareau et al. 2007; Sun
et al. 2010). Phosphorylation is known to affect splicing fac-
tors’ protein–protein interactions, binding to target tran-
scripts and intracellular localization (Naro and Sette
2013). An extreme example is SRSF10 (SRp38), which func-
tions as a specific splicing activator when phosphorylated,
but upon dephosphorylation becomes a splicing repressor
(Feng et al. 2008). SR protein phosphorylation is mediated
by serine–arginine protein kinases (SRPKs) andCDC-like ki-
nases (CLKs), as well as proteins involved in cellular signal
transduction pathways, such as MAPK, PI3K, and AKT,
which also mediate phosphorylation of hnRNPs (Naro
et al. 2021; de Kesel et al. 2022). These modifications are
potential targets for modulating the activity of splicing
factors.

Mutation of a single splicing factor can alter the RNApro-
cessing of thousands of genes and therefore can have a sig-
nificant impact on the cell’s transcriptome. One possible
outcome is tumor initiation and progression (Dvinge et al.
2016). Since the first reports identifying somatic mutations
in genes encoding core spliceosomal proteins in hemato-
logical malignancies (Papaemmanuil et al. 2011; Wang
et al. 2011; Yoshida et al. 2011; Graubert et al. 2012;
Quesada et al. 2012), many other studies have followed.
Whole-exome sequencing data analysis from 33 tumor
types in The Cancer Genome Atlas (TCGA) revealed that
somatic mutations in SF3B1, U2AF1, SRSF2, and RBM10
are common in various types of cancers (Seiler et al.
2018a). Splicing factor mutations are usually heterozygous
and mutually exclusive (Yoshida et al. 2011). It has been
demonstrated that cancer cells harboringmutated splicing
factors, such as U2AF1, SF3B1, and SRSF2, are more de-
pendent on wild-type spliceosomal activity for viability
than wild-type cells, and therefore are more sensitive to
pharmacological perturbation of the spliceosome (Lee
et al. 2016; Shirai et al. 2017; Obeng et al. 2022). These
studies support the development of spliceosomal-target-
ing drugs as potential therapy for cancers with mutations
in splicing factors.

TARGETING SPLICING FACTORS FOR CANCER
THERAPY

Several splicing factors have been shown to act as potent
driver oncogenes in specific cancers (Karni et al. 2007;
Golan-Gerstl et al. 2011; Anczuków et al. 2012; Cohen-
Eliav et al. 2013). Over the past few years, several thera-

peutic strategies targeting aberrant splicing factors activity
have been under development, with some of them already
in clinical trials for cancer therapy.

Small molecules

Small molecules can be used to inhibit or enhance splicing
by targeting distinct aspects of splicing; by interfering with
proteins participating at any stage of spliceosome assem-
bly, by inhibiting accessory splicing factor protein kinases,
or by directly targeting the accessory splicing factors them-
selves. Here we will highlight several examples of small
molecules that have been developed and tested to inter-
fere with splicing factor activity.

Some of the first small molecules targeting splicing were
developed from natural compounds and their derivatives.
These molecules, which were discovered as anticancer
drugs, were later characterized by their binding to and inhi-
bition of the SF3b subcomplex in U2 small nuclear ribonu-
cleoprotein (snRNP), which recognizes the branchpoint
sequence in the pre-mRNA and is part of the catalytic
core of the splicing reaction (Fig. 1B). Among the SF3b in-
hibitors are R901464, and its methylated derivative spli-
ceostatin A, which were shown to inhibit splicing in vitro
and promote pre-mRNA accumulation by binding to
SF3b in the spliceosome (Kaida et al. 2007). Pladienolide
B is another natural compound that showed antitumor ac-
tivity and binds directly to the SF3b subunit SAP130, caus-
ing its inhibition (Kotake et al. 2007). Preclinical studies
demonstrated that E7107, a semisynthetic derivative of
Pladienolide B, and H3B-8800, a small, orally bioavailable
molecule with a pladienolide-based scaffold, inhibit activi-
ty of the spliceosome by blocking an ATP-dependent
remodeling event that exposes the branch point-binding
region (BBR) of U2 snRNA (Folco et al. 2011; Seiler et al.
2016, 2018b). E7107 was the first splicing modulator to
enter clinical trials. Phase I trials of E7107 in solid tumors re-
sulted in the expected splicing modulation; however, little
to no clinical benefit was achieved. Moreover, an ocular
toxicity was observed that further prevented the continua-
tion of these trials (Eskens et al. 2013; Hong et al. 2014).
Similar outcomes were seen in the preclinical studies of
H3B-8800, and further in phase 1 trials in myelodysplastic
syndromes (MDS), acute myeloid leukemia (AML) and
chronic myeloid leukemia (CML) patients, which showed
splicing modulation but no clinical response (Steensma
et al. 2021). The authors suggest that the amount of splic-
ing inhibition necessary for cell death may be higher than
what was achieved in human subjects, or that abnormal
splicing, although it plays a role in disease development,
is not sufficient to sustain the survival of tumor cells.
Alternatively, it may be that prolonged inhibition is re-
quired for clinical activity. Another possibility may be that
the cancer cells have acquired additional mutations and
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are no longer dependent on the specific splicing
modulation.
High-throughput screening of small molecule libraries

using cell-free in vitro splicing assays, as well as cell-based
assays, have been used to identify direct spliceosome in-
hibitors. Using these methods researchers have been
able to screen small molecule libraries ranging from
∼2000–70,000 compounds (Effenberger et al. 2017). In
one such assay, using reverse transcription followed by
quantitative PCR as a readout, three small molecules
that inhibit splicing were identified: (i) Tetrocarcin A
(NSC333856), a knownantibiotic and antitumor compound
that inhibits the antiapoptotic gene BCL2, interferes with
the stability of complex A, an early spliceosomal complex,
or with the transition to the next assembly stage; (ii) an in-
dole derivative (NSC635326) with no known biological ac-
tivities, inhibits all stages of spliceosome assembly; and (iii)
a Naphthazarin derivative (NSC659999), which was previ-
ously shown to suppress tumor growth, is assumed to inhib-
it late-stage spliceosome assembly. However, these
compounds showed lowpotency,with IC50 for in vitro splic-
ing in the micromolar range. Therefore, further improve-
ment of the activity was tested using structure activity
relationship (SAR) approaches but showed limited success
(Effenberger et al. 2013, 2015).
An alternative approach to target splicing factors is to tar-

get the kinases that phosphorylate them (Fig. 1C). There
are several examplesofmolecules that inhibit phosphoryla-
tionof splicing factorswith thepotential to treat various dis-
eases such as Duchennemuscular dystrophy (DMD), Down
syndrome, angiogenic diseases and lung cancer (for re-
view, see Ohe and Hagiwara 2015). For example, a glyco-
sylated indolocarbazole derivative (NB-506) was shown to
affect SRSF1-mediated splicing targets, possibly by inhibit-
ing topoisomerase I’s ability to phosphorylate SRSF1 (Pilch
et al. 2001; Soret et al. 2005). Chlorhexidine, a compound
widely used in the clinic as adisinfectant and topical anti-in-
fective agent, was identified by a high-throughput cell-
based assay to be a specific inhibitor of the CDC2-like
kinase (CLK) family of SR protein kinases. In vitro, chlorhex-
idine had a selective effect on members of the CLK family,
with Clk4 and Clk3 being the most sensitive to treatment
with IC50 values of 10 and 15 µM, respectively. Clk2 and
Clk1 were less sensitive to chlorhexidine, with IC50 values
of 25 and >50 µM, respectively (Younis et al. 2010).
Through an extensive screening of 100,000 chemical com-
pounds in an in vitro phosphorylation assay, it was found
that TG003, a benzothiazole compound, inhibits the activ-
ity of Clk1/Sty and Clk4. TG003 inhibits Clk1/Sty SRSF1
phosphorylation activity, resulting in splicing alterations
in vitro and in vivo (Muraki et al. 2004). In a later study,
TG003 was also found to promote the skipping of exon
31ofdystrophinwhen it harbors anonsensemutation, leav-
ing the wild-type exon 31-bearing dystrophin intact, thus
increasing the production of the dystrophin protein in a

dystrophinopathy patient’s cells ex vivo (Nishida et al.
2011). The exact mechanism by which TG003 acts on the
dystrophin gene is yet to be determined. Additionally, its
instability hinders its clinical application, therefore a better
solution for increasingdystrophinprotein level in patients is
needed. In 2017, an orally available inhibitor of Clk1,
named TG693, was demonstrated to promote the skipping
of the mutated exon 31 in DMD patient-derived cells.
TG693 increased the production of a functional protein
through inhibition of Clk1 phosphorylation activity, partic-
ularly of SRSF4 and SRSF6. These results were recapitulat-
ed also in vivo (Sako et al. 2017). It should be noted that
since one kinase phosphorylates multiple targets, this ap-
proach is expected to affect several splicing factors, and
therefore might lead to nonspecific effects (Ohe and
Hagiwara 2015). Nevertheless, in some cases, this inhibi-
tion affects specific substrates, as in the case of SRSF6
(Ajiro et al. 2021).
Anticancer sulfonamides were the focus of drug-discov-

ery for many years due to their anticancer activity, although
their targets and mechanisms of action were not estab-
lished. However, in 2017, Han et al. identified the mecha-
nism of action of indisulam, a sulfonamide previously
tested in patients with solid tumors (Han et al. 2017).
They found that indusulam, and other related sulfon-
amides, killed cells by causing degradation of an accessory
RNA splicing factor, RNA-binding protein 39 (RBM39).
RBM39 participates in transcriptional regulation, alterna-
tive splicing, and protein translation and is up-regulated
in many types of cancer (Xu et al. 2021). Inhibition of
RBM39 activity results in RNA splicing alterations and was
shown to be lethal to cancer cells (Xu et al. 2021). Aryl sul-
fonamides recruit RBM39 to the E3 ligase CRL4 substrate
receptor DCAF15 (which is part of the CRL complex), lead-
ing to its ubiquitination anddegradation (Fig. 1D;Han et al.
2017; Ting et al. 2019). Proteins that mediate protein deg-
radation are often referred to as “molecular glues” (Dong
et al. 2021). This class of molecules consists of RBM39 de-
grading aryl sulfonamides, including indisulam (E7070),
tasisulam, E7820, and chloroquinoxaline sulfonamide.
A phase 2 study of indisulam in combination with idaru-

bicin and cytarabine, the standard-of-care therapy for
AML, showed good safety properties and yielded a 35%
response rate in patients with relapsed/refractory AML
(Assi et al. 2018). After these encouraging results, the au-
thors of this study proposed that the combination of drugs
should be studied in a more homogeneous group of pa-
tients with AML or high-risk MDS whose leukemic cells ex-
press mutant splicing factors.
A more specific method for splicing inhibition is direct

inhibition of specific splicing factors, rather than targeting
the spliceosome (Fig. 1E). Quercetin, a phytochemical
compound targeting splicing, is a naturally occurring poly-
phenolic flavonoid shown to have efficacy in multiple can-
cers, including lung, breast, prostate and pancreatic
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cancers. In addition to other activities, quercetin triggers cell
cycle arrest, promotes apoptosis, and inhibits angiogenesis
(for review, see Vargas and Burd 2010). hnRNPA1 was iden-
tified as the target of quercetin, and the anticancer effects of
quercetin are mediated, in part, by impairing functions of
hnRNPA1 (Ko et al. 2014). Quercetin acts bybindingdirectly
to the C-terminal region of hnRNPA1, interfering with its
ability to move freely between the nucleus and the cyto-
plasm, which results in its cytoplasmic retention (Ko et al.
2014). The authors report that the Kd value of quercetin
for binding to full-length hnRNPA1 was approximately 8.9
µM, and that the Kd for binding to the carboxy-terminal re-
gion of hnRNPA1 was approximately 1.7 µM, leading them
to conclude that the carboxy-terminal region of hnRNPA1 is
required for interaction with quercetin. Further studies with
quercetin have shown that targeting hnRNPA1 by quercetin
can overcome enzalutamide resistance in prostate cancer
cells (Tummala et al. 2017). Therefore, quercetin constitutes
a potential therapy in cancers that overexpress hnRNPA1,
such as gastric cancer and lung cancer (Chen et al. 2018;
Ryu et al. 2021).

Protein–protein interactions play an important part in spli-
ceosomal assembly (Corsini et al. 2007; Hegele et al. 2012;
Loerch and Kielkopf 2016). U2AF homology motifs (UHMs)
and U2AF ligand motifs (ULM) are common among splicing
factors and are crucial for early spliceosome assembly
(Kielkopf et al. 2004). Recent studies have identified pheno-
thiazines as inhibitors of UHM–ULM interactions, which act
by targeting the tryptophan binding pocket of UHM do-
mains, and thus disrupting the activity of all UHM domain-
containing proteins, such as U2AF2, RBM39, SPF45, and
PUF60 (Fig. 1F; Jagtap et al. 2020). The affinities of these in-
hibitors were compared for three different UHMdomains of
SPF45, PUF60, and U2AF65. Three of these compounds
(Cmp7–9) showed similar affinity for the three different
UHMs (IC50 range 6.6–12.1 µM) confirming that the inhibi-
tors are mainly recognized by the conserved tryptophan
bindingpocketof theUHMdomainsandnoother significant
specific contacts are made. UHM–ULM interactions were
also identified in other splicing factors such as U2AF1 and
SF3b1,whichare frequentlymutated inmyelodysplastic syn-
dromes (Loerch and Kielkopf 2016). Thus, UHM–ULM inter-
action inhibitors areanotherclassofpromisingmolecules for
splicing inhibition.

General splicing inhibitors are expected to be nonspe-
cific and thusmore toxic. Ideally, inhibitors of specific splic-
ing factors would target their RNA recognition motif (RRM)
and interfere with their RNA binding activity (Fig. 1G). In
this way, other functions of the splicing factor will not be
affected. Alternatively, small molecules can be tailored
to function as allosteric modulators of splicing factors.
Some progress has been made using this approach to tar-
get transcription factors. The p53 tumor suppressor pro-
tein, encoded by the TP53 gene, is mutated in many
cancers. TP53mutations in cancer mostly lead to loss of tu-

mor suppressor function. One category of such mutations
is conformational or structural mutants, causing extensive
misfolding of p53. Small molecules are being developed
that can either protect p53 from its negative regulators
or restore the function of mutant p53 proteins. In addition,
there is a focus on drugs tailored to specific p53 mutations
that aremore prevalent in the population (Hassin andOren
2022). A similar therapeutic approach of conformational
change/stabilization by allosteric modulators can be ap-
plied toward either inhibition or activation of splicing
factors (Fig. 1H). The ability to activate splicing factors
is relevant in certain cancers, where down-regulation of
splicing factors occurs, such as RBFOX1/2 down-regula-
tion in ovarian cancer and glioblastoma multiform
(Venables et al. 2009; Hu et al. 2013).

Oligonucleotide-based molecules

mRNA-targeting oligonucleotides

Some cancer-specific AS events can be potential targets
for cancer therapy. Splicing factor mRNA can be inhibited
by various methods: small-interference RNAs (siRNAs), an-
tisense oligonucleotides (ASOs) (including GAPmers) and
CRISPR/Cas9 editing. Oligonucleotides are short single-
stranded nucleic acid sequences that bind to the target
mRNA through base-pairing. Unlike small molecules,
these methods target the splicing factor mRNA rather
than the splicing factor protein. Since this Perspective fo-
cuses on splicing factor inhibition, we will only briefly men-
tion splice-switching oligonucleotides (SSO). As reviewed
in Havens and Hastings (2016), SSOs are RNA oligo-
nucleotides that sterically block access of spliceosome or
specific splicing factors to their exonic/intronic specific
regulatory sites on the pre-mRNA molecule. Hence,
SSOs cause AS changes, affecting the balance between
distinct isoforms originating from the same pre-mRNA. In
this way, SSOs can up-regulate a specific gene product,
for example by producing productive isoforms over non-
productive isoforms, or by stabilizing isoforms destined
for NMD (Kole et al. 2012). Since 2016, the FDA has ap-
proved several SSOs for clinical treatment of several dis-
eases, such as neurodevelopmental disorders, with many
more candidates in clinical development. Currently there
are numerous clinical trials evaluating oligonucleotides
for cancer therapy (Desterro et al. 2020; Quemener et al.
2020). However, so far, no oligonucleotide-based drug
has been approved by the FDA for cancer treatment.

Protein-targeting oligonucleotides

RNA binding proteins such as splicing factors bind to a spe-
cific motif sequence within pre-mRNAmolecules of the tar-
getgene, andeither recruit thespliceosometonearbysplice
sites or interfere with spliceosome binding (Cartegni et al.
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2002). A study by Denichenko et al. proposed a new class of
specific splicing modulators named decoy oligonucleo-
tides, which bind directly to splicing factors, rather than to
their target pre-mRNAs. These decoy oligonucleotides are
single stranded RNA molecules between 21 to 24 nt, with
a2′-O-methylmodificationon the riboseof eachnucleotide,
which increases the stability of the molecule. The first and
last three nucleotides aremodified with 2′-O-methoxyethyl.
Oligonucleotides were also modified with a phosphoro-
thioate backbone. These oligonucleotides contain three to
four repeats of an RNA binding motif of a specific splicing
factor. Increased affinity of binding was observed with in-
creased number of RNA binding motif repeats
(Denichenko et al. 2019). The decoy competes with the en-
dogenous pre-mRNA targets for the binding of a specific
splicing factor, leading to inhibition of binding to its target
RNA and splicing activity. In this study, three alternative
splicing factors were targeted: RBFOX1/2, PTBP1, and
SRSF1, all ofwhich are known tobe involved in various types
of cancers, where their expression is often altered (Karni
et al. 2007; Venables et al. 2009; Hu et al. 2013; Georgilis
et al. 2018).Decoys designed for these three splicing factors
were shown to specifically bind their target splicing factor,
alter AS of known targets and have biological effects in
line with inhibition of their respective splicing activities in vi-
tro and in vivo. In contrast to gene silencingmethods, an im-
portant advantage of the decoy oligonucleotides is that
decoys bind to the splicing factor’s RNA binding domain,
and therefore inhibit only the splicing activity of the factor,
without interfering with other activities such as protein–pro-
tein interactions (Denichenko et al. 2019). In vivo, in mouse
models, decoy oligos were injected along with tumor cells
and were not examined using systemic delivery. This ap-
proach has not yet been applied in clinical settings.
Further work in vivo and improved delivery systems are nec-
essary for decoys to become a feasible approach to target
splicing factors.
One exciting future direction for decoy oligonucleotides

is to design decoy oligonucleotides that are specific tomu-
tated splicing factors (Fig. 2B). Mutations in the splicing
factors, SF3B1, SRSF2, U2AF1 have been identified in cer-
tain cancers (Papaemmanuil et al. 2011; Wang et al. 2011,
2016; Graubert et al. 2012; Quesada et al. 2012; Furney
et al. 2013; Harbour et al. 2013; Brooks et al. 2014; Shirai
et al. 2017; Seiler et al. 2016, 2018a). Decoy oligonucleo-
tides targeting cancer-specific mutant splicing factors
could improve treatment specificity and avoid unwanted
side effects. An alternative approach is to design decoy ol-
igonucleotides based on the secondary structure of the
target mRNA (Fig. 2C). DNA and RNA endogenous mole-
cules can fold into G-quadruplex three-dimensional (3D)
structures, consisting of four guanines that are held togeth-
er by Hoogsteen hydrogen bonds (Biffi et al. 2013).
G-quadruplex motifs were found enriched within certain
regions of the genome, and their formation can trigger ge-

nome instability and increase mutation rates in different
cancers, making G-quadruplex 3D structures a target for
cancer therapy (Kosiol et al. 2021). Protein pull-down ex-
periments demonstrated that G-quadruplex structures
bind to different proteins such as hnRNPs, ribosomal pro-
teins and splicing factors such as SRSF1 (Brázda et al.
2014). These findings suggest the possibility of designing
splicing factor decoy oligonucleotides based on the 3D
structures of the target mRNAs, as a new type of splicing
factor-specific therapeutic agent.

CONCLUDING REMARKS

Intensive research in the past two decades has shown that
AS misregulation, which can be caused by splicing factor
dysregulation or mutation, is causally involved in cancer
development and progression. Thus, the notion that
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FIGURE 2. Targeting splicing factors by decoy oligonucleotides. (A)
Inhibition of a splicing factor by direct binding to decoy oligonucleo-
tides. (B) Decoy oligonucleotides designed to specifically target mu-
tated splicing factors. (C ) Decoy oligonucleotides designed to target
specifically the binding of splicing factors to 3D RNA structures.
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specific splicing factors and the splicing machinery can be
targeted for cancer therapy has gained attention. In recent
years, multiple classes of pharmacological modulators of
splicing have been under development, including small
molecules and oligonucleotides, targeting either the
mRNA or proteins involved in spliceosome assembly or al-
ternative splicing. Targeting the core spliceosome compo-
nents disrupts early stages of spliceosome assembly and
can lead to various nonspecific and toxic effects. Thus, re-
search focus has shifted toward targeting a specific spli-
ceosome component for more controlled splicing
inhibition. Further specificity can be achieved if specific
alternative splicing factors that modulate a narrower
set of targets can be targeted. Although there is still a
long way to the clinic, we expect to see many new
splicing factor inhibitors in preclinical and possibly clinical
stages of development for cancer treatment in the coming
years.
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