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A B S T R A C T   

The intrusion of seawater (SWI) into coastal aquifers is a major concern worldwide, affecting the 
quantity and quality of groundwater resources. The region of Saudi Arabia that lies along the 
eastern coast has been affected by SWI, making it crucial to accurately identify and monitor the 
affected areas. This investigation aimed to map the degree of seawater intrusion in a complex 
aquifer system in the study area using an integrated clustering analysis approach. The study 
collected 41 groundwater samples from wells penetrating multi-layered aquifers, and the samples 
were analyzed for physicochemical properties and major ions. Clustering analysis methods, 
including Hierarchical Clustering Analysis (double-clustering) (HCA-DC), K-mean (KMC), and 
fuzzy k-mean clustering (FKM), were employed to evaluate the spatial distribution and associa
tion of the groundwater properties. The results revealed that the analyzed GW samples were 
divided into four clusters with varying degrees of SWI. Clusters A, B, C, and D contained GW 
samples with very low (fsea of 1.9%), high (fsea of 14.9%), intermediate (fsea of 7.9%), and low (fsea 
of 5.2%) degrees of SWI, respectively. FKM clustering exhibited superior performance with a 
silhouette score of 0.83. Additionally, the study found a direct correlation between the degree of 
SWI and increased concentrations of boron, strontium, and iron, demonstrating SWI’s impact on 
heavy metal levels. Notably, the boron concentration in cluster B, which endured high SWI, 
exceeded WHO guidelines. The study demonstrates the value of clustering analysis for accurately 
monitoring SWI and associated heavy metals. The findings can guide policies to mitigate SWI 
impacts and benefit groundwater-dependent communities. Further research can help develop 
effective strategies to mitigate SWI effects on groundwater quality and availability.   

1. Introduction 

Freshwater is an invaluable resource for the planet, and groundwater (GW) is a crucial source of this precious commodity. 
Groundwater plays a vital role in meeting the rising demand for water, particularly in dry areas with little rainfall, high evaporation, 
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and minimal surface water [1–3]. The rapid growth of population, urbanization, and industrialization, particularly in coastal areas, has 
resulted in a shortage of water resources that are no longer suitable for human use. The over-extraction of GW beyond its natural 
recharge rate results in hydrodynamic and hydrochemical imbalances, which subsequently causes seawater intrusion into aquifer 
system in coastal areas and elevates the GW salinity. This phenomenon poses a significant threat to the sustainability and availability of 
freshwater resources in these regions, with implications for both human populations and the environment [4–6]. 

The salinization of GW represents a significant hazard to the availability and quality of GW resources in coastal areas. It can reduce 
the availability and quality of GW suitable for drinking and irrigation purposes, negatively impacting the sustainability and resilience 
of the affected regions. GW resources in numerous coastal cities across the globe are under threat of salinization due to factors such as 
global warming, SWI, and seawater outflow [7–12]. The increased water demand in coastal regions due to humankind’s development 
has led to severe consequences. The unsustainable over-extraction of GW resources can create hydrochemical and hydrodynamic 
imbalances, resulting in SWI of coastal regions, leading to the salinization of coastal freshwater resources. This can make it unsuitable 
for drinking and irrigation, underscoring the need for effective management practices [5]. Global warming further exacerbates the 
situationwhich intensifies SWI and exacerbates the risk of GW salinization in coastal areas worldwide [13–15]. 

SWI is reported as the major risk to GW in more than 501 coastal cities around the world [8,16–18]. Mapping the SWI and GW 
salinization degree is essential for sustainable GW resource management. There are various techniques documented in literature for 
detecting SWI in coastal aquifers, including hydrogeology, hydrochemistry, isotopes, and geophysics [19–21]. Researchers have 
employed multivariate statistical analysis of physical and chemical GW data to evaluate the effect of SWI on coastal aquifers [20,22, 
23]. Principal component analysis (PCA) and factor analysis are the most used multivariate statistical techniques in SWI studies [19,24, 
25]. Telahigue et al. [25] utilized PCA as a multivariate statistical technique to identify the main hydrochemical processes affecting the 
GW chemistry and quality in the southeastern region of Tunisia. Sae-Ju et al. [19] implemented a PCA with hydrochemical facies 
evolution (HFE) diagram to understand the freshening and intrusion processes in a coastal aquifer in Thailand. Hajji et al. [24] used a 
PCA model with a hydrochemical facies evolution (HFE) model to determine the most influential factors on GW quality in coastal 
aquifers in Tunisia. Some scientists have used hierarchical cluster analysis (HCA) in combination with principal component analysis 
(PCA) to determine the geochemical processes that govern the geochemistry and water quality of GW in coastal regions (e.g., Refs. [10, 
26]. 

This study aims to use HCA-DC, KMC, and FKM clustering methods to determine the extent of SWI in a multi-aquifers system of the 
Arabian Gulf Coast of Saudi Arabia. The study considers the spatial variability of physicochemical properties and major ions to identify 
hotspot zones of SWI and support effective management strategies. To our knowledge, it is the first time to combine various clustering 
techniques to delineate and map the extent of SWI in coastal GW systems. The results of this research can aid decision-makers in 
effectively managing GW resources and implementing strategies to manage SWI sustainably. 

2. Study area 

The area under investigation is situated on the west coast of the Arabian Gulf, as shown in Fig. 1, falls within the Qatif province of 

Fig. 1. Map depicts the geographical location of the study area and the selected GW samples.  
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eastern Saudi Arabia, and encompasses Tarout island and the Qatif coastal oasis. Qatif governorate, which borders Dammam 
governorate to the south and Al-Jubail governorate to the north, is a developed coastal oasis. The area being studied is a flat coastal 
plain that gradually increases in elevation towards the west, reaching a height of approximately 12 m. The region under investigation 
encompasses residential and agricultural zones, with recent urban expansion on farmland. The primary water source for irrigation in 
Qatif and Tarout Island is the multi-layered aquifer systems, which consist of shallow, middle, and deep aquifers [27,28]. In the studied 
region, the intermediate and deep aquifers are predominantly utilized for GW extraction due to the high salinity levels of groundwater 
in the shallow aquifer [29]. Within the study area, numerous wells reach the middle and deep aquifers, which are utilized for agri
cultural water supply. The aquifers can be categorized into three types: shallow, intermediate, and deep. The maximum depths of these 
aquifers are 30 m, 80 m, and 130 m below the ground surface, respectively. The water level varies across these aquifers, ranging from 
less than 1 m in the shallow aquifer to over 5 m in the deep aquifer. 

The climate of eastern Saudi Arabia is characterized by hot summers and mild winters. The region experiences a desert climate, 
with very low rainfall throughout the year, mainly during winter [30]. The average temperature in the region ranges between 20 and 
45 ◦C, with the highest temperatures typically recorded during the summer months. The region is also influenced by the Shamal winds, 
which are hot and dry winds blowing from the northwest direction. The climate of eastern Saudi Arabia poses a significant challenge 
for water management, as the region faces increasing demand for freshwater resources and limited surface water sources. The study 
area’s vulnerability to SWI highlights the importance of sustainable water management practices to mitigate the impact of climate on 
GW resources. 

Table 1 
Lithological and hydrogeological units in Saudi Arabia’s eastern coastal region (after [32,34].  

Formation Member Lithology Description Thickness (m) Hydrogeologic Unit 

Quaternary Deposits  Eolian Sands and Sabkha 0–10  

Hofuf  Sandy Limestone 0–95 Neogene Aquifer 

Dam  Massive Limestone 0–90  

Dolomitic Limestone 

Hadrukh  Sand and Shale 0–90  

Shale  

Sandstone  

Marl Marl Aquitard 

Dammam Alat Dolomitic Limestone 0–80 Alat Aquifer 

Dolomitic Shale 0–30 Alat Aquitard 

Khobar Limestone 0–70 Khobar Aquifer 

Alevolina Fossiliferous Limestone 0–20 Limestone Aquitard 

Saila Shale with limestone 0–10 Shale Aquitard 
Midra  

Rus  Marl and chalky limestone 60–100 Shale Aquitard 

Umm Er Radhuma (UER)  Dolomitic Limestone 200–400 UER Aquifer  
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3. Geological and hydrological characteristics 

The geology of the study area is illustrated in Table 1. The area’s geological composition consists of seven formations with varying 
ages and lithology. The oldest one is Umm Er Radhuma Formation, which spans a thickness of 400 m and primarily consists of 
dolostone, limestone, and dolomitic limestone [31]. The Dammam Formation is approximately 300 m thick and mainly composed of 
limestone, chalky, and dolomitic limestone. It is one of the most significant aquifers in the region, and its water is typically of good 
quality and low salinity [32,33]. The Dammam Formation is located above the Rus Formation in a geological sequence. The Dammam 
Formation is positioned above the Rus Formation in the geological sequence. It comprises two shale members; Midra, Saila, and three 
limestone members; Alveolina, Khobar, and Alat. These members are arranged in ascending order from the bottom to the top. Midra 
and Saila consist of shale and are 10 m thick on average [34]. The Alveolina member, on the other hand, is composed of micro
crystalline limestone and ranges in thickness from meters to 12 m [34]. The Dammam Formation’s Khobar Member is mainly made up 
of porous limestone and has a thickness of approximately 40 m [33,35]. The upper section of Dammam Formation which consists of 
porous dolomitic limestone formed the Alat memener of the formation with thickness ranging from 15 m in the exposed area to 
approximately 70 m underground [34]. 

The Hadrukh Formation is a layer of sandstone, shale and marl that is overlain by the Dammam Formation. It can range in thickness 
from a few meters to 90 m [32]. The Dam Formation, which sits atop the Hadrukh Formation, is consist of limestone rock varied in 
facies from microcrystalline to massive limestone with voids The thickness of Dam Formation ranges from 40 m in the exposed section 
to 90 m in the sedimentary basin in the subsurface [34]. The Dam Formation is overlain by the clastic and sandy limestone layers of 
Hofuf Formation. Quaternary deposits, such as Sabkha, aeolian sand, and marine terraces, can be found along the Arabian Gulf shore 
and typically range in thickness from 3 to 10 m [34]. 

The research site has a complex karstified aquifer system with three main aquifers - Neogene, Alat, and Al-Khobar, separated by two 
aquitards, as shown in Table 1. The Neogene aquifer developed in the clastic layers of the Hadrukh Formation is shallow and un
confined in the studied area. It is estimated to have a storativity of 0.01 and a transmissivity range of 25.5–144 m2/h [27,36]. The 
middle aquifer in the study area is The Alat Aquifer and it formed in the dolomitic limestone section of the Dammam Formation. The 
aquifer depth varies greatly, ranging from a few meters at higher elevations to over 100 m in Ras Tanura, with an average depth of 25 
m. From regional prospect, the aquifer transmissivity ranges from 1.16 m2/h to 310 m2/h, and storativity range from 0.00013 to 
0.00002. However, in the study area, it has an approximate transmissivity of 12.96 m2/h [36]. 

The Khobar Aquifer is formed within the lower section of the Dammam Formation, comprised of karstified and fissured dolomitic 
limestone. Its top boundaries are the Alat member shale aquitard and other Dammam Formation shale units. It is the main source of 
drinking and agricultural water in Hassa and Qatif areas. The hydraulic characteristics of the aquifer range from 0.02 to 324 m2/h for 

Fig. 2. A flowchart outlining the proposed methodology.  
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transmissivity and 0.001 to 0.0001 for storativity in the eastern province of Saudi Arabia. The transmissivity of The Khobar Aquifer is 
about 312 m2/h in the study area [36]. 

The distribution of the potentiometric level of the aquifers in the study area has been studied by Benaafi et al. [37]. They found that 
the water level within the shallow aquifer display decline towards the east, northeast, and southeast in the direction of the Arabian 
Gulf. Similarly, the water level in the deep aquifer also declines towards the Arabian Gulf, but with a noticeable upconing of GW levels 
observed in the central region of the study area. This rise in the water level can be attributed to the reduction of GW pumping from the 
deep aquifer in the middle part of the study area. This decrease in GW extraction is due to substituting groundwater with treated 
wastewater for irrigation purposes. 

4. Materials and methods 

The proposed methodology for this study follows a systematic and comprehensive approach to assess the degree of seawater 
intrusion in the research area (Fig. 2). The process begins with identifying research objectives and the design of the study, followed by 
data collection through fieldwork and laboratory analysis. The gathered data then undergoes a thorough analysis and interpretation 
phase, integrating various sources of information to ensure a holistic understanding of the issue. A key aspect of the methodology 
involves implementing cluster analysis, which includes double-clustering, K-Mean clustering, and Fuzzy K-Mean clustering techniques. 
These clustering methods serve to group data points based on their similarities and provide valuable insights into the spatial patterns of 
seawater intrusion. Following the clustering process, the results are evaluated to determine the optimal number of clusters that best 
represent the data. 

A Fraction of Seawater Index (fsea) is employed to further refine the analysis, allowing for a more accurate and quantitative 
determination of the extent of seawater intrusion. Finally, the study compares and interprets the results of the various clustering 
methods and the fsea index to provide a comprehensive understanding of the degree of seawater intrusion in the area. This method
ology, with its multi-faceted approach, ensures a robust and reliable assessment of seawater intrusion, allowing for the development of 
informed strategies to mitigate its impacts. The cluster analysis results were compared with the conventional index of SWI (fraction of 
seawater index (fsea)) to have an effective statistical technique for SWI mapping. 

4.1. Water sampling 

In March 2021, a total of 41 wells that served as sources of water for both human consumption and irrigation in Qatif City and 
Tarout Island, eastern province of Saudi Arabia, were sampled, as depicted in Fig. 1. The GW samples were obtained from wells tapped 
in the shallow and deep aquifer in the study area. The shallow wells ranged in depth from 5 m to 10 m. And the depth of the production 
wells ranges from 70-m to 130-m and produce water from the deep aquifers [27,37]. Water samples for GW were obtained from the 
wells once the electrical conductivity (EC) levels had stabilized after pumping—the sampling process adhered to USEPA’s guidelines 
[38]. 

On-site measurements of water physical and chemical parameters (temperature, pH, EC, ORP, and DO) were performed using a 
portable meter equipped with GPS (Hanna HI9829). This was followed by collecting GW samples in high-density bottles and filtered on 
site using 0.45 μm membranes. The filtered samples were subsequently utilized to create two distinct 250 ml sampling kits to analyze 
anions and major cations, and trace elements. The GW samples were acidified with ultrapure HNO₃ (e.g., concentrated, enough to 
achieve a pH of less than 2) for the analysis of main cations and trace elements. Unfiltered samples (100 ml of unfiltered samples were 
used to study the water isotopes (18O and 2H). For further analysis, all the samples were stored at 4 ◦C. 

4.2. Laboratory analysis 

At the Environmental Laboratories of King Fahd University of Petroleum and Minerals, high-performance ion chromatography (IC) 
was utilized to analyze major ions (Na+, K+, Ca2+, Mg2+, Cl− , F− , Br− , SO4

2− , and NO3
− ). The laboratory measurement of bicarbonate 

carried out via acid titration and TDS through gravimetric analysis (TDS). Quality control was ensured by analyzing blind, duplicate, 
and blank GW samples to validate the accuracy and calibration of the equipment. Cross-checking was performed to verify the ionic 
charge balance of all GW samples (equation (1)) [39]. 

charge balance(%)=

∑
meq Cations −

∑
meq Anions

∑
meq Cations +

∑
meq Anions

(1) 

The charge balance for the GW samples ranged from 0.3% to 5%, and an average value of 3.5%. Notably, all the GW samples 
exhibited a charge balance that was less than the accepted criterion of 10%. Stable isotopes (18O and 2H) were sampled and tested 
following Clark’s protocol [40]. The primary analysis of 18O and 2H was conducted at the Stable Isotope Laboratory of King Fahd 
University and Minerals, Saudi Arabia. The isotope analysis results were expressed in per mill (‰) compared to Vienna Standard Mean 
Ocean Water (V-SMOW), with a precision of ±0.2‰. 

Heavy and trace metals in tested groundwater (B, Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Ba, and Pb) were measured using ICP-MS 
(US EPA 6020 method). The water samples were filtered using 0.45 m filter paper to remove the suspended particles and acidified by 
nitric acid to decrease the chemical variance. The quality of elemental analysis was monitored via reference standard materials and 
duplicates to ensure the reliability of the results. Analytical results were accurate to within 5% RSD. 

M. Benaafi et al.                                                                                                                                                                                                       



Heliyon 9 (2023) e19784

6

5. Statistical analysis 

5.1. Hierarchical cluster analysis (HCA) 

GW studies have been widely used Hierarchical Cluster Analysis (HCA) to identify the hierarchical grouping level of water samples 
based on differences or similarities in their characteristics [41–43]. This statistical approach appears unsuitable for showing the group 
of parameters (e.g., physicochemical properties and ions) responsible for grouping water samples into classes with various degrees of 
seawater intrusion. To achieve the study’s objective of delineating the degree of salinization and SWI, we applied a double-clustering 
approach to identify clusters of water samples that belong to one group of variables (the group that reflects salinity). In the first stage, 
we applied HCA to all datasets of the physicochemical properties of the tested GW. Accordingly, cluster analysis generates four groups 
of variables. The variables most relevant to salinity (EC, TDS, Na, Ca, Mg, K, Cl, Br, and SO4) were used as input variables for grouping 
the observations (GW samples) into clusters with different degrees of SWI. The HCA-DC approach has been evaluated by Mora et al. 
(2021) for mapping the salinization and trace metal contamination in north-central Mexico. They found that the HCA-DC is a reliable 
statistical tool for mapping the contaminant hotspot zones and the process that controlled them. 

5.2. K-mean clustering method 

K-means clustering algorithm is a largely applied technique for clustering huge data. It is sophisticated non-supervised, and non- 
hierarchical algorithm [44]. In this approach, the data is separated into subgroups and sorted into clusters based on their centroids, 
resulting in a centroidal clustering technique. The goal of clustering is to reduce the MSSD of each point to its closest cluster mean 
while ensuring that members of each group share similar characteristics and attributes. According to Han et al. [45] the K-means 
clustering algorithm consists of four main steps: 1) Cluster number identification, 2) Finding the center point of each cluster, 3) 
measuring the distance between each data point and its closest centroid, and 4) assigning each data point to the nearest centroid. The 
algorithm repeats these steps until the position of the cluster centroids no longer changes. The cluster centroids are computed using 
equation (2) [46]. 

μk =
1

Nk

∑Nk

q=1
xq (2)  

In which μk represents the new centroid, Nk denotes the number of instances, and xq refers to the q-th data in the k-th cluster. 

5.3. Fuzzy K-mean cluster analysis 

The fuzzy K-means algorithm is an unsupervised, non-hierarchical, and soft clustering technique that divides the data into k clusters 
based on fuzzy logic conceptualization [47]. It was initially proposed by Dunn [47]. and improved and generalized by Bezdek [48]. 
The FKM clustering algorithm is implemented by determining the cluster center and then splitting the dataset into clusters by applying 
equation (3) to minimize the objective function [48]. 

J =Σc
ⅈ=1

∑n

k=1
um

ik, dki (3)  

where J, c, n, uik, m, stands for minimized objective function, number of clusters, number of data observations, membership degree of 
sample k within cluster I, exponential weight of the degree of fuzziness, and overlapping degree between clusters. dki represents the 
Euclidean distance between sample xk and cluster center vi. 

5.4. Silhouette coefficient 

Numerous studies within the literature have indisputably confirmed the significance of the silhouette coefficient as a crucial metric 
to verify the effectiveness of the clustering techniques and determining the optimum clusters [49–51]. The coefficient range is between 
− 1 and 1, where a high positive value indicates a well-performing clustering analysis. In contrast, negative values imply that the GW 
samples are not belong to that cluster—the formula used to calculate the silhouette coefficient illustrated in equation (4) [49]. 

S(i) =
b(i) − a(i)

Max (a(i), b(i))
(4) 

The formula for the silhouette coefficient involves the use of b(i). This refers to the average difference between a specific data point 
(i) and all the other data points in the same cluster. On the other hand, a(i) refers to the lowest average dissimilarity between instance 
(i) and any other cluster. 

5.5. Seawater intrusion index 

The fraction of the seawater index (fsea) is a widely used for quantifying the degree of SWI in GW systems. The method proposed by 

M. Benaafi et al.                                                                                                                                                                                                       



Heliyon9(2023)e19784

7

Table 2 
Descriptive statistics of physicochemical variables, major ions, and isotopes.  

Statistic Temperature pH DO Eh Turbidity EC TDS Na+ Ca2+ Mg2+ K+ Cl− Br− SO4
2- HCO3

− F− NO3
− δ2H δ18O  

(0C)  mg/L mV NTU μS/cm mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L [‰] [‰] 

Minimum 24.0 6.5 0.4 − 205.0 0.5 3072.5 1955.0 237.3 129.7 51.3 9.9 401.8 1.9 294.2 87.4 0.0 5.5 − 31.1 − 4.3 
Maximum 37.4 8.0 5.7 278.0 33.7 20431.8 15560.0 1936.0 704.1 371.7 97.0 3519.8 19.0 1740.2 712.6 3.6 22.5 − 20.6 − 2.6 
Mean 30.9 7.2 1.4 113.4 5.0 6638.1 4536.0 572.6 261.1 110.8 25.2 1064.1 5.8 583.4 242.0 1.2 11.9 − 25.7 − 3.5  
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Appelo & Postma. [39], is one of the most commonly implemented approaches for determining the fsea value. In this approach, the 
concentration of chloride - a conservative ion that does not undergo significant chemical reactions or biological processes - is utilized as 
the basis for calculating the fsea. The chloride concentration is preferred over other ions due to its conservative behavior, which enables 
it to be transported through the subsurface without undergoing significant changes in concentration or composition. The fsea value is 
calculated using equation (5) [39]. 

fsea =
CCl,sam − CCl,f

CCl,sw − CCl,f
(5)  

Where CCl,sam, CCl,sw, CCl,f represents the chloride concentration in the samples from groundwater, seawater, and freshwater, 
respectively. The fsea value ranges from 0 to 1, with higher values indicating a greater degree of SWI or salinization in the GW system. A 
value of 0 indicates no SWI, while a 1 indicates that the GW sample is entirely composed of seawater. The fsea value can be used to 
assess the overall quality of the GW and identify potential SWI sources, such as over-pumping, coastal erosion, or sea-level rise. 

Fig. 3. Silhouette plot of HCA-DC, KMC, and FKM  
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6. Results and discussion 

6.1. Groundwater hydrochemical characterization 

Table 2 presents the descriptive statistics (minimum, maximum, and mean) of the physicochemical properties, major ions, and 
isotopes of the tested GW samples from the eastern coastal region of Saudi Arabia. The temperature of the GW samples ranged from 
24 ◦C to 37.4 ◦C, which reflects the different depths of the sampled GW. The tested GW samples has pH values ranging from 6.5 to 8.0, 
indicating neutral water. The DO values of the tested GW sample range from 1.01 to 5.7 mg/L. The electrical conductivity (EC) and 
total dissolved solids (TDS) concentrations exhibited wide ranges, with minimum values of 3072 μS/cm and 1955 mg/L and maximum 
values of 20431 μS/cm and 15560 mg/L, respectively. Notably, the salinity values of the GW samples are above the accepted limit 
(1000 mg/L) for drinking purpose (WHO, 2014), indicating its unsuitability for human kind useage. 

The groundwater has values of Eh range from − 205 mV to 278 mV and turbidity range from 0.5 NTU to 33.7 NTU, respectively. The 
dominant anions in the GW samples were chloride and sulfate, with values in a range from 401.8 mg/L to 1064.1 mg/L, 294.2 mg/L to 
1740.2 mg/L, and average values of 3519.8 mg/L and 583.4 mg/L, respectively. The predominant cations in the study area are Na and 
Ca, with concentration ranges from 237.3 mg/L to 1936 mg/L, 129.7 mg/L to 704.1 mg/L, and mean values of 572.6 mg/L and 261.1 
mg/L, respectively. 

6.2. Cluster analysis results 

This study employed three clustering techniques - HCA-DC, KMC, and FKM - to group the analyzed GW samples. The clustering 
results revealed four distinct clusters (A, B, C, and D), as presented in Fig. 3 and Table 3. The silhouette coefficients for each 
groundwater sample within each cluster are depicted in Fig. 3. The results demonstrate that the highest values are associated with 
clusters A and B, indicating a strong cohesion within these groups and clear separation from other clusters. Cluster A contained the 
highest percentage of GW samples (56%), with 46.3% originating from the deep aquifer and 9.7% from the middle aquifer. The deep 
GW samples in cluster A are predominantly from wells within 2 km–5 km from the Arabian Gulf shore. Clusters B and C were composed 
of 17.1% of the total samples. They consist of GW samples obtained from the shallow aquifer, and wells found at distances of 2 km–3 
km and 3 km–4 km from shoreline, respectively. Cluster D included samples from shallow and middle aquifers, totaling 14.7% of the 
total samples. The shallow aquifer samples accounted for 12.2%, while the middle aquifer samples accounted for 2.5%. The shallow 
aquifer GW samples in cluster D were taken from wells that are located within a distance of 4.7 km from the shore, while the middle 
aquifer samples were mainly from wells in Tarout Island and within a short distance of 1 km–2 km from the sea, as depicted in Table 3. 

6.2.1. Double-Clustering approach 
The importance of HCA clustering in understanding the hydrochemical processes of GW systems and monitoring GW quality in 

coastal regions has been studied by several researchers (e.g., Refs. [52,53]. In GW studies, scholars have implemented the HCA 
clustering technique with a combination of principal component analysis (PCA) [52,53], fuzzy c-mean clustering (FCM) [54], and 
water quality index (WQI) Das and Panda [55]. In this study, hierarchical cluster analysis (HCA) was applied in two stages to partition 
the hydrogeochemical data into different groups and subgroups (clusters) exhibiting different levels of SWI intensity. In the first stage, 
HCA was employed to the thorough dataset to partition the data into a group of variables, and the results are shown in the dendrogram 
in Fig. 4. Four groups of variables were defined with a linkage distance of approximately 35. Group A contained nine variables, 
including TDS, EC, Br − , Na+, Cl− , Ca2+, Mg2+, K+, and SO4

2− . Group B contains turbidity, bicarbonate, fluoride, and isotopes. Group C 
consists of only nitrate ions. Group D consisted of temperature, Eh, dissolved oxygen, and pH. Since group A contained variables that 
were mostly clustered with TDS and EC, we applied cluster analysis (second HCA) for group A for the purpose of clustering water 
samples into clusters with different degrees of SWI. Therefore, the HCA-DC was applied to group A of variables to divide the water 
samples into clusters with varying degrees of SWI and salinization. Fig. 4 and Table 3 show that the water samples were grouped into 
four clusters (A, B, C, and D). Cluster A comprises 19 water samples from the deep aquifer and four samples from the middle aquifer. 
Cluster B contained two water samples from the shallow aquifer. Cluster C contained five water samples from a shallow aquifer. Cluster 
D comprises five water samples from the shallow aquifer and six from the middle aquifer. 

6.2.2. K-mean clustering 
The effectiveness of K-means clustering in partitioning GW data into groups that facilitate interpretation and pattern recognition 

Table 3 
GW samples percentage in each cluster.  

Cluster GW samples % Aquifer Type Distance from sea (km) 

A 46.3 Deep 2–5 
9.7 Middle 3–4 

B 4.9 Shallow 2–3 
C 12.2 Shallow 3–4 
D 12.2 Shallow 3.5–4.7 

14.7 Middle 1–2  
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has been described in the literature [56]. Scholars have applied K-mean clustering in combination with other techniques, such as fuzzy 
c-mean, to evaluate GW quality and define regions with suitable drinking water [57]. The K-means clustering technique was also 
implemented with a self-organizing map for pattern recognition of nitrogen pollution in lake water [58]. The present study employed 
the K-means clustering to partition the GW hydrochemical data into distinct clusters to identify the spatial pattern of GW salinization 
and SWI. Fig. 5 displays the results of utilizing the silhouette coefficient to calculate the optimal cluster numbers. After analyzing the 
data, it was found that the highest silhouette coefficient value, which was 0.73, was associated with four clusters of observations, 

Fig. 4. HCA dendrogram for variables groups and water samples clusters of group A.  

Fig. 5. Silhouette scores of the KMC and FKM.  
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namely clusters A, B, C, and D. Notably, the GW samples in these four clusters were consistent with the results obtained from the 
HCA-DC analysis (see Table 3). 

6.2.3. Fuzzy K-mean clustering 
Fuzzy K-means clustering has been implemented by scholars in GW studies to identify the quality of water and spatial patterns of 

hydrochemical data [56,57]. Eskandari et al. [56], applied FCM clustering in combination with HCA and KMC to delineate the 
hydrochemical evolution of a karst aquifer in northwestern Iran. In the current investigation, the FKM algorithm is utilized to partition 
the GW data into distinct clusters. The clustering analysis incorporated twenty variables, enabling a comprehensive evaluation of the 
physicochemical properties of the GW samples. As demonstrated in Fig. 5, the maximum silhouette score of 0.84 was obtained for four 
clusters, indicating that this was the optimal clustering solution for the GW samples. These four clusters were designated as A, B, C, and 
D. 

Notably, the clustering results obtained from the fuzzy K-means algorithm were consistent with those generated by the HCA-DC and 
KMC methods, as depicted in Table 3. The similarity in clustering results across the different methods indicates the robustness and 
reliability of the clustering analyses and underscores the consistency of the underlying patterns in the GW data. The information 
derived from these clustering analyses can inform GW management strategies and practices, such as identifying areas with potentially 
high risks of SWI and implementing measures to mitigate such risks. Overall, applying the fuzzy K-means clustering algorithm to the 
GW data proved to be an effective tool for identifying distinct clusters and evaluating the physicochemical properties of the samples. 

6.3. Evaluation of cluster analysis 

The performance of the applied clustering techniques was evaluated via the silhouette scores, as illustrated in Fig. 6. The Silhouette 
scores of HCA-DC range from 0.39 for cluster C to 0.80 in cluster A, with an average value of 0.63. KMC techniques show silhouette 
scores range from 0.49 in cluster C to 0.83 in cluster A, with an average value of 0.69. FKM clustering method shows Silhouette scores 
within a range from 0.72 in cluster C to 0.94 in cluster A and an average value of 0.83. According to the Silhouette score average values 
for each type of clustering technique applied in this study, it was found that the FKM clustering performance was higher than the 
others. 

6.4. Spatial analysis 

Spatial maps were constructed for the study area’s shallow, middle, and deep aquifers, as illustrated in Fig. 7. Fig. 7A represents the 
distribution of shallow groundwater (GW) samples across three clusters: B, C, and D. The GW samples in cluster B were distributed 
close to the Arabian Gulf. They displayed high degree of SWI, revealing a more significant influence of seawater on GW chemistry and 
salinity. However, samples in clusters C and D, distributed further inland, display a decreasing impact of SWI on GW chemistry. Fig. 7 B 
depicts the distribution of GW samples of the middle aquifer that belong to clusters A and D. Samples in cluster A, located far from the 
Arabian Gulf, display no influence yet of SWI on GW quality. However, samples of cluster D occurred in Tarout Island and were near 
the Arabian Gulf and displayed a slight contamination of GW of the middle aquifer via SWI. Fig. 7C depicts the GW samples from deep 

Fig. 6. Silhouette score for each cluster of FKM and K-mean, double-clustering.  
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aquifers belonging to cluster A. Samples were distributed at different distances from the Arabian Gulf; however, they displayed no risk 
of SWI on the GW quality. Generally, the spatial maps of the three studied aquifers revealed the distribution of GW samples from each 
cluster. They showed that shallow GW has been significantly affected by SWI to varying degrees based on its distance from the Arabian 
Gulf. Nonetheless, SWI slightly affects middle aquifer GW in wells close to the coast and has no impact on wells further inland. The 
spatial assessment of tested GW confirmed that SWI has not yet affected the deep aquifer. 

The utilization of integrated clustering analysis in this study has yielded notable enhancements in mapping seawater intrusion, 
particularly within the complex, multi-aquifer system of the investigated region. This approach represents a novel application in the 
field of seawater intrusion mapping, which traditionally has relied on other methodologies. For instance Ref. [59], employed the 
Inverse Distance Weighted (IDW) method in conjunction with a Geographic Information System (GIS), to delineate areas of seawater 
intrusion in Tunisia. Similarly [60], leveraged both DRASTIC and GALDIT standard parametric models, as well as their Analytic Hi
erarchy Process (AHP) counterparts (AHP-DRASTIC and AHP-GALDIT), in conjunction with GIS, to map seawater intrusion within the 
Mahdia-Ksour Essef aquifer in Tunisia. These traditional techniques necessitate comprehensive data sets encompassing soil charac
teristics, aquifer matrix properties, aquifer properties, and water quality parameters to adequately assess aquifer system vulnerability. 
In contrast, the current study’s clustering analysis technique, utilizing foundational data on groundwater physicochemical properties, 
allowed for effective mapping of seawater intrusion within the studied coastal area. 

6.5. Degree of seawater intrusion 

The fraction of seawater index (fsea) is a widely used indicator for assessing the degree of SWI in coastal aquifers. The fsea is defined 
as the fraction of seawater present in the GW sample and is calculated based on the concentration of chloride - a conservative ion that 
does not undergo significant changes in concentration or composition during subsurface transport [39,61]. In this study, to assess the 
accuracy of the clustering methods used to map the degree of seawater intrusion in the studied area, we calculated the fsea values of the 
GW samples within each cluster. Table 4 exhibits the results of the fsea calculation of GW samples, along with statistical values of fsea for 
each cluster. The table also includes information on the aquifer type, GW depth, and distance from the shoreline. 

Cluster A consists of groundwater samples from deep aquifers and wells located 2–5 km from the Arabian Gulf shore, with a value of 
fsea range from 1.2% to 2.8% and an average of 1.9%. This implies that the deep aquifer in the studied region is yet to be impacted by 

Fig. 7. Maps presenting the spatial distribution of clusters A, B, C, and D within different aquifer depths. A) Shallow aquifer, B) Middle aquifer, and 
C) Deep aquifer. 

Table 4 
SWI index (fsea) values for each cluster.  

Cluster Statistics Fraction of seawater index (fsea) Aquifer Type Depth (m) Distance from sea(km) 

Cluster A Min 1.2 Deep aquifer 100–150 2.0–5.0 
Max 2.8 
Mean 1.9 Middle aquifer 70–90 3.0–4.0 

Cluster B Min 14.4 Shallow Aquifer 1.0–30.0 2.0–3.0 
Max 15.4 
Mean 14.9 

Cluster C Min 7.2 Shallow Aquifer 1.0–30.0 3.0–4.0 
Max 10.1 
Mean 7.9 

Cluster D Min 3.9 Shallow aquifer 1.0–30.0 3.0–4.7 
Max 6.2 
Mean 5.2 Middle aquifer 70.0–90.0 1.0–2.0  
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Table 5 
Statistics values of Heavy mineral concentration (mg/L).  

Cluster Statistic B Al Co V Mn Ni Cu Zn As Fe Cr Sr Pb Hg Mo Cd Ba 

Cluster A Minimum 0.449 0.000 0.001 0.024 0.000 0.009 0.007 0.000 0.003 0.329 0.007 4.123 0.000 0.000 0.007 0.000 0.021 
Maximum 0.768 0.008 0.002 0.074 0.013 0.029 0.081 0.075 0.034 2.904 0.045 7.022 0.001 0.001 0.017 0.000 0.035 
Mean 0.553 0.004 0.001 0.048 0.003 0.020 0.025 0.022 0.018 1.236 0.027 5.545 0.000 0.000 0.011 0.000 0.029 

Cluster B Minimum 2.377 0.002 0.004 0.148 0.050 0.138 0.147 0.141 0.046 1.787 0.096 19.889 0.000 0.000 0.009 0.000 0.029 
Maximum 2.532 0.002 0.007 0.148 0.089 0.158 0.226 0.186 0.070 2.287 0.101 27.911 0.000 0.000 0.018 0.000 0.038 
Mean 2.454 0.002 0.006 0.148 0.070 0.148 0.187 0.163 0.058 2.037 0.099 23.900 0.000 0.000 0.013 0.000 0.033 

Cluster C Minimum 1.318 0.000 0.003 0.074 0.002 0.039 0.043 0.001 0.044 1.142 0.002 15.010 0.000 0.000 0.021 0.000 0.015 
Maximum 1.698 0.005 0.005 0.126 0.099 0.133 0.146 0.337 0.066 7.263 0.061 22.648 0.000 0.001 0.046 0.000 0.047 
Mean 1.460 0.003 0.004 0.090 0.038 0.088 0.104 0.150 0.059 2.605 0.043 19.260 0.000 0.000 0.031 0.000 0.029 

Cluster D Minimum 0.733 0.000 0.001 0.025 0.000 0.012 0.038 0.000 0.006 0.911 0.003 5.965 0.000 0.000 0.002 0.000 0.022 
Maximum 1.157 0.007 0.004 0.140 0.053 0.090 0.140 0.236 0.044 3.831 0.046 13.765 0.000 0.002 0.043 0.000 0.044 
Mean 0.997 0.002 0.002 0.056 0.012 0.041 0.076 0.062 0.019 2.393 0.022 9.784 0.000 0.001 0.017 0.000 0.034  
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SWI. Cluster B includes groundwater samples from shallow aquifers 2 km–3 km from the Arabian Gulf. These samples have an fsea 
range of 14.4%–15.4% and an average value of 14.5%, indicating a significant amount of seawater intrusion in the shallow aquifer. 
Cluster C consists of groundwater samples extracted from shallow aquifers situated 3–4 km away from the Arabian Gulf. These samples 
have an fsea range of 7.2%–10.1%, with an average value of 7.9%. This indicates an intermediate level of SWI. Cluster D comprises 
groundwater samples from shallow and middle aquifers situated from 3 km to 4.7 km and 1 km–2 km from the sea, respectively. The 
fsea values for cluster D vary from 3.9% to 6.2%, with an average of 5.2%. These values indicate that SWI has a minimal impact on the 
quality of the groundwater samples. 

The clustering results imply that shallow GW in the studied region is characterized by varying degrees of SWI, with a high degree of 
intrusion observed in wells near the Arabian Gulf. As the distance from the seawater source increases, the degree of SWI in the shallow 
aquifer tends to decrease. In addition, the clustering analysis showed that shallow groundwater can be divided into three categories 
depending on their level of SWI: high, intermediate, and low. These findings have significant implications for managing and preserving 
coastal aquifers, as they highlight the potential risks associated with SWI and the need for effective mitigation measures to safeguard 
GW resources. 

The analysis of SWI in the middle aquifer revealed a low degree of intrusion, indicating a slight impact on the quality of the GW 
samples. However, sustained pumping from the middle aquifer may exacerbate SWI and severely impact GW quality. In contrast, the 
deep aquifers remain largely unaffected by SWI, but increased pressure on these aquifers may accelerate SWI. Integrating the results of 
the SWI analysis with those of the clustering analysis, it was observed that GW samples from the deep aquifer, regardless of their 
distance from the shore, exhibit similar levels of SWI to GW samples from wells tapping the middle aquifer and located more than 3 km 
inland. These samples were grouped in cluster A and represented regions with no impact of SWI. 

Conversely, GW samples from the middle aquifer close to the coastline exhibited similar levels of SWI to GW samples from the 
shallow aquifer situated within a distance greater than 3 km from the shoreline (Table 4). These samples were grouped in cluster D and 
displayed low SWI. In addition, the clustering analysis revealed two distinct clusters, B and C, comprising GW samples from the shallow 
aquifer. GW samples in cluster B exhibited a high degree of SWI and were near the coastline, within a distance range of 2–3 km. In 
contrast, GW samples in cluster C were sourced from wells situated further from the coastline, at distances ranging from 3 to 4 km. The 
results highlight the importance of considering both the clustering and SWI analyses in assessing the quality and sustainability of GW 
resources in coastal aquifers. Effective management strategies are needed to mitigate the risks associated with SWI and preserve the 
quality of GW resources. Specifically, measures aimed at reducing pumping pressure in the middle aquifer and limiting GW extraction 
from the shallow aquifer in areas with high SWI are recommended to minimize the impacts of SWI on GW quality. 

6.6. Heavy metal concentration in SWI zones 

Table 5 displays the statistics of heavy metal concentrations in the tested groundwater, with strontium (Sr), iron (Fe), and boron 
being the dominant heavy metals present in significant concentrations. The average concentrations of other metals, including 
Aluminum (Al), Cobalt (Co), Vanadium(V), Manganese (Mn), Nickel (Ni), Copper (Cu), Zinc (Zn), Arsenic (As), Chromium (Cr), Lead 
(Pb), Mercury (Hg), Molybdenum (Mo), Cadmium (Cd), and Barium (Ba) were found to be less than 0.2 mg/L. To compare the four 
clusters of groundwater samples, we observed that clusters B and C had higher concentrations of strontium than clusters D and A, with 
average values of 23.9 mg/L, 19.2 mg/L, 9.7 mg/L, and 5.5 mg/L, respectively (Fig. 8). Similarly, the concentration of boron metal was 
also higher in clusters B and C than in clusters D and A, with average values of 2.53 mg/L, 1.69 mg/L, 1.15 mg/L, and 0.76 mg/L, 
respectively (Fig. 8).The significant increase in strontium and boron concentration with increasing seawater intrusion into the aquifer 
system indicates the impact of seawater intrusion on groundwater pollution with heavy metals. As the concentration of boron in 

Fig. 8. Average heavy metal concentrations in groundwater samples across four clusters. A) Major metals (B, Fe, and Sr). B) Metals with average 
values below 0.2 mg/L (MCLs) = maximum contaminant levels). 
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seawater is high, reaching 4.5 mg/L in the Arabian Gulf [62], seawater intrusion into coastal freshwater aquifers noticeably pollutes 
the fresh groundwater with boron metal. Similarly, strontium can also be another heavy metal pollutant that intrudes into the fresh 
groundwater in the coastal aquifer. Conversely, iron metals display average values of 1.2 mg/l, 2.0 mg/L, 2.6 mg/L, and 2.4 mg/L of 
GW samples in cluster A, B, C, and D, respectively (Table 5 and Fig. 8). These values of iron metal display an increasing trend with 
increased seawater intrusion, except in cluster B, indicating another hydrochemical process controlling iron concentration in the 
aquifer system in the study area (e.g., water-rocks interaction). 

The current study demonstrates that groundwater samples grouped in clusters with a high rate of seawater intrusion (clusters B and 
C) are associated with a higher average concentration of strontium and boron metals compared to groundwater samples in clusters 
with a low rate of seawater intrusion (clusters D and A) as shown in Fig. 8. According to the U.S. Environmental Protection Agency 
(EPA) guidelines, it is appeared that the concentration of Sr, Fe, V, Ni, and As in groundwater samples in all clusters exceeding the 
maximum contaminant level as shown in Fig. 8 [63]. However, the concentration of boron metal exceeded the maximum contaminant 
level (2.4 mg/L) set by the World health organization [64] in groundwater samples of cluster B. The concentration of the other metal, 
including Mn, Cu, Zn, Cr, Mo, and Ba, in groundwater samples from all clusters display values less than the maximum contaminant 
level for drinking water. 

Generally, groundwater samples in clusters witha high rate of seawater intrusion display a higher concentration of strontium and 
boron metals, indicating the regions and aquifer’s instability for drinking purposes. Therefore, using an integrated clustering approach 
to delineate seawater intrusion hot spot zones in the current study helped define the heavy metal polluted regions due to seawater 
intrusion. In the literature, several studies reported elevated concentrations of boron in coastal regions. For instance, Rahman et al. 
[65] found that the boron concentration in the coastal region of Bangladesh reached 4.1 mg/L. The highest concentration was found in 
the shallow wells, mostly affected by seawater intrusion. Mora et al. [66] reported increasing of boron concentration during the 
seawater intrusion process in an aquifer system in Baja California, Mexico. They concluded that the seawater intrusion process mainly 
controls boron elevated concentration with no effect from the anion exchange process. Wang et al. [67] investigated the heavy mineral 
distribution in coastal aquifers in Jiangsu Province, China. They found that boron is the major heavy metal with concentration ranges 
from 0.01 mg/L to 2.25 mg/L. Their results thawed that the study area is affected by seawater intrusion with a significant correlation 
between boron metal and seawater intrusion. 

7. Conclusion and Recommendations 

The present study employed an integrated clustering approach to map and delineate the degree of SWI in the Arabian Gulf Coast of 
Saudi Arabia. Specifically, we applied Hierarchical Clustering Analysis (double-clustering) (HCA-DC), K-mean (KMC), and fuzzy k- 
mean clustering (FKM) algorithms to the physical, hydrochemical, and major ion data of the tested groundwater. This approach 
enabled a comprehensive evaluation of the groundwater characteristics and provided a robust clustering solution for identifying 
distinct groups of groundwater samples with similar characteristics. Four clusters (A, B, C, and D) of GW samples were developed via 
HCA-DC, KMC, and FKM clustering algorithms. The performance of cluster analysis was evaluated using silhouette score criteria. The 
main conclusions of the current study are shown as follows.  

• The integrated clustering techniques (HCA-DC, KMC, and FKM) successfully identified four distinct clusters of groundwater 
samples with varying degrees of seawater intrusion.  

• The HCA-DC, KMC, and FKM clustering techniques effectively delineated the study area’s hotspot zones of salinization and 
seawater intrusion (SWI). Among the methods, FKM displayed the best performance.  

• Cluster A, consisting mainly of deep aquifer samples located 2–5 km from shore, showed minimal signs of intrusion with averaged 
fsea values of 1.9% and low concentrations of boron (0.76 mg/L) and strontium (5.5 mg/L).  

• Clusters B and C, composed of shallow aquifer samples within 4 km from shore, exhibited the highest seawater intrusion with 
averaged fsea values of 14.5% (Cluster B) and 7.9% (Cluster C). These clusters also had the highest boron (2.53 mg/L for Cluster B 
and 1.69 mg/L for Cluster C) and strontium concentrations (23.9 mg/L for Cluster B and 19.2 mg/L for Cluster C), indicating 
pollution from seawater.  

• Cluster D, consisting of shallow and middle aquifer samples located 3.5–4.7 km from shore, showed low but detectable intrusion 
with an averaged fsea of 5.2% and intermediate boron (1.15 mg/L) and strontium (9.7 mg/L) levels.  

• The study demonstrated that employing integrated clustering algorithms can markedly improve the mapping of seawater intrusion 
(SWI) extent in coastal areas.  

• Groundwater with high seawater intrusion, enriched with strontium and boron, may pose health risks and is unfit for drinking.  
• The study’s findings can guide remediation plans and monitoring to halt additional seawater intrusion and associated health risks. 

The current study’s findings demonstrate that mapping the degree SWI in coastal regions can be significantly enhanced using a 
combination of clustering algorithms. The study suggests that the clustering approaches can help identify areas that require reme
diation and monitoring to prevent further contamination by SWI. The outcome of this study can serve as a guide for future water 
management initiatives, particularly in complex areas vulnerable to salinity pollution. Further studies are required to integrate 
clustering techniques, such as self-organized maps, as alternative solutions for SWI pattern recognition in coastal regions. 
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