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Abstract: One of the significant limitations of the pulsed laser deposition method in the mass-
production-technologies of micro- and nanoelectronic and molecular device electronic fabrication is
the issue of ensuring deposition of films with uniform thickness on substrates with large diameter
(more than 100 mm) since the area of the laser spot (1–5 mm2) on the surface of the ablated target is
incommensurably smaller than the substrate area. This paper reports the methodology that allows to
calculate the distribution profile of the film thickness over the surface substrate with a large diameter,
taking into account the construction and technological parameters of the pulsed laser deposition
equipment. Experimental verification of the proposed methodology showed that the discrepancy
with the experiment does not exceed 8%. The modeling of various technological parameters influence
on the thickness uniformity has been carried out. Based on the modeling results, recommendations
and parameters are proposed for manufacturing uniform thickness films. The results allow for
increasing the film thickness uniformity with the thickness distribution <5% accounts for ~31% of
300 mm diameter substrate.

Keywords: pulsed laser deposition; nanomaterials; computer simulation; thin films; large-area
deposition; metal oxides; thickness uniformity; ablation; lithium niobate

1. Introduction

Currently, the pulsed laser deposition (PLD) method is widely used to form epitaxial
and single-crystal complex oxides films with ferroelectric, ferromagnetic, dielectric, and
superconducting properties [1–5]. The advantages of this method include the possibil-
ity of maintaining the stoichiometric composition of the ablated material [6], good film
adhesion [7], versatility in choosing the deposited material, as well as the possibility of
forming film coatings on the surface of thermosensitive materials [8]. These advantages
allow to use of the PLD method in the formation of energy harvesting devices [9], optical
structures [10], sensor elements [11], ferroelectric films [12], memristor structures [13,14],
and medical coatings [15]. Thus, the study of the PLD process and the development of
methods for solving issues limiting its implementation in mass production is highly urgent.

In the PLD method, a laser beam is focused on a target placed in a vacuum chamber.
The target material is ablated under the influence of laser radiation of high-power density,
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as the result the ablated particles are deposited on the substrate. Although the PLD method
is widely used in scientific research [16–22], its industrial application is limited [1,23]. One
of the significant issues of PLD in mass-production-technologies of micro- and nanoelec-
tronic device fabrication is ensuring uniform thickness films deposition on large diameter
substrates (more than 100 mm), since the area of the laser spot (1–5 mm2) on the surface of
the ablated target is incommensurably smaller than the substrate area [24].

In the modern micro- and nanoelectronic industry, the standard is the non-uniformity
of the film thickness over the surface of the entire substrate ~5%, except for 5 mm at the
edge. Since the PLD method is relatively new [25,26] and its integration with industrial
technologies of micro- and nanoelectronics is still at its initial stages. The study of regu-
larities and the search for methods to achieve the indicated values of non-uniformity on
substrates of large diameter (more than 100 mm) requires additional research. In [27–34],
several approaches for forming films with a uniformity of 70–95% on substrates with a
diameter of 100–200 mm are described in detail. However, obtaining uniform of films by
PLD on 300 mm-diameter substrates is still challenging and often requires using scanning
systems that ensure the movement of the laser beam over the target surface and the move-
ment of the substrate [1]. One of the possible ways to overcome this limitation is to use a
laser beam scanning system to move the laser beam over the target surface, rotate the target
and substrate, and optimize the parameters of these processes, considering the geometry
of the growth chamber.

The purpose of this work is to study the processes affecting film thickness uniformity
deposited by the PLD method on substrates of large diameter (100 mm and more) and
developing the methodology that allows calculating the film thickness distribution profile
over the substrate surface, taking into account the design and technological parameters
of PLD equipment. The results presented in this work are partially based on the previous
studies, conducted both in our laboratory as well as by other researchers [27–34]. We
implemented a new approach to the calculation of a trajectory of a laser beam along the
target surface (Video S1 and S2). These improvements made it possible to describe a
trajectory of a laser beam along the target surface much more correctly and to take into
account the influence of a larger number of scanning parameters. As a result, we obtained
quantitatively more accurate results of the film thickness spatial distribution.

2. Materials and Methods

Modeling the PLD process, assessing technological parameters and their influence on
the film thickness uniformity were carried out in the MATLAB software (MathWorks Inc.,
Natick, MA, USA). The process of scanning a target with a diameter of up to 50 mm by a
laser beam is considered on the example of cluster nanotechnological complex NANOFAB
NTK-9 (NT-MDT, Zelenograd, Russia), comprising of a Pioneer 180 PLD module (Neocera
LCC, Beltsville, MD, USA). The parameters used in the modeling are presented in Table 1.
The studied parameter took the values indicated in the table, while all the others remained
unchanged (highlighted in Table 1), to estimate the influence of one of the scanning system
parameters on the films thickness uniformity.

The movement of the laser beam over the target surface is carried out using a scanning
system consisting of a pair of mirrors and a focusing lens fixed on a movable stage. The
laser beam hits the mirrors and re-reflected on the focusing lens. Then the laser beam hits
the target surface through the window in the growth chamber. The movable stage is part
of the module’s scanning system, moves along the x-axis, thereby scanning the laser beam
along the target surface (Figure 1).
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Table 1. Modeling parameters.

Technological Parameters

Number of laser pulses 36,000

Laser pulse repetition rate 10 Hz

Substrate diameter 300 mm

Target diameter 50 mm

Target-substrate distance 75 mm

Target rotation speed 10 ◦/s

Substrate rotation speed 0.1 ◦/s

Scanning System Parameters (default parameters are highlighted)
Origin 0 10 25 40 50

Upper Limit 25 40 50
Lower Limit 0 10 25

Maximum Velocity 5 10 20
Minimum Velocity 0.1 1 5
Lower Coefficient
Upper Coefficient 1 5 15 30 60
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Figure 1. Laser beam scanning of the target surface in the Pioneer 180 PLD module.

The Upper Limit and Lower Limit parameters are the lower and upper limits of the
laser beam movement and allow localizing the area of action of the laser beam on the
target surface by a segment (Lower Limit, Upper Limit). The point in this segment at which
the irradiation process starts is determined by the Origin parameter. Values of all of the
aforementioned parameters lie within [0, 2R], where R—target radius. The Max Velocity
and Min Velocity parameters determine the maximum and minimum speed of movement
of the laser beam on the target surface. Near the point defined by the Origin parameter,
the scanning speed varies within (Min Velocity, Max Velocity). On the (Origin, Upper Limit)
section, the change in scanning speed is determined by the Upper Coefficient parameter, and
on the (Lower Limit, Origin) section by the Lower Coefficient parameter.

The speed of scanning system movement is described by two functions that intersect
at a point with a coordinate defined by the Origin parameter. The relationship between the
functions is described by the expression:

Va(x) =
Vmax · Ru

Cυ(x−Origin)
, (1)
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where Vmax—maximum speed of the scanning system, Ru is defined as the largest of two
values |Lower Limit–Origin| and |Upper Limit–Origin|, and the coefficient Cυ is equal to
Lower Coefficient for all x < Origin and Upper Coefficient for all x > Origin.

The mutual arrangement of the centers of the target and the substrate is not coaxial;
therefore, to form a continuous film, the substrate rotates with a certain angular velocity,
since the scanning system ensures the movement of the laser beam only along the diameter
of the target. The target also rotates with an angular velocity to ensure uniform irradiation.
The motion control of the scanning system is carried out using the Pioneer 180 PLD software
(Neocera LCC, Beltsville, MD, USA).

It is necessary to describe the spatial distribution of molecules in directions during
target ablation to estimate the uniformity of film deposition on a substrate. Since the laser
spot has a small area, and the crater on the target surface after exposure to the laser pulse
has a depth of about several nanometers [35,36], the volume of the material removed in one
pulse is also relatively small. Thus, the area of laser action can be considered as a Knudsen
cell, consisting of an isothermal shell with an infinitely small hole dAe and infinitely thin
walls (supplementary materials Figure S1) [37].

The ablation region contains N atoms that collide with the cell walls and are reflected
from them without changing the velocity. Atoms moving towards the hole leave the cell at
the same speed. The expression determines the distribution of the velocities of atoms in
the flow of matter for a small number of atoms within a small spatial angle dωs. The angle
ϕ determines the direction of movement with respect to the normal of the hole dAe. It is
possible to obtain the mass of the substance deposited per unit area taking into account the
distribution of the velocities of atoms in directions [36]:

dMr(ϕ, θ)

dAr
=

Me

πr2 cos ϕ cos θ, (2)

where Me—mass of vaporized matter.
From Equation (2), it follows that the propagation of matter occurs mainly in directions

close to the normal to the evaporated surface (cosϕ→max). Equation (2) can be simplified,
since in the PLD module, the substrate is located parallel to the target, the angles ϕ and θ
are equal, and the cosines of these angles are equal to h/l, and the distribution of the film
thickness on the substrate is described by the expression [36]:

d =
Me

πρuh2[1 + (l/h)2]
2 , (3)

where l—the current coordinate along the substrate radius, h—target-substrate distance [38],
mass of ablated substance Me = ρuVa; Va = Slas.spot ·∆z, ∆z—target material ablation depth,
Slas.spot—laser spot area, and ρu—target material density.

It is convenient to characterize the uniformity of film deposition over the diameter of
the substrate using the ratio:

d
dmax

=
d(l)
d(0)

= [1 + (l/h)2]
−2

, (4)

where dmax—maximum film thickness. The value of the relative thickness allows one to
compare films obtained at different values of technological parameters, regardless of the
absolute values of the film thickness.

We introduce a parameter Ω95 that is defined as:

Ω95 =
S95

S
, (5)

where S95—the substrate area where relative thickness lies within [0.95, 1] and S—area of
the entire substrate. If the relative thickness allows one to conclude the uniformity of the
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film, then the value of the Ω95 parameter makes it possible to characterize the distribution
of the relative film thickness from the point of view of industrial application (Figure S2).
In particular, using the Ω95 parameter, it is possible to estimate the size of the substrate
for the deposition of the films with thickness uniformity is 5% by the PLD method under
specific scanning modes.

The methodology considered above does not take into account the size of the laser spot
on the target surface and the associated with “flip-over effect” [37]. In [39], the equation
describes the thickness of a film on a substrate, taking into account the gas dynamics of
three-dimensional vapor expansion during PLD and the associated evolution of the shape
of the laser plume was proposed:

d = dmax(1 +
1
p

tg2θx +
q2

p
tg2θy)

−3/2

, (6)

where p and q—coefficients are obtained from the solution of the system of gas-dynamic
equations and θx and θy—the corresponding components of the particle scattering angle.
However, solving the system of equations for finding the coefficients p and q significantly
complicates the calculations.

The film growth process during PLD depends on many different factors [40–46]. To
simplify the methodology, the following assumptions have been made: laser ablation
occurs in a vacuum; the target surface is considered ideally smooth under the PLD process
(there is no laser modification of the target surface); there is no desorption of the deposited
material from the substrate surface; the shape of the laser plume in the process of moving
towards the substrate remains unchanged.

Figure 2 shows the calculation of the films thickness algorithm based on the developed
methodology (1)–(6).
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In the block for input of modeling parameters, technological parameters that deter-
mine the modes of scanning the laser beam over the target surface, as well as the rotation
speed of the target and substrate are set.

In the block for processing of modeling parameters, a check for the consistency of the
given parameters and their transformation to a single frame of reference is made.

In the block for calculating of laser trajectory on target surface, the coordinates cor-
responding to each individual pulse are calculated, considering the operating modes of
the scanning system and the parameters of the roll and rotation of the target. Figure 3
shows an example of the calculated trajectories of the laser beam along the target surface
for various simulation parameters. Each point corresponds to one laser pulse, with the
pulse repetition rate of 10 Hz, and the number of pulses is 6000.
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Figure 3. Trajectories of the laser beam movement along the target surface: scanning mode by the target with a stationary
laser beam (a); scanning mode of the laser beam along the surface of a rotating target (b).

The block for constructing the projection of the laser trajectory on the target surface
onto the substrate is necessary to translate the array of coordinates of laser pulses from the
reporting system associated with the center of the target to the reporting system associated
with the center of the substrate, taking into account the parameters of the substrate rotation.
It is necessary to calculate the distances r and l (Figure S1).

The film thickness calculation block specifies a set of points in a polar coordinate
system. In the radial direction, the grid step is dr = r2 − r1 = r3 − r2 = . . . = rn − rn−1,
and in the corner dϕ = ϕ2 − ϕ1 = ϕ3 − ϕ2 = . . . = ϕm − ϕm−1. The resulting set of points
can be represented as a matrix:

0 r1 r2 . . . rn−1 rn
ϕ1 d1,1 d1,2 . . . d1,n−1 d1,n
ϕ2 d2,1 d2,2 . . . d2,n−1 d2,n
. . . . . . . . . . . . . . . . . .

ϕm−1 dm−1,1 dm−1,2 dm−1,3 dm−1,n−1 dm−1,n
ϕm dm,1 dm,2 dm,3 dm,n−1 dm,n

 (7)

where dmn—thickness value at point (rn, ϕm).
Then Equation (3) for determining the film thickness at each point with coordinates

(rn, ϕm) on the substrate surface has the form

dm,n =
Me

πρuh2

m

∑
i=1

n

∑
j=1

[1 + (li,j/h)2]
−2

. (8)

According to the Equation (8), the film thickness d is determined, and the obtained
value is written into the corresponding cell of the matrix. After receiving an array of
thicknesses, the search for the most considerable value is performed. Using the maximum
film thickness dmax, one can calculate the relative thickness d = dn/dmax, which allows
comparing the simulation results obtained at different values of technological parameters.

In the output modeling results block, the results are saved in text and graphic formats.
Based on the described methodology, we studied the influence of the scanning system

modes on the film thickness distribution profile over a substrate with a diameter of 100 mm
and 300 mm.

Experimental studies were carried to prove the proposed methodology. Nanocrys-
talline LiNbO3 films were obtained on a silicon substrate with a diameter of 100 mm
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using the Pioneer 180 PLD module of the NANOFAB NTK-9 cluster nanotechnological
complex. An excimer KrF laser (λ = 248 nm) was used to ablate a LiNbO3 target with a
purity of 99.9% (Kurt J. Lesker Company Ltd., East Sussex, UK). Energy density on the
target surface is maintained at 1.5 J/cm2. The target-substrate distance (75 mm), number of
pulses (36,000), pulse repetition rate (10 Hz), and laser pulses energy on the target surface
(150 mJ) are kept constant. The morphology of the obtained films was studied by atomic
force microscopy (AFM) using the Ntegra Probe Nano Laboratory (NT-MDT, Zelenograd,
Russia). The experimental data were processed using the Image Analysis 3.5 software
(NT-MDT, Zelenograd, Russia).

The study of the thickness of the LiNbO3 films was carried out by measuring the
LiNbO3/Si structure height obtained by plasma-chemical etching. For this purpose, an
FP-383 photoresist was applied to the surface of the LiNbO3 films by spinning at a rotation
speed of 3000 rpm. After that, the photoresist film was pre-cured in the air for 10 min in
order to prevent defect formation. Then, the sample was cured in an oven at 90 ◦C for
30 min. The sample was exposed to the UV radiation for 2 min through a photomask and
then developed in a 5% aqueous solution of KOH, and hardbacked at 110 ◦C for 25 min on
a hotplate. The obtained structure was processed in a module for plasma-chemical etching
in a combined plasma of capacitive and inductive STE ICPe68 (SemiTEq St. Petersburg,
Russia). Etching took place at a pressure of 2 Pa, a capacitive plasma source power of 35 W,
an inductively coupled plasma source power of 400 W, a bias voltage of 75 V, a fluorinated
SF6 gas flow of 15 sccm, and the etching time was 1 min. Photoresist residues were removed
in dimethylformamide. In total, ten samples were used to fabricate structures in LiNbO3
films, the height of which was investigated by the Ntegra Laboratory in the semicontact
AFM mode using NSG11 cantilevers.

3. Results and Discussion

Figure 4 shows the results of AFM studies of LiNbO3 film. Based on the obtained
experimental results, the dependence of the distribution of the thickness of the LiNbO3
film over the surface of the silicon substrate is plotted (Figure 5).

To determine the LiNbO3 films thickness we used the approach described in detail
in [47].

The obtained experimental results are in good agreement with the calculations based
on the proposed Equations (1)–(8) for a substrate with a diameter of 100 mm. The thick-
ness of the obtained LiNbO3 films increases from (67.2 ± 5.1) nm, reaching a maximum
((90.4 ± 7.9) nm) in the center of the substrate. The calculated thickness of the films varies
from 63.6 nm to 89.1 nm, respectively. The change in the relative film thickness is less
than 37% for the experiment and ~29% for the simulation results. The deviation of the
simulation results from the experimental data does not exceed 8%. The parameter Ω95 is
~15%. The region with the thickness difference is 10% of the maximum, accounts for ~31%
of the substrate surface. The discrepancy between the simulation and experiment may be
associated with an uneven erosion of the target surface over multiple deposition cycles and
a tilt of an ablation plume, as it is described in [23]. Thus, experimental studies confirm
that the proposed methodology allows to calculate the film thickness’s value obtained by
the PLD method.

Figure 6 shows the relative thickness of the LiNbO3 films on the Upper Limit and
Lower Limit parameters, calculated based on the developed Equations (1)–(8). Figure 6
shows the results of the study of the influence of scanning parameters on the uniformity
of the thickness of the ZnO films. Insets in Figures 6–9 provide a comparison of relative
thicknesses for different cases at a higher scale. The appearance and change in the size of
the “plateau” in the upper part of the dependence illustrate the physical meaning of the
Ω95 parameter.
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As the Lower Limit increases with the Upper Limit unchanged, the Ω95 parameter value
increases from 9% to ~31%, while when the Upper Limit decreases with the Lower Limit
unchanged, it decreases from ~8% to 4%. It can be associate with the fact that in the first
case, we move the projection of the area of scanning of the target surface with a laser
beam from the center of the substrate to the edge, and in the second, we bring it closer
(Figure S1).

The results of studying the effect of the Origin parameter (Figure 7a) on the relative
thickness of the films showed when the value of Origin decreases from 50 to 0, the value
of Ω95 the parameter increases from 6% to ~20%. This effect is linked to the distance of
the projection of the target area with laser beam moves at a speed of Min Velocity from
the center of the substrate to the edge (Figure S1). Thus, the Origin parameter affects the
relative film thickness by moving the projections of the regions with the maximum and
minimum scanning speeds of the target surface (parameters Min Velocity and Max Velocity)
relative to the center of the substrate. Figure 7b shows the influence of Lower Limit, Upper
Limit, and Origin on Ω95 parameter and substrate radius.

A change in the maximum and minimum speeds of the laser beam movement over
the target surface has practically no effect on the distribution of the relative thickness of the
resulting films (Figure 8). Since the Min Velocity and Max Velocity parameters do not affect
the projections of areas with high and low scanning speeds of the target surface relative to
the center of the substrate, but only determines the scanning speed.

Unlike Max Velocity and Min Velocity, the Upper Coefficient and Lower Coefficient param-
eters have a more significant effect on the distribution of the relative thickness of the films
(Figure 8). It is linked to the possibility of influencing the smoothness of the transition from
Min Velocity to Max Velocity in the (Lower Limit, Origin) and Max Velocity in Min Velocity
on the (Origin, Upper Limit) segment and, as a consequence, change the size of the areas
that have the maximum and minimum scanning speeds. Therefore, with the values of
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Upper Coefficient and Lower Coefficient close to unity, the scanning speed practically does
not change when switching from Max Velocity to Min Velocity, while at values above 60,
the speed changes abruptly. Thus, increasing the Upper Coefficient value in the (Origin,
Upper Limit) segment increases the area with the scanning speed is equal to the Min Velocity,
which leads to the displacement of the projection of the target area with the minimum
scanning speed from the center to the edge of the substrate. Figure 9c shows the Ω95 and
substrate diameter dependencies on the value of the parameters Upper Coefficient and Lower
Coefficient. As the Upper Coefficient parameter increases with a constant Lower Coefficient,
Ω95 increases from ~5% to ~20%, and with an increase in the Lower Coefficient parameter,
with an unchanged Upper Coefficient Ω95 decreases from ~24% to ~5%.

Based on the results of the performed calculations, recommendations are proposed
that allow increasing the thickness uniformity of the films formed by the PLD method.

It has been established that increasing the operating mode of the scanning system
with the projections of the target area with a low scanning speed will be shifted from the
center to the edge of the substrate. This effect can be achieved in several ways:

– changing the scanning range—Upper Limit and Lower Limit parameters;
– changing the coordinate in which the scanning speed reaches its

maximum—Origin parameter;
– varying the smoothness of changes in scanning speeds—Upper Coefficient иLower

Coefficient parameters.

It should be noted that the first method should be used to a limited extent since the
Upper Limit and Lower Limit parameters strongly affect the uniformity of the target erosion.

Using the calculation results, the operating modes of the scanning system with a high
Ω95 value when films are deposited on substrates with a diameter of 300 mm were deter-
mined: Upper Limit = 50, Lower Limit = 10, Origin = 30, Max Velocity = 5, Min Velocity = 0.1,
Upper Coefficient = 60, and Lower Coefficient = 1. For these parameters, the projection onto
the surface of the substrate of the laser beam trajectory along the target surface and the
distribution of the relative thickness of the LiNbO3 film on the substrate were calculated
(Figure 10).
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The projection of the laser beam trajectory onto the surface of the substrate (Figure 10a)
makes it possible to estimate the location where ablation proceeds relative to the center
of the substrate. Figure 10b shows the spatial distribution of the relative thickness of the
obtained film over the surface of a substrate with a diameter of 300 mm. It was found that
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the change in the relative thickness of the film does not exceed 50%, but Ω95 is ~31%, while
the region with the difference in thickness is 10%, of which the maximum is ~38%.

4. Conclusions

The methodology development results allow calculating the film thickness distribu-
tion profile over the surface of the substrate, taking into account the design and technical
parameters of the PLD equipment. The film thickness distribution profile on a substrate
with a diameter of 100 mm is calculated considering the design features and operating
values of the technological parameters of the Pioneer 180 PLD module of cluster nan-
otechnological complex NANOFAB NTK-9. The thickness of the obtained LiNbO3 films
increases from (67.2 ± 5.1) nm, reaching a maximum ((90.4 ± 7.8) nm) in the center of the
substrate. The calculated thickness of the films varies from 63.6 nm to 89.1 nm, respectively.
The change in the relative film thickness is less than 37% for the experiment and ~ 29% for
the simulation results. A good correlation of the results of theoretical calculations with
experimental data is shown: the discrepancy between the model and experiment does not
exceed 8%. Moreover, the developed methodology allows to solve the inverse task and
scale it, overcoming relevant issues in modern micro- and nanoelectronic technology. It
is possible to determine the technological parameters of the PLD module for obtaining a
film with a controlled uniformity of thickness distribution using the modeling results. The
analysis of the influence of the operating parameters of the scanning system (Table 1) on
the uniformity of obtaining films on a substrate with a diameter of 300 mm is carried out.
Recommendations for obtain films with controlled irregularity by PLD method are pro-
posed: (Upper Limit = 50, Lower Limit = 10, Origin = 30, Max Velocity = 5, Min Velocity = 0.1,
Upper Coefficient = 60, and Lower Coefficient = 1). Based on obtained results, the operating
modes of the scanning system are proposed, which allows obtaining films with a relative
thickness difference not exceeding 50%. In this case, the region in which the difference in
thickness is less than 5% (Ω95) accounts for 31% of the substrate surface, and the region in
which the difference in thickness is 10% of the maximum is ~38%.

The obtained results can be used to expand the capabilities of the large-area PLD
technology, which will speed up combining the technology of multicomponent oxide films
laser deposition with the silicon technology of micro- and nanoelectronics and molecular
device electronic to create MEMS and new generation of energy conversion devices and
sensors. Moreover, the developed methodology might be modified and scaled to calculate
the thickness profile of different materials films obtained using various PLD equipment
(Solmates B.V., PVD Products Inc, and Neocera LCC).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma14174854/s1, Figure S1: Target material evaporation from a cell dAe by a laser beam on
substrate surface element dAr, (a) and Pioneer 180 PLD software (b), Figure S2: Example of practical
use of the obtained dependencies, Video S1: Scanning mode by the target with a stationary laser
beam, Video S2: Scanning mode of the laser beam along the surface of a rotating target.
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