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Abstract
The peroxisomal proliferating-activated receptors (PPARs) are lipid-sensing transcription factors
that have a role in embryonic development, but are primarily known for modulating energy
metabolism, lipid storage, and transport, as well as inflammation and wound healing. Currently,
there is no consensus as to the overall combined function of PPARs and why they evolved. We
hypothesize that the PPARs had to evolve to integrate lipid storage and burning with the ability to
reduce oxidative stress, as energy storage is essential for survival and resistance to injury/infection,
but the latter increases oxidative stress and may reduce median survival (functional longevity). In a
sense, PPARs may be an evolutionary solution to something we call the 'hypoxia-lipid' conundrum,
where the ability to store and burn fat is essential for survival, but is a 'double-edged sword', as fats
are potentially highly toxic. Ways in which PPARs may reduce oxidative stress involve modulation
of mitochondrial uncoupling protein (UCP) expression (thus reducing reactive oxygen species,
ROS), optimising forkhead box class O factor (FOXO) activity (by improving whole body insulin
sensitivity) and suppressing NFkB (at the transcriptional level). In light of this, we therefore
postulate that inflammation-induced PPAR downregulation engenders many of the signs and
symptoms of the metabolic syndrome, which shares many features with the acute phase response
(APR) and is the opposite of the phenotype associated with calorie restriction and high FOXO
activity. In genetically susceptible individuals (displaying the naturally mildly insulin resistant 'thrifty
genotype'), suboptimal PPAR activity may follow an exaggerated but natural adipose tissue-related
inflammatory signal induced by excessive calories and reduced physical activity, which normally
couples energy storage with the ability to mount an immune response. This is further worsened
when pancreatic decompensation occurs, resulting in gluco-oxidative stress and lipotoxicity,
increased inflammatory insulin resistance and oxidative stress. Reactivating PPARs may restore a
metabolic balance and help to adapt the phenotype to a modern lifestyle.

Background
Peroxisomal proliferating-activated receptors (PPARs)
were discovered in 1990 with the cloning of a murine
orphan receptor that was activated by peroxisomal prolif-
erating compounds (such as the fibrates), hence their

name [1]. They probably arose during metazoan evolu-
tion and at least three isoforms have been identified, α, γ
and δ (also referred to as PPAR β), each encoded by a dif-
ferent gene [2]. They are ligand-activated transcription fac-
tors that act as lipid sensors and work as dimers with the
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retinoid X receptor (RXR), detecting a broad range of mol-
ecules (including inflammatory lipid mediators) and
modulate the activity of genes involved in energy regula-
tion and inflammatory processes, including wound heal-
ing, as well as reproduction [3-6]. They are also important
in embryonic development, but only PPAR γ knockout is
lethal – although placental rescue results in a phenotype
with no body fat, which confirms its pivotal role in adipo-
genesis [2]. They therefore appear to be involved in many
(apparently disparate) metabolic processes, which there-
fore raises a question, why did they evolve and what is
their overall function?

We believe that PPARs may be an evolutionary solution to
something we call the 'hypoxia-lipid' conundrum, where
the ability to store and burn fat is essential for survival,
but is a 'double-edged sword', as fats are potentially highly
toxic. For instance, hypoxia results in the increased pro-
duction of mitochondrial ROS, which can result in lipid
peroxidation that is not only potentially damaging, but
also a strong inflammatory signal, activating nuclear fac-
tor kappa-beta (NFkB) [7]. Thus, a group of transcription
factors that integrate resistance to oxidative stress (inflam-
mation, thus modulation of NFkB), with the ability to
detect and orchestrate the storage and metabolism of lip-
ids, while sparing glucose (which can be burnt anaerobi-
cally), was inevitable. Over time, this function
engendered increasing functional longevity, and ulti-
mately, as they evolved (they have been one of the fastest
evolving group of nuclear receptors) [8], this may have
enabled the evolution of longer lifespans for some spe-
cies.

Key in this, we believe, may be their ability to modulate
uncoupling proteins activity (UCPs), so reducing mito-
chondrial reactive oxygen species production (ROS), as
well as their ability to induce insulin sensitisation – so
optimising forkhead box class O factor (FOXO) activity by
reducing insulin basal levels and therefore insulin 'drive':
FOXO are a small subfamily of transcription factors key in
stress resistance and calorie restriction-induced longevity,
whose function is suppressed by high insulin/IGF-1 activ-
ity (reviewed by Morris BJ, 2005) [9]. Increased expres-
sion/activity of FOXO results in increased activity of
peroxisome proliferator-activated receptor gamma coacti-
vator-1α (PGC-1α), which also plays a key role in longev-
ity and the calorie restriction phenotype, in particular, it
increases the expression of PPAR α [10]: 19% of the genes
that are regulated during calorie restriction are modulated
by PPAR α-including suppression of acute phase response
(APR) genes [11]. These nuclear factors are also upregu-
lated by exercise [12], which is known to improve median
survival.

Overall, the ability of all the PPARs to reduce lipotoxicity
and suppress inflammation would strongly suggest that
they would all tend to reduce the need for basal insulin by
encouraging insulin sensitivity. This indicates that as an
ancient group of nuclear factors, which are essential for fat
storage and metabolism, they are also key in suppressing
oxidative stress: the ability to store fat and resist oxidative
stress are both generally associated with improved sur-
vival and increased species lifespan [13,14]. We suggest
that the phenotype associated with calorie restriction is
thus the opposite of that seen with the metabolic syn-
drome and the balance between the two may be deter-
mined, to a large degree, by PPAR activity.

The transcriptional triad of survival: PPAR-
FOXO-NFkB
Although each PPAR isoform is expressed in almost every
tissue, they are expressed in a tissue- and time-specific
manner in response to food, as well as to exercise and
cold. PPAR α is very active during fasting and is predomi-
nantly found in the liver, while PPAR γ is active during
feeding and is predominantly found in adipose tissue,
where its main role appears to enable the deposition of
fat: PPAR δ is ubiquitous, with its highest expression in
the gut, but is now thought to be extremely important in
exercise-induced switch to oxidative (type 1) myofibres, as
well as in thermogenesis [13,15,16]. Overall, PPAR γ is
thought to be essential for adipogenesis (and thus stor-
age), whereas PPARs α/δ are more involved in fatty acid
catabolism. Importantly, their expression and activity is
intimately related to other transcription factors/co-factors,
in particular, FOXO, PGC-1 and NFkB: figure 1 is simpli-
fied explanation of how these transcription factors might
interact – the 'transcriptional triad'.

The calorie-restriction and longevity connection
FOXO is an important group of transcription factors that
integrate energy metabolism with resistance to oxidative
stress, as well as regulating cell cycle and DNA repair; for
example they increase SOD (superoxide dismutase) and
also modulate hunger [17]. PGC-1 was first discovered as
a cold-inducible co-activator that regulates adaptive ther-
mogenesis, and along with PPARs, induces mitochondrial
uncoupling via the UCP-1, so generating warmth [18].
PGC-1 is also essential in controlling hepatic gluconeo-
genesis, which occurs in response to famine; it is thought
to be a "master switch" that controls the change from car-
bohydrate- to fat-based metabolism, which includes a
change from type II to type I muscle fibre use and
increased mitochondrial biogenesis [19]. To be activated,
PGC-1 requires interaction with FOXO1 [20]. Once acti-
vated, PGC-1 cooperates with PPAR α to activate genes
encoding mitochondrial enzymes involved in fatty acid
oxidation [21]: PPAR α is also of major importance in cal-
orie restriction [11]. FOXO1 can inhibit PPAR γ activity in
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adipose cells and vice versa [22], but it can enhance PPAR
α activation of lipoprotein lipase in muscle [23]. This
would support the flow of fatty acids from adipose tissue
during fasting to energy requiring tissues (and thus
shrinkage of the adipose store), but the flow of fats into
adipose tissue during feeding.

PPAR activity decreases with age, a process that can be
slowed by calorie restriction [24], while aging is associ-
ated with increased constitutive activity of NFkB [25].
Indeed, it has been suggested that PPARs may play a role
in modulating the 'molecular inflammatory process of
ageing' [26], and may be important in suppressing the
ageing-associated increase in NFκB activity [27]. Cer-
tainly, calorie restriction has been shown to result in a
generalised increase in PPAR activity, which is associated
with increased adiponectin [28]; adiponectin can also
suppress NFkB activity [29]. This would be supported by
the well described observation that pharmaceutical activa-
tion of PPARs α & γ is broadly beneficial, reversing many
aspects of the metabolic syndrome; the same is now
thought to be true for PPAR δ [30]. At the transcriptional
level, NFκB and FOXO do appear to have mutually exclu-

sive activity, as IkB (inhibitor of NFkB) kinase (IKK), can
result in the activation of NFkB by inhibiting IkB, but the
direct inhibition of FOXO, which maybe be important in
cancer [31]. In addition, NFkB and PPARs can also trans-
repress each others activity [32-35]. Hence, there is both
anecdotal and transcriptional evidence that PPAR activity
is associated with a longer-lived phenotype.

Why adipose tissue is inflammatory, and why PPARs are 
anti-inflammatory
One of the more interesting aspects of the PPARs is that
they seem to integrate inflammation and energy metabo-
lism. It is now becoming apparent that adipose tissue is
metabolically very active and increasing adipose mass is
associated with increasing inflammatory tone. It is now
thought that this may be an evolutionarily technique to
enhance survival in relation to famine and immunity/
inflammation, which are both highly energy dependent:
one key signal for this may be leptin [36]. This would
explain why excessive obesity is generally associated with
sub-clinical inflammation, and why there is generally an
evolutionarily-driven imbalance between orexigenic
(stronger) and anorexic (weaker) signals, leading to high
feed-efficiency and a propensity to store fat [37-39]. How-
ever, it would also be an evolutionary trade-off, as a food-
rich environment, with little need for physical activity,
might continually increase fat mass and lead to increasing
oxidative stress (and thus, production of ROS) and a
shortened lifespan (figure 2) – this could be an example
of antagonistic pleiotropy. Certainly, obese adipose tissue
can attract macrophages, resulting in a heightened inflam-
matory response – which can be reversed by weight loss
[40]. Thus the finding that PPAR γ activation can induce
apoptosis of macrophages found in adipose tissue [41],
might suggest that not only does PPAR γ ensure fat stor-
age, but that it might also suppress the adipose-related
inflammation signal.

This therefore supports the 'transcriptional triad of sur-
vival' paradigm (figure 1). FOXO, which is mainly active
during fasting/famine, maintains resistance to oxidative
stress and improves long-term survival: NFkB, which is
highly important in resistance to injury/infection, engen-
ders oxidative stress as a survival strategy. However,
PPARs, are essential to ensure that energy-related oxida-
tive stress is kept to a minimum, either during storage, or
during metabolism (such as exercise, fasting or infection).

The hypoxia-lipid conundrum
The main problem with lipids is that they require oxygen
to be burnt as fuel. However, the only way to do this is via
mitochondria, which are also one of the prime cellular
sources of ROS; ROS production is increased when levels
of the ultimate electron acceptor, oxygen, is decreased.
Thus, there is the potential for lipid peroxidation and

Transcriptional triad of survivalFigure 1
Transcriptional triad of survival. PPARs promote mito-
chondrial proton gradient uncoupling, reduce ROS and 
increase heat generation, while ensuring safe lipid storage 
and burning (reducing lipotoxicity), safe carbohydrate stor-
age and reducing need for insulin. They also suppress inflam-
mation. NFkB promotes resistance to infections and aids 
healing, but suppresses incentive salience and increases ther-
mogenesis – it can be said to have general anorexic actions. 
Also promotes ROS production, both as a signal and as a 
defence. Response amplified by increasing fat stores. Pro-
motes inflammation. FOXO promotes resistance to oxida-
tive stress, enhances DNA repair, suppresses proliferation, 
and encourages incentive salience and survival in low food 
situations – it is thought to be generally orexigenic. Can 
oppose inflammation.
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lipotoxicity. We suggest that the ability to utilize lipids as
fuel has to have co-evolved with the ability to suppress
oxidative stress: PPARs may well be a very important part
of the solution. In contrast, carbohydrate metabolism has
become associated with inflammation.

Fat versus glucose: PPARs and energy source switching
Carbohydrate is an essential fuel source for the CNS and
immune system, but excess carbohydrate is stored as
energy-dense fat, a process that requires mitochondria
and the participation of PPARs. The ability to store and
metabolize fat is an important survival mechanism as it
provides energy when food is scarce; it is far more energy
dense than glycogen. During fasting, glycerol can be
released from adipose stores, which can then be used by
the liver for gluconeogenesis – thus providing carbohy-
drate to for the CNS. Studies indicate that the evolution of
a longer lifespan has been associated with the develop-
ment of a higher body mass and an increased percentage
of body fat [13,42]. Thus, fat storage is a positive survival
trait and the adipogenic function of PPAR γ makes it
tightly linked into long-term survival.

Fats, in addition to being stored, must also be readily
made available for oxidation. PPAR α and PPAR δ are

active in muscle and ensure entry of fats into the β-oxida-
tion pathway, as illustrated by their upregulation during
endurance exercise [43,44] or thermogenesis [18]. How-
ever, although an increased lifespan is dependent on the
ability of an organism to store and utilize energy-dense
fat, there is an inherent problem in using fats as an energy
substrate; they are highly susceptible to ROS damage,
which is especially true for unsaturated fatty acids
(because of readily oxidisable double-bonds) [45].

Under normal conditions, oxygen utilization is closely
coupled to energy production and expenditure. However,
in hypoxic circumstances, for example during localised
biological stress induced by injury/infection (where blood
flow is compromised), the production of mitochondrial
ROS is significantly increased due to a reduction of oxygen
as an electron acceptor. This may have become part of an
ancient mitochondrial-based oxygen sensing/signalling
mechanism, which involves the hypoxia-induced factor-1
(HIF-1) transcription factor [46]. It is also likely that ROS
signalling plays a key role in the activation of NFkB [47]
and thus, in inflammation [48]. During hypoxia, carbohy-
drate becomes the more important fuel source as it is
more oxygen-efficient and if necessary, can undergo
anaerobic respiration (fats cannot be burnt without oxy-
gen and mitochondria). HIF-1 can inhibit both PPAR α
and PPAR γ expression [49,50], but may require NFκB for
full activity [51,52]. Certainly, activation of NFkB in car-
diac muscle can suppress the transcriptional activity of
both PPAR α & δ, suggesting a switch to carbohydrate
metabolism [33].

As indicated above, HIF-1 downregulates PPAR activity in
a hypoxic environment causing a switch to carbohydrate
burning. However, the increased ROS production may
well be negatively regulated PPARs, as oxidised lipids are
potent ligands for the PPARs. Thus, although hypoxia can
trigger ROS production and the ability to switch off beta-
oxidation, the process is self-regulated by the anti-inflam-
mation actions of the PPARs – thus ensuring minimal
duration of oxidative stress. Certainly, PPAR α is known to
suppress the dehydrogenase pyruvate complex (PDC), by
upregulation of pyruvate dehyrogenase kinase 4 (PDK4)
during starvation [53], which would reinforce its role in
energy switching and carbohydrate sparing.

PPARs and uncoupling proteins: managing ROS and lipids
PPAR activation can increase the expression of mitochon-
drial UCPs [54-57] – a family of homologues that can
'uncouple' the proton gradient in the mitochondria and
so reduce ROS [58]. The activity of UCPs is increased dur-
ing starvation and by a ketogenic diet [59,60]. They can be
directly activated by fatty acids [61], with unsaturated
fatty acids being particularly effective [62-64].

Relationship between energy storage, inflammation, thermo-genesis, hunger and survivalFigure 2
Relationship between energy storage, inflammation, 
thermogenesis, hunger and survival. As fat mass 
increases, it sends out a proportionally bigger inflammatory 
signal that also induces insulin resistance: this might compen-
sate for the normal inflammatory suppression of orexia. 
Thus, it is a normal survival response selected for by evolu-
tion, as both storage of energy, and the ability to mount a 
strong immune response, were strong survival traits. It is 
likely that during ancient times there was never such a thing 
as a 'free lunch'; before the advent of civilisation it was 
unlikely that there were extended periods (e.g. beyond a 
year) when food was plentiful and there was little need to 
move to get it.
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Mammals have at least five UCP homologues: UCPs are
also found in plants and fungi, and belong to an ancient
superfamily of mitochondrial metabolite carriers [65]. It
was originally thought that one of their prime functions
was to uncouple the mitochondrial deltapsi gradient (so
reducing ROS production), and certainly for UCP-1
(which was the first to be discovered) this is true – as it
plays a critical role in thermogenesis [18]. However, a pre-
cise role for the other UCPs is still being defined, as it is
now thought that their primary function maybe as ani-
onic transporters – although a secondary protonophore
function may still be very important. For instance, UCP-3
is thought to transport fatty acids out of the mitochon-
drial matrix (in exchange for a proton equivalent) and is
predominantly found in muscle and adipose tissue and is
induced by fasting (when lipid levels rise), and thus may
play a role in preventing lipotoxicity; this would certainly
be supported by the observation that it is decreased in the
muscles of T2D patients, and its levels can be restored by
PPAR γ activation [66].

Hence, fatty acids may potentially reduce ROS production
by directly stimulating UCPs, and the potency of unsatu-
rated fats may reflect their susceptibility to oxidation.
Importantly, these same fatty acids would also activate
PPARs and increase the expression of UCP (s). Thus, we
hypothesize that PPARs may have a vital role to play in
reducing hypoxia-related lipid damage through their
induction of UCPs and, in so doing, improve functional
longevity by suppressing ROS production (and reducing
the potential for lipotoxicity); this would be enhanced by
their well-described ability to increase the activity of other
antioxidant enzymes, such as superoxide dismutaste
(SOD) or catalase [67-69].

Shifting the phenotype; reducing the need for 
insulin
The ability of PPAR γ to improve glucose dispersal is well
described, and is now being described for PPAR δ [70] and
PPAR α (although there have been some conflicting
results) [71,72]. One of the main ways they do this is to
channel fatty acids to where they are needed; this prevents
the build up of excessive intramyocellular lipid, which is
thought to be one of the major causes of insulin resistance
in obesity [73]. In addition, it is also becoming clear that
an increase in ROS can also cause insulin resistance [74].
This would support the observation that increasing free
fatty acid (FFA) concentrations can induce NFkB activity
(and ROS) [75], and in the liver, this may partly explain
hepatic insulin resistance [76]. However, it has been long
known that ROS is involved in insulin (and that of other
growth factors) signalling, possibly through NADPH oxi-
dase (Nox) production of H2O2 (reviewed by Goldstein,
Mahadev 2005) [77]. This would imply that not only is
control of intracellular redox vital, but that excessive insu-

lin signalling, (apart from suppressing FOXO), may also
contribute to increased cellular oxidative stress.

It has been proposed for some time that 'thrifty' genes
would have given our ancestors a survival edge in harder
times by enabling rapid storage of fat, but in times of
plenty, may have resulted in increased levels of diabetes
[78]; key to this insulin resistance may be the role of lip-
ids. In contrast, in times of plenty selective pressure may
have resulted in 'unthrifty' genes, which would be associ-
ated with insulin sensitivity. For instance, the PPAR γ ala
allele, which is diabetes protective and probably arose
between 32,000 to 58,000 years ago [79]. Thus, both insu-
lin resistance and sensitivity can be potential survival
traits – so what is the role of the PPARs in determining this
balance?

Keeping FOXO active: PPARs modulate insulin 'drive'
The facility of a rapid food-induced insulin response and
the ability to store food efficiently after starvation, while
retaining a degree of insulin resistance post-prandially,
may be example of a "thrifty adaptation" to spare glucose
for the CNS and provide energy for muscle during times
of hardship – both for movement and thermogenesis
[80]. Certainly, muscle insulin resistance combined with
adipose insulin sensitivity may comprise a 'fat catch-up'
paradigm by ensuring fatty acid channelling to adipose
tissue and decreased muscle thermogenesis [81]. In addi-
tion, the recent discovery of a hormone associated with
longevity called 'klotho' that can induce insulin resistance
and upregulate FOXO [82] is therefore significant, as is
supports the observation that the right degree of insulin
resistance may aid long-term survival. For instance, if nor-
mal human subjects are starved for 48 hours, they become
insulin resistance, which is thought to be a natural
response to maintain glucose levels and is related to
decreased glucose dispersal by down-regulation of muscle
PDC [83]. This insulin resistance is probably related to
increased intramyocellular fat, as during starvation, FFA
levels rise [84]. Similarly, 60 hour starvation of patients
with T2D or obesity can result in increased insulin resist-
ance, but only in those who were relatively insulin sensi-
tive to begin with; in some highly insulin resistant
patients, starvation improved sensitivity [85]. Indeed, it
has been observed for many years that crash dieting can
actually induce severe insulin resistance and T2D is some
obese patients [86].

FOXO, which is one of the most important transcription
factors in improving functional longevity during fasting,
is negatively regulated by insulin [9]. We suggest that a
critical function of the PPARs is to reduce insulin "drive"
(via appropriate tissue insulin sensitisation) and thereby
increase functional longevity by preventing the insulin-
mediated downregulation of FOXO. This process is also
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extended directly to insulin production, as PPARs are
involved in controlling glucose-stimulated insulin release,
a process that is modulated by fatty acids and may involve
UCPs: increased PPAR α activity is associated with down
regulation of insulin production during fasting, while
PPAR γ islet over-expression can also suppress insulin
release [87,88]. Interestingly, saturated fat is far more
insulinotropic than unsaturated fat [89], which might
suggest that PPARs are more effective at reducing insulin
production in response to unsaturated fats. This is in
keeping with the susceptibility of unsaturated fats to oxi-
dative damage. In contrast, saturated fat is less effective
than unsaturated fat at stimulating the incretin, glucagon-
like peptide-1 (GLP-1), from the gut [90]. The biological
activities of GLP-1 include stimulation of glucose-depend-
ent insulin secretion and insulin biosynthesis, inhibition
of glucagon secretion and gastric emptying, and inhibi-
tion of food intake. This may suggest an evolved bias
towards unsaturated dietary fat intake from the gut, but an
internal system to react to nascent saturated fat produced
from glucose (or fructose): i.e. we are far more able to tol-
erate ingestion of unsaturated fat, compared to saturated
fat – but the system is designed to recognise and deal with
de novo saturated fat generated from carbohydrate.
Human data suggest that rosiglitazone can activate desat-
urases, so reducing levels of saturated fat in the system
[91], which would further indicate that reduction of
excess saturated fat is a biological imperative.

We propose that at it simplest, muscle insulin sensitivity
may result in increased thermogenesis through futile
cycling and thus, would be associated with an 'unthrifty'
genotype. Key in either the thrifty, or unthrifty genotypes
(as indicated by the PPAR ala/pro mutation), would be
the role of the PPARs: increased adipose PPAR γ activity
would result in better fat storage (adipose insulin sensitiv-
ity), whereas an improved ability to burn fat in muscle
(PPAR α/δ) might be associated with better muscle insu-
lin sensitivity and less efficient feed efficiency (but a better
tolerance to cold). Hence, by modulating tissue-specific
fatty acid metabolism and storage, PPARs are able to max-
imise FOXO activity and thus optimise resistance to oxi-
dative stress by reducing the need for insulin. One
obvious exception to this is the mutually suppressive
effects of PPAR γ and FOXO in adipose tissue [22];
increased PPAR γ activity would act to store fatty acids,
while still maintaining an anti-inflammatory effect
(reduce oxidative stress) by suppression of NFkB. Cer-
tainly, basal NFκB activity increases during adipocyte dif-
ferentiation [92]. This would suggest a possible adipose-
inflammatory paradigm, whereby increased NFkB activity
could conceivably suppress both FOXO and PPAR γ,
resulting in 'inflammatory' lipolysis. During starvation,
FOXO would be expected to suppress both NFkB and
PPAR γ and result in 'starvation' lipolysis. However, in

obesity, this natural suppression of inflammation is lost
due to the high adipose-related inflammatory signal,
which suppresses both PPAR γ and FOXO: this could lead
to the metabolic syndrome.

The metabolic syndrome; PPARs keep the acute phase 
response in check
It has been suggested that in addition to the 'thrifty' geno-
type, another adaptation may also be needed to develop
the metabolic syndrome, and that is a 'high cytokine
responder' genotype, with an improved ability to resist
injury (i.e. a stronger inflammatory response) [93]. It has
been known for many years that injury can result in pro-
found insulin resistance and is associated with the APR,
which is a systemic inflammatory injury response to pro-
tect the host (being both haemostatic and anti-microbial)
characterised by the hepatic production of acute phase
proteins (e.g. c-reactive peptide, CRP) and glucose,
increased cytokine production and turnover of protein,
glycerol free and fatty acids, and has been called the
'hypermetabolic response' [94,95]. This 'hypermetabolic'
(catabolic) state can be mimicked by injection of the stress
hormones cortisol, glucagon and ephedrine in human
volunteers [96]. However, this 'hypermetabolic' state is
usually associated with increased thermogenesis (pyrexia)
and is anorexic, and probably involves inflammatory-
mediated modulation of appetite systems, such as the
melanocortin pathway [97]; this is clearly not the case in
the metabolic syndrome. Interestingly, leptin is known to
mediate the effects of lipopolysaccharide (LPS) induced
anorexia and fever [98], but central leptin (and insulin)
resistance is a common finding in obesity and could be
related to leptin itself via effects on phosphatidylinositol
3-kinase (PI3K) and phosphodiesterase 3B (PDE3B) activ-
ities and reduction in cyclic AMP (cAMP) [99] and/or the
pro-inflammatory effects of a high fat diet [100]. This
might also represent a another thrifty adaptation to
ensure a high state of 'inflammatory readiness', but con-
servation of energy stores.

It was suggested by Pickup and colleagues in 1997 that
'syndrome X' (now called the metabolic syndrome) was in
fact a disease caused by the chronic activation of the
innate immune system and contributed to the hypertrig-
lyceridaemia, low HDL cholesterol, hypertension, glucose
intolerance, insulin resistance and accelerated atheroscle-
rosis of NIDDM [101]. This hypothesis for the develop-
ment of T2D (and the metabolic syndrome) was further
supported by data from the Athersclerosis Risk in Com-
munities study (ARIC) [102]. Importantly, the APR and
inflammation can result in increased insulin output,
which can in turn suppress the APR – so providing a pos-
sible negative feedback mechanism [103]. Interestingly,
IL-6, a potent inflammatory cytokine-inducer of the APR
produced by adipose tissue, is significantly associated
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with insulin resistance and insulin levels in men: this rela-
tionship may further indicate a 'thrifty' adaptation, which
both enhances resistance to infection and ability to store
energy [104]. Mutations in the IL-6 gene are associated
with increased risk of diabetes [105].

The APR response has now been shown to down-regulate
PPAR activity in most tissues, including adipocytes [106]
– which is to be expected, as PPARs are generally anti-
inflammatory and improve insulin sensitivity. Indeed,
they have been described as negative acute phase proteins
[107]. At the site of injury (due to hypoxia), HIF-1 (and
NFkB) may suppress PPAR activity directly. Away from the
site of injury, pro-inflammatory mediators such as angi-
otensin II can mediate many of the effects of the APR via
activation of NFkB and thereby also inhibit PPAR activity
[108,109].

We suggest that at some point in the clinical evolution of
the metabolic syndrome and T2D a 'tipping point' is
reached, resulting in an inflammatory-driven downregu-
lation of PPARs (figure 3). All of this would strongly indi-
cate that the metabolic syndrome is an exaggerated thrifty
response, characterised by insulin resistance, which not
only induces a propensity to store fat, but results in a fat-
mass related activation of the APR (and resistance to its
normal suppression by insulin). However, unlike the well
described hypermetabolic injury response, appetite is
maintained and thermogenesis suppressed (see below for
possible explanation).

Evolutionary function of the PPARs: putting the 
brake on oxidative stress
In summary, we postulate that as transcriptional factors,
PPARs have evolved to improve functional longevity by
integrating lipid storage and burning with both reduction
of insulin levels and suppression/resolution of inflamma-

A modern imbalance: an out of control 'thrifty' responseFigure 3
A modern imbalance: an out of control 'thrifty' response. Proposal as to what happens when an ancient hunter-gath-
erer genotype meets a modern lifestyle. Thrifty response and expanding adipose tissue eventually leads to an over-whelming 
inflammatory signal.
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tion and thus reduction of ROS and oxidative stress (fig-
ure 4). This critical role is summarised by the
'transcriptional triad' (figure 1). Key in this is the ability of
PPARs to overcome the 'hypoxia-lipid conundrum', so
preventing hypoxia-driven lipid damage and excessive
activation of the APR: insulin resistance is induced by
increased ROS, inflammatory mediators and deposition
of intramyocellular lipids – all things normally sup-
pressed by the PPARs. By reducing the need for insulin,
they can optimise FOXO, which upregulates many genes
involved in resistance to oxidative stress. Although PPARs
have been mostly shown to decrease oxidative stress, there
are reports of PPAR γ ligands increasing ROS – especially
in cancer cells, which leads to apoptosis and is associated
with mitochondrial dysfunction [110-112]. Given the
reliance of many cancer cells on glycolysis (the 'Warburg'
effect) and the fact that cancer invokes many inflamma-
tory pathways [113], this could be viewed as another
mechanism to ensure functional longevity.

The key to understanding the PPARs is their role as lipid
sensors in transcriptional control during starvation, feed-
ing and inflammation: fat is essential for long-term sur-
vival. During fasting/starvation, muscle insulin resistance
is clearly a thrifty response and is associated with fat dep-
osition, and enables glucose sparing, while in the liver, it
encourages gluconeogenesis: at its simplest fatty acids and
glycerol flow out of adipose tissue to supply energy. Dur-
ing fasting, many tissues start to burn fats – a process that
requires PPAR α and δ. In contrast, during feeding, it is
necessary to store and/or replenish energy – either as gly-
cogen, or as lipid in adipose tissue: a degree of muscle
insulin resistance, and adipose tissue insulin sensitivity,
will channel lipid to the correct store. Key in this is PPAR
γ. However, this balance is determined by muscle mass:
more muscle means higher glucose dispersal, but muscle
is also metabolically active and an important site of ther-
mogenesis, and therefore, energy loss – which, we suggest,
may be partly determined by mass action and futile
cycling (the muscle 'metabolite door' is more open due to

A possible function for the PPARsFigure 4
A possible function for the PPARs. A summary proposing the overall function of the PPARs (peroxisomal-proliferating 
activated receptors).
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insulin sensitivity). Certainly, PPAR δ (and probably α)
are important the utilisation of lipid energy muscle. Dur-
ing injury/inflammation, energy is required for the
immune system, so insulin resistance is increased and lip-
ids flow out of adipose tissue – which is not to dissimilar
to the fasting response. However, unlike the fasting
response, the insulin resistance is likely to be largely
cytokine induced, plus, it is usually associated with
pyrexia (increased futile cycling & thermogenesis) and
anorexia – it is a hypermetabolic response. Furthermore,
unlike fasting, inflammation is associated with increased
oxidative stress. It is also associated with suppression of
PPAR activity – however, PPARs would act as negative reg-
ulators to modulate the response and improve insulin
action.

The transcriptional adaptive response to fasting involves
upregulation of FOXO, PGC-1α and PPAR α – all of which
enhance resistance to oxidative stress and the ability to
burn fat, while ensuring glucose sparing. Thus, insulin

resistance is essential for survival, but too much can result
in a feed-forward "feed-inflammatory" response: the
'thrifty' response out of control – as it also suppresses the
hypothalamic satiety effects of insulin and leptin. At the
transcriptional level, FOXO activity appears to be orexi-
genic in the hypothalamus [114] – insulin (and inflam-
matory mediators) would suppress its activity. Hence,
PPARs, by suppressing oxidative stress and improving
insulin action, can prevent this from happening.

The out of control 'thrifty' response: new lifestyle, old 
genes – a modern PPAR imbalance
It is now well accepted that "modern epidemics" such as
obesity, the metabolic syndrome, and type 2 diabetes
reflect that the modern human is simply "drowning in a
sea of saturated fats". It is generally thought that this is
due to a ancient genotype being exposed to a modern
environment. Thus, if we accept that we are simply "Stone
Agers in the fast lane" [115], we need to rebalance our sys-
tems, either artificially or naturally, to protect us against

Restoring metabolic balanceFigure 5
Restoring metabolic balance. Lifestyle changes and therapeutic interventions in redressing the imbalance leading to resto-
ration of metabolic and inflammatory balance. Sustained weight loss critical for optimum results.
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the ravages of modern living and to slow the aging proc-
ess. For instance, evidence suggests that dietary manipula-
tion to increase the polyunsaturated/saturated fat ratio
can be advantageous [116-118], and the benefits of phys-
ical activity are well known, including the ability to delay
and prevent type 2 diabetes [119]. One might argue, how-
ever, that sections of the population exhibiting the "thrifty
genotype" may be especially at risk and need to dramati-
cally change their diet and lifestyle in order to optimize
their functional longevity. In many respects, the long-
lived calorie-restriction phenotype is the complete oppo-
site of the shorter-lived metabolic syndrome phenotype.
Evidence suggests that our ancestors did not often live
much beyond the age of 40, so an ability to store fat
quickly, which accentuated the potency of the innate
immune – was never really a problem in the long term: it
is probably an example of 'antagonistic pleiotropy', which
gave a survival advantage while young, ensuring reproduc-
tive success.

Modulation of PPARs appears to occur in the APR, which
occurs as part of an injury-related response. During this
reaction to injury, it may be necessary to downregulate
PPARs, as they have many effects that are counterproduc-
tive to tissue healing (e.g., they reduce insulin, resistance,
suppress expression of inflammatory cytokines and are
anti-proliferative). Many of the pathways that are thought
to achieve this downregulation are involved in allowing
the metabolism of fats. Significantly, many of the signs
and symptoms of the APR are shared by the metabolic
syndrome. Therefore, it is not untoward to speculate that
the downregulation of PPARs may well be at the root of
the metabolic syndrome. The cause of this downregula-
tion may well be the modern lifestyle, leading to an out of
control 'thrifty response'. Modulating PPARs may be one
way to help prevent this. In this respect, it may be possible
to "rebalance" our systems through changes in diet, life-
style, and, possibly, therapeutic intervention (figure 5) –
the PPARs may therefore play a very important role in
'metabolic balance'. The benefits of PPAR activation/
modulation are clear from trials where PPARs have been
activated by pharmacological and natural ligands
[120,121]. However, the increased mortality of some
patients with compromised cardiac function in trials with
the newer dual PPAR agonists does suggest that modula-
tion of PPAR function needs to be handled carefully in
some populations [122], as enhancing their activity may
counter-act an ancient injury survival system.
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