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Comparative analysis of high‑ 
and low‑level deep learning 
approaches in microsatellite 
instability prediction
Jeonghyuk Park1,4*, Yul Ri Chung2,4 & Akinao Nose1,3

Deep learning‑based approaches in histopathology can be largely divided into two categories: a 
high‑level approach using an end‑to‑end model and a low‑level approach using feature extractors. 
Although the advantages and disadvantages of both approaches are empirically well known, there 
exists no scientific basis for choosing a specific approach in research, and direct comparative analysis 
of the two approaches has rarely been performed. Using the Cancer Genomic Atlas (TCGA)‑based 
dataset, we compared these two different approaches in microsatellite instability (MSI) prediction 
and analyzed morphological image features associated with MSI. Our high‑level approach was based 
solely on EfficientNet, while our low‑level approach relied on LightGBM and multiple deep learning 
models trained on publicly available multiclass tissue, nuclei, and gland datasets. We compared their 
performance and important image features. Our high‑level approach showed superior performance 
compared to our low‑level approach. In both approaches, debris, lymphocytes, and necrotic cells 
were revealed as important features of MSI, which is consistent with clinical knowledge. Then, during 
qualitative analysis, we discovered the weaknesses of our low‑level approach and demonstrated 
that its performance can be improved by using different image features in a complementary way. We 
performed our study using open‑access data, and we believe this study can serve as a useful basis for 
discovering imaging biomarkers for clinical application.

Deep learning techniques have demonstrated their ability to predict and extract various medical information 
such as  diagnosis1–5,  prognosis6–9 and genetic  alterations9–14 from hematoxylin and eosin (H&E)-stained slide 
images. Deep learning algorithms are generally trained to predict the target of choice directly from images in 
a data-driven manner, and their current performances are high enough for clinical  application1,3–5. However, 
this end-to-end approach is commonly referred to as a “black box model” since it is difficult to analyze how 
predictions have been  made15. Thus, to overcome this lack of interpretability, another approach is being inves-
tigated that predicts morphological features using a deep learning model and then predicts targets using these 
 features16,17. Diao et al. conducted a notable work that showed the potential of this  approach17. They first trained 
a three-class (cancer tissue, cancer-associated stroma, necrosis) tissue segmentation model and a five-class (lym-
phocyte, plasma cell, fibroblast, macrophage, cancer cell) cell detection model to predict tissue and cells in H&E 
images. Then, they defined 607 image-based features from the combinations of tissue and cell information to 
predict molecular signatures and reported that the performance of their model was comparable to that of an 
end-to-end method. Furthermore, the group investigated what morphological features were related to certain 
molecular signatures. Such investigation has clinical significance since it can identify novel imaging biomarkers 
for molecular signatures and other clinical factors.

In general, end-to-end models that utilize incomprehensible high-level features (hereafter referred to as 
the high-level approach) outperform approaches that apply tissue- and cell-level human-interpretable image 
features (hereafter referred to as the low-level approach). Our first question was: what is the quantitative dif-
ference in performance between the two approaches on an identical task? High-level and low-level approaches 
analyze important morphological image features for target prediction in different  ways10,17,18. Our second question 
was: when the important image features are extracted by the two approaches, are these morphological features 
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similar? Currently, we do not have any scientific basis for selecting an approach for biomarker research. If the 
above two questions can be answered through direct comparison, it would be greatly beneficial for research-
ers in the field of pathology research since they can choose a more suitable approach for a particular study. In 
an attempt to answer these questions, we chose to perform our research with a microsatellite instability (MSI) 
task. Microsatellites are repeated 1-6 nucleotide sequences in DNA that are also called short tandem repeats 
or simple sequence repeats and are considered a result of DNA slippage during  replication19. Normally, the 
DNA repair system called mismatch repair (MMR) corrects these errors; the loss of MMR genes in tumor cells 
results in microsatellite instability. MSI-high tumors tend to respond well to immunotherapy, and MSI has now 
become a pancancer biomarker for checkpoint inhibition  therapy20. Currently, MSI status is generally evaluated 
by polymerase chain reaction assay or immunohistochemistry. However, it has been reported that MSI can be 
predicted from H&E images by high-level  approaches11,12,21. We thought that low-level approach-based predic-
tions would also be possible as MSI tumors are characterized by distinct morphological characteristics such as 
increased tumor-infiltrating lymphocytes (TIL) and poor  differentiation22. For the dataset, the availability and 
wide applicability of the Cancer Genomic Atlas (TCGA)-based curated dataset for MSI prediction (hereafter, 
MSI dataset) of colorectal (CRC) and stomach (STAD) cohorts seemed  suitable11,23

In this study, we analyzed differences in performance and morphological image features extracted by high-
level and low-level approaches (Fig. 1a). First, we designed high- and low-level approaches and developed the 
models for both approaches with various hyperparameters. To prevent a performance difference due to exces-
sive effort in one approach, the naive method was used as much as possible. For our high-level approach, we 
reproduced and adapted the methodology used by Kather et al.11. For our low-level approach and morphological 
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Figure 1.  Conceptual view comparing high-/low-level approaches and dataset analysis of low-level features. (a) 
Pipeline for high and low-level approaches. The high-level approach uses high-level image features that utilize 
the deep learning architecture EfficientNet to predict microsatellite instability (MSS microsatellite stable, MSI 
microsatellite instable) directly from image patches. The low-level approach utilizes low-level features such as 
the number of tissues, cells, and glands. After defining and generating case-level features from low-level features, 
LightGBM predicts MSI from the features. (b) Correlations among low-level features derived from both the 
training and test sets from the colorectal cancer (CRC) cohort. (c) Low-level image features of the training and 
test sets of the CRC cohort. Average number (top) and z score (bottom). ADI adipose tissue, BACK background, 
DEB debris, LYM lymphocytes, MUC mucus, MUS smooth muscle, NORM normal colon mucosa, STR cancer-
associated stroma, TUM colorectal adenocarcinoma epithelium. The heatmaps were created with Python v3.8.8 
(https:// www. python. org) and Matplotlib v3.4.3 (https:// www. matpl otlib. org). The figure was generated using 
Inkscape v1.1 (https:// inksc ape. org).
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feature analysis, we used three deep learning models with publicly available datasets as follows: a nine-class tis-
sue classification model with a colorectal tissue dataset published by Kather et al.16; a six-class nuclei detection 
model with  PanNuke24, a nuclei dataset for  pancancer25; and a two-class gland detection model with a colon 
gland dataset that became available for the gland segmentation (GlaS) challenge  contest26. The low-level approach 
consisted of features from these feature extractors and LightGBM (LGBM) for classifying MSI. Since the dataset 
trained by the tissue and gland models belongs to the colonic data, we focused on MSI prediction in the CRC 
cohort. Second, we compared the performance of the two approaches. Furthermore, we also compared the per-
formance when STAD cohort data were added to the training set since the morphological characteristics of the 
CRC and STAD cohorts were found to be similar in our previous  study27. Third, we extracted and compared the 
morphological image features related to MSI from each approach with the best-performing models. Finally, by 
selecting and qualitatively reviewing cases based on the concordance of the predictions of high- and low-level 
approaches, we uncovered the limitations of our low-level approach and a possible solution to overcome it. Our 
major contribution of the current study is that we demonstrated that discovering morphological characteristics 
related to MSI using the high-level approach is comparable to using the low-level approach and statistical data 
analysis. This is advantageous in that it provides a scientific basis for discovering morphological features and a 
biomarker through a high-level approach, as many pathology studies have adapted high-level  approaches1–6,8–13,18.

Results
Deep learning models for high‑/low‑level approaches. We reproduced and adapted the MSI classifi-
cation model using colorectal (CRC) cohort image patches in the MSI classification dataset provided by Kather 
et al.11. The methodology mainly followed their study with a few modifications. We performed fivefold cross-
validation instead of defining a fixed validation set using the training set, and we defined the search space includ-
ing several model architectures and hyperparameters and optimized the models (Supplementary Tables  1,  2, 
see “Materials and methods” section for details). We used the area under the receiver operating characteristic 
curve (AUROC) as a model performance measure to allow comparison with previous  studies11,18. The model 
that showed the best performance in the search space was the model based on the EfficientNet  architecture28, 
and the average AUROC of the fivefold models in the CRC test set was 0.8065 (95% confidence interval (CI), 
0.7758-0.8373), which is higher than the AUROC of 0.76 reported by a previous  study11 (Table 1; Supplementary 
Table  3).

Next, we prepared three deep learning models for morphological feature extraction. A tissue classification 
model was optimized similarly to the MSI classification model using the colon tissue classification dataset pub-
lished by Kather et al. which contains nine tissue classes as follows: adipose tissue (ADI), background (BACK), 
debris (DEB), lymphocytes (LYM), mucus (MUC), smooth muscle (MUS), normal colon mucosa (NORM), 
cancer-associated stroma (STR), colorectal adenocarcinoma epithelium (TUM)16. Our best model an achieved 
average overall accuracy of 0.9523 (95% CI 0.9424–0.9623) on the test set of the tissue dataset which is higher 
than the 0.943 of a previous  study16 (see Supplementary Table  4 for optimization of this model and different 
metrics). The tissue classification dataset was extracted from CRC tissue, which is the same as the MSI classifica-
tion dataset, and a model trained on this dataset was used in the CRC cohort of the TCGA  dataset16.

Then, we obtained Hover-Net24 pretrained with the PanNuke  dataset25 as a nuclei detection model. This 
model was expected to work well with the MSI dataset since the PanNuke dataset includes the COAD (colon 
adenocarcinoma) cohort of the TCGA dataset, and HoVer-Net was used to classify nuclei in the COAD and 
READ (rectal adenocarcinoma) cohorts of the TCGA  dataset18,25. The model allowed us to detect nuclei into 6 
classes: no-label, neoplastic, inflammatory, connective, necrosis, and non-neoplastic nuclei.

Finally, we trained a  MaskRCNN29 for two-class gland detection using the GlaS contest  dataset26. The GlaS 
contest data consist of colonic tissue data, including TCGA-COAD, which we expected to work on the MSI 
dataset as well. We achieved a competent performance of our gland detection model (single-class F1-score of 
0.9019 in test set A and 0.7290 in test set B) which corresponds to the second place in the GlaS challenge. Before 
proceeding to the next analysis, one pathologist (Y.R.C.) visually reviewed the results of the three models to 
examine whether they were qualitatively acceptable.

Table 1.  Comparison of performance of high- and low-level approaches. Note that performances are 
measured only in the test set of the CRC cohort. p = 0.046 for between AUROCs of high-level (CRC) and 
high-level (CRC+STAD), p = 0.085 for between AUROCs of low-level (CRC) and low-level (CRC+STAD), 
p = 7.4× 10

−5 for between AUROCs of high-level (CRC) and low-level (CRC). p values are calculated from 
Student’s t test. The critical significance level adjusted by Bonferroni correction is p = 0.025. AUROC area 
under the receiver operating characteristic curve, CI confidence interval, LGBM light gradient boosting 
machine, CRC  colorectal, STAD stomach.

Approach Training cohort AUROC (95% CI)

High-level (EfficientNet)
CRC 0.8065 (0.7758–0.8373)

CRC+STAD 0.7678 (0.7341–0.8015)

Low-level (LGBM)
CRC 0.6749 (0.6365–0.7134)

CRC+STAD 0.6445 (0.6250–0.6640)
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Image feature characteristics of the datasets. Certain classes of low-level image features were 
expected to have correlations with one another. For example, in a TUM patch, since it includes neoplastic cells 
and malignant glands, it would yield a high number of neoplastic cells and malignant glands. A normal tissue 
patch would have a high number of benign glands, and an STR patch would have many connective tissue cells. 
We compared the number of cells (equivalent to the number of nuclei) and glands based on the tissue classifica-
tion results in the CRC cohort of the MSI dataset (Fig. 1b). As expected, correlations between TUM-neoplastic 
cell and NORM-benign gland were shown, and many connective cells were also observed in the stroma and 
muscle. On the other hand, in the case of the LYM patch, there were more necrotic cells than inflammatory 
cells, and we believe this may be due to the similarity of the small, hyperchromatic nuclei of necrotic and inflam-
matory cells, which may be difficult to accurately distinguish at the nuclear level. Overall, the high number of 
neoplastic and malignant glands may have resulted from the fact that the MSI dataset itself was sampled from 
the tumor  region11. Next, we investigated the image feature characteristics for MSS (microsatellite stable)/MSI 
(microsatellite instable) inherent in the dataset (Fig.  1c). MSS showed a high z score in NORM, STR, TUM, con-
nective, neoplastic, and malignant glands in both the training and test sets. In contrast, high z scores for DEB, 
LYM, and necrosis were observed in MSI, which is in line with clinical findings of high TIL infiltration and poor 
 differentiation22.

Image features related to microsatellite instability extracted by high‑ and low‑level 
approaches. To analyze the morphological features according to the MSI score yielded by the high-level 
approach, average statistics of the image features were calculated in the patches in the top and bottom 50% and 
10% MSI scores of the CRC test set. Overall, image features extracted from the entire image patch and each 
MSS/MSI patch appeared similar to the trends inherent in the dataset (Fig. 2a). The counts of of NORM, TUM, 
neoplastic, connective, non-neoplastic, and benign/malignant glands were high in MSS, and the counts of DEB, 
LYM, and necrosis were high in MSI (Fig. 3). For the low-level approach, we aggregated patch-level image fea-
tures into case-level features using simple feature engineering. For each patch, the probabilities of tissue classes 
and the number of cells and glands were converted to case-level by the following function: average, maximum, 
minimum, standard deviation, and 25, 50, and 75 quantiles. Through this process, the 17 patch-level image 
features became 119 case-level image features. Using this case-level feature on the CRC training set, LightGBM 
(LGBM) was optimized as an MSI classifier and showed an average AUROC of 0.6749 (95% CI 0.6365–0.7134) 
on the CRC test set, which was significantly lower than that of the high-level approach using the end-to-end 
model (Table  1). To analyze features related to MSI prediction, we performed a permutation test to acquire 
feature importance by measuring the performance difference with each image feature. As a result, among the 
features that showed that the upper boundary of the 95% CI of permutated performance was lower than its 
original value, we found that DEB, LYM, NORM, STR, necrosis, and malignant gland were notable features 
that affected performance (Fig. 2b). DEB, LYM, and necrosis appeared to be important features in both high 
and low-level approaches, suggesting that they were important factors in predicting MSI. Next, we conducted 
cohort aggregation by adding stomach (STAD) cohort data to the training set in both approaches. We expected 
an increased performance since normal colonic and gastric tissues share similar  characteristics27. However, add-
ing stomach (STAD) cohort data did not improve the performance of either approach (Table 1), implying that 
the image features of MSI of CRC and STAD may be different. Further analysis confirmed that the image fea-
ture characteristics of STAD data differed from CRC data as different trends were observed for DEB, LYM, and 
necrosis (Supplementary Fig.  1).

Qualitative review of select cases. The large performance gap between the high-level approach and 
the low-level approach suggests that undefined image features relevant to MSI prediction exist. However, it is 
almost impossible to find such features while qualitatively reviewing hundreds of thousands of patches. Thus, 
we decided to look for these potential features by qualitatively reviewing high-score image patches from the 
cases that the high-level approach correctly predicted and the low-level approach did not (Fig. 4). We selected 
six MSS cases and six MSI cases based on the difference between high-level and low-level predictions, and 
in half of them, our low-level approach made incorrect predictions (Supplementary Fig.  2). The unprocessed 
H&E patches and their processed results were reviewed while recording the following histologic characteristics 
for each case: tumor differentiation (well, moderate, poor), tumor cluster morphology (tubular, papillary, oval, 
solid, cribriform, trabecular, micropapillary, etc.), and tumor cell morphology, including both nuclear (pleo-
morphic, hyperchromatic, vesicular) and cytoplasmic features (shape, amount, color) (Table 2). Two of the three 
MSS cases with incorrect prediction by the low-level approach showed abundant vesicular nuclei; two of the 
three MSI cases with incorrect prediction by the low-level approach showed a predominant tubular/papillary 
structure of the tumor glands (Table 2; Fig. 5a, b). Unfortunately, we were not able to quantitatively confirm the 
importance of vesicular nuclei and tubular/papillary structure since it was difficult to design such features using 
the low-level models we used. Next, we observed that the patches classified as LYM (lymphocyte) tissue generally 
resulted in a large number of necrotic cell nuclei (Fig. 5c) which should have been classified as inflammatory cell 
nuclei. Therefore, we supposed that the number of lymphocytes (inflammatory cell nuclei) may be an important 
feature that was omitted. We trained LGBM by adding the number of necrotic cell nuclei in the LYM patch as a 
new feature and confirmed that the performance was improved from the average AUROC of 0.6749 to 0.6785. 
This result suggests that the number of lymphocytes is an important factor in MSI prediction.
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Figure 2.  Image features extracted by high- and low-level approaches. (a) For the high-level approach, average 
z scores for tissue, cell, and gland features were displayed as a heatmap by dividing patches into five groups (top 
10, 50%, all patches and bottom 10, 50%) based on the MSI score. The values are calculated in all patches (top), 
and in MSS patches (middle), in MSI patches (bottom). (b) For the low-level approach, the values of the areas 
under the receiver operating characteristic curve (AUROCs) corresponding to each feature calculated from the 
permutation test are shown as boxplots. The gray line indicates the original performance (0.6749) of the model. 
ADI adipose tissue, BACK background, DEB debris, LYM lymphocytes, MUC mucus, MUS smooth muscle, 
NORM normal colon mucosa, STR cancer-associated stroma, TUM colorectal adenocarcinoma epithelium. The 
heatmaps were created with Python v3.8.8 (https:// www. python. org) and Matplotlib v3.4.3 (https:// www. matpl 
otlib. org). The figure was generated using Inkscape v1.1 (https:// inksc ape. org).

https://www.python.org
https://www.matplotlib.org
https://www.matplotlib.org
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Discussion
Generally, end-to-end models (high-level approach) are data-efficient and can achieve a high performance 
relatively easily compared to the low-level approach. In our study, the low-level approach showed a significantly 
lower performance than the high-level approach. However, with sufficient feature engineering, the performance 
of the low-level approach can be equivalent to that of the high-level approach, as shown in the study by Diao 
et al.17. Such feature engineering (which includes complex features such as the density of lymphocytes within 80 
µ m of the cancer-stroma interface) is difficult, which makes it a common disadvantage of the low-level approach. 
Thus, the low performance of our low-level approach suggests that several features related to MSI may exist 
in addition to the features we defined. To find these features, we selected cases using both high- and low-level 
approaches and conducted a qualitative review. A qualitative review of select cases suggested that vesicular 
nuclei and tubular/papillary structure of tumor glands may be potential morphological features of classification 
of MSS/MSI (Table 2). These features were not involved in our low-level approach but were likely incorporated 
as image features in the high-level approach, which may be one of the reasons for the higher performance of 
our high-level approach. Additionally, during histological review, we observed that many of the lymphocytes 
in LYM patches were detected as necrotic cells (Fig. 5c). This is also shown indirectly in the correlation analysis 
among image features (Fig. 1b). After applying the necrotic cells in LYM patches as a new feature to the low-level 
approach, performance was improved. This finding suggests that the tissue classification model can be used in 
a complementary way to enhance performance since nuclei classification often relies on the spatial context of 
the surrounding tissue.

For a high-level approach, adapting weakly supervised learning or multiple instance learning should be con-
ducted to identify morphological features more specific to MSI since the morphological features of MSS or MSI 
can appear  locally1,18. Bilal et al.18 presented a deep learning framework (which can be classified as a high-level 

Figure 3.  Examples of H&E image patches and predictions. Unprocessed patches from the test set of the 
colorectal (CRC) cohort alongside corresponding visualizations of tissue, nuclei, and gland predictions. The 
20 highest and lowest MSI score patches, which do not overlap at the case-level, are shown as MSS (top) and 
MSI (bottom). MSS microsatellite stable, MSI microsatellite unstable (instability), ADI adipose tissue, BACK 
background, DEB debris, LYM lymphocytes, MUC mucus, MUS smooth muscle, NORM normal colon mucosa, 
STR cancer-associated stroma, TUM colorectal adenocarcinoma epithelium. Scale bar 50 µ m. The figure was 
generated using Inkscape v1.1 (https:// inksc ape. org).

https://inkscape.org
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Figure 4.  Comparison of case-level prediction of high- and low-level approaches. Case-level prediction of 
EfficientNet (high-level approach) and LGBM (low-level approach) with MSI labels (top six panels). The 
predicted MSI scores of fivefold models and their ensemble are shown. Their difference is calculated based on 
the z scores of each ensemble. Representative image features derived from high-/low-level approaches (bottom 
two panels). The average z score of the number of tissues, cells, and glands of the top 10% of MSS/MSI patches 
and the case-level average. TCGA case IDs are shown as column labels. LGBM light gradient boosting machine, 
MSS microsatellite stable, MSI microsatellite instable (instability), TCGA  the cancer genome atlas, ADI adipose 
tissue, BACK background, DEB debris, LYM lymphocytes, MUC mucus, MUS smooth muscle, NORM normal 
colon mucosa, STR cancer-associated stroma, TUM colorectal adenocarcinoma epithelium. The heatmaps were 
created with Python v3.8.8 (https:// www. python. org) and Matplotlib v3.4.3 (https:// www. matpl otlib. org). The 
figure was generated using Inkscape v1.1 (https:// inksc ape. org).

Table 2.  Qualitative review of select cases. HA and LA indicate the scores of high and low-level approaches, 
respectively. A high score corresponds to MSI (= 1). See Supplementary Fig.  2 for additional details for select 
cases. MSS microsatellite stable, MSI microsatellite instable.

Case ID Label HA LA Tumor differentiation Tumor cluster morphology Tumor cell morphology

TCGA-AA-A03F MSS 0.05 0.02 Well Tubular Columnar

TCGA-AF-2687 MSS 0.18 0.01 Moderate Irregular Pleomorphic

TCGA-CA-5255 MSS 0.15 0.04 Moderate Irregular, cribriform Pleomorphic, ample eosinophilic 
cytoplasm

TCGA-AA-A02O MSS 0.10 0.7 Well Tubular Columnar

TCGA-F4-6460 MSS 0.24 0.82 Moderate Oval Vesicular, Slightly columnar

TCGA-F5-6810 MSS 0.15 0.72 Moderate Irregular, cribriform Vesicular, slightly columnar

TCGA-A6-2686 MSI 0.60 0.21 Poor Solid Pleomorphic

TCGA-AD-5900 MSI 0.78 0.37 Moderate Tubulopapillary Columnar

TCGA-G4-6588 MSI 0.73 0.04 Moderate Tubulopapillary Slightly columnar

TCGA-AA-3966 MSI 0.76 0.83 Poor Single cell, diffuse, solid, cord-
like Dark basophilic

TCGA-AD-A5EJ MSI 0.81 0.79 Moderate Irregular, tubulopapillary, 
micropapillary Columnar

TCGA-CM-4743 MSI 0.72 0.97 Poor Solid, diffuse, micropapillary Pleomorphic

https://www.python.org
https://www.matplotlib.org
https://inkscape.org
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approach) using weakly supervised learning and reported that it achieved an AUROC of 0.90 on the MSI predic-
tion task. Additionally, they applied PanNuke pretrained HoVer-Net to top-scored image tiles and derived cell 
features related to MSI using feature importance calculated from a support vector machine. They reported that 
a high proportion of inflammatory and necrotic cells and a low proportion of neoplastic and connective cells 
were associated with MSI. Considering the possibility of misclassification of inflammatory cells from this study, 
this is in line with our results. Even though the same cell detection model (HoVer-Net with PanNuke) was used, 
the difference in inflammatory cells was presumed to be due to data. We used color normalized presampled 
images by Kather et al.11, while Bilal et al. used images sampled using their own method. This suggests that the 
pretrained HoVer-Net may provide different results depending on the image quality, which should be evaluated 
in future studies.

In our analysis of morphological features associated with MSI in high- and low-level approaches, we observed 
that DEB, LYM, and necrosis were important features for MSI in both approaches (Fig. 2). Of note, this is also 
characteristic of the dataset itself (Fig. 1c). These results suggest that a morphological feature analysis using 
patches selected from a high-level approach is a muefficient method since it does not require feature extraction 
for the entire image patch. Considering that many conventional high-level approach studies have qualitatively 
reviewed high-score patches related to their predictive  task1,7,9,11,13,18, this would have an impact in that the 
patches can be quantitatively analyzed on a scientific basis. For example, as Fu et al.9 extracted patches related to 
a mutation or prognosis in various organs, one may be able to find related biomarkers by applying our low-level 
feature models to the patches.

We observed that adding the STAD dataset to the CRC dataset did not result in performance enhancement 
of our approaches (Table 1). A possible explanation may be that morphological features related to MSI are dif-
ferent for the colon and stomach. In colon cancer, an increased number of tumor infiltrating lymphocytes, poor 
(medullary) differentiation, mucinous differentiation, and a Crohn-like reaction are considered morphological 
features associated with MSI-high  tumors30. For gastric cancer, Mathiak et al. evaluated phenotypic features 
characteristic of MSI gastric cancers in a small case series and observed that MSI gastric tumors more frequently 
showed highly pleomorphic cells with large vesicular nuclei in a trabecular, nested, microalveolar, or solid growth 
pattern as well as inflammatory cell-rich stroma; however, these findings need further  validation31. Thus, while 
the phenotypic features associated with MSI-high colorectal cancer seem relatively consistent, those for MSI-
high gastric cancer remain to be elucidated.

This study has limitations. Since our study is based on patches sampled from a tumor area, the study has a 
bias where it inevitably results in many TUM patches with tumor-related cells and glands. Therefore, important 

Tissue class

Cell class

Gland class

b ca

Figure 5.  Representative patch samples. Patches sampled from TCGA-F5-6810 (a), TCGA-G4-6588 (b), and 
TCGA-AD-5900 (c). (a) Vesicular cells (b) A predominant tubular/papillary structure of the tumor glands is 
shown. (c) Patches classified as LYM tissue. Inflammatory cells (lymphocytes) are misclassified as necrotic cells. 
ADI adipose tissue, BACK background, DEB debris, LYM lymphocytes, MUC mucus, MUS smooth muscle, 
NORM normal colon mucosa, STR cancer-associated stroma, TUM colorectal adenocarcinoma epithelium. 
Scale bar 50 µ m. The figure was generated using Inkscape v1.1 (https:// inksc ape. org).

https://inkscape.org
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low-level morphological features that may exist in the nontumor regions may have been missed. Additionally, 
since the patches consist of images sampled at a specific magnification (112 µ m × 112 µ m per patch), morpho-
logical features pertaining to wider areas (such as tumor cluster size) are not considered. Another limitation is 
that our low-level model was trained only with simple features, i.e., the number of targets. Adding image features 
such as the size and color of cells and glands may improve low-level model performance. There was also a limita-
tion in cell and gland detection in that it was difficult to detect heterogeneous cells or glands. In particular, in 
malignant glands, there were cases where it was difficult to distinguish individual glands due to their markedly 
atypical shape. Furthermore, our gland detection model was trained on a relatively small amount of data, and 
the resultant low gland detection capability made it difficult to assess the impact of gland features on MSI.

We were motivated by the lack of methodological guidelines or scientific bases on which to analyze mor-
phological features for a specific prediction task in pathology. We systematically compared performances and 
extracted morphological features of high-level and low-level approaches for the first time. We showed similarities 
and differences between the two methods and demonstrated that low-level models can be constructed in combi-
nation to improve performance. We also demonstrated that high-/low-level approaches and statistical analysis of 
the dataset itself are both important in analyzing image features, suggesting that they can be selected and used 
according to the scale of a dataset or the purpose of study. We utilized open sources from datasets to models, 
and we have disclosed the models and codes used in this study. We believe that the current study can serve as a 
foundation for developing deep learning approaches in pathology for medical applications.

Materials and methods
Dataset. We used three publicly available datasets in this study: histological images for MSI vs. MSS classifi-
cation in gastrointestinal cancer, FFPE samples (MSI dataset)11; 100,000 histological images of human colorectal 
cancer and healthy tissue (Tissue dataset)16; and the GlaS challenge contest dataset (GlaS dataset)26,32. They 
were used for the MSI classification task, tissue classification, and gland detection. The links for downloading 
are provided in the data availability section. Since the training set and test set are already defined in all of these 
datasets, five folds were generated in the training set for model training. For the MSI dataset, folds were split at 
the case level (patient level) so that the number of cases in each fold was similar (see Supplementary Table  2 for 
fivefold configuration details). We also defined a fivefold configuration for the Tissue dataset and GlaS dataset. 
The folds were generated uniformly at the patch level since no case-level information was included. The image 
resolution was 0.5 µ m for both the MSI dataset and the tissue dataset and 0.62 µ m for the GlaS dataset. All 
experiments were conducted on open-access data and were performed in accordance with relevant guidelines 
and regulations.

High‑level MSI classification model. For training of the MSI classification model, we largely adapted 
Kather et al.’s hyperparameters and defined a search space for finding a more optimized  model11 (see Supple-
mentary Table  1 for comparison). Four model architectures were included in the search space: ResNet18 used 
in Kather et  al.11,33; ShuffleNet used in papers that were recently published by their research group on MSI 
 classification12,21,34,35; and ResNext50 and EfficientNet, which are widely used and well-known for showing state-
of-the-art  performance28,36. All models were trained from ImageNet pretrained weights and were trained in two 
ways such that the weights were partially frozen or fully trainable (see Supplementary Table  3 for the num-
ber of trainable parameters). We used the Adam optimizer with L2-regularization of 10−4 for training and we 
tested learning rates of 10−3 , 10−4 , 10−5 and 10−6 . The batch size was defined for 12 GB GPU memory: 84 for 
ResNext, 96 for EfficientNet, and 256 for ShuffleNet and ResNet. generated so that the numbers of MSS and MSI 
patches were equal. Binary cross-entropy loss is used as the target loss function. Augmentation was applied with 
a 50% probability of vertical/horizontal flipping and affine transformation of 5-pixel shearing. One epoch was 
defined as 256 iterations (training steps). At the end of each epoch, accuracy was measured in the validation fold. 
Training was halted if the validation accuracy in a validation fold did not increase for six successive validation 
checks or the number of training epochs reached 100. The performance (AUROC) of the optimized models in 
each search space was 0.7991 (95% CI 0.7720–0.8261) for ResNet18, 0.7544 (95% CI 0.7039–0.8049) for Shuf-
fleNet, 0.7871 (95% CI 0.7790–0.7953) for ResNext50, and 0.8065 (95% CI 0.7758–0.8373) for EfficientNet. The 
hyperparameters of the best EfficientNet model were a batch size of 96, a learning rate of 10−5 and partially fro-
zen weights (41 trainable tensors and 1,895,698 trainable parameters). The detailed results of MSI classification 
model optimization are summarized in Supplementary Table  3.

Tissue classification model. Our tissue segmentation model was optimized using the EfficientNet model 
architecture, an architecture with the highest performance in the MSI classification model. We used the Adam 
optimizer with L2 regularization of 10−4 for training, and we tested learning rates of 10−3 , 10−4 , 10−5 , and 10−6 . 
Models were trained from ImageNet pretrained weights with partially frozen or fully trainable conditions. We 
used balanced sampling so that the model sees each class of data equally. The batch size, loss, augmentation, defi-
nition of epoch, and other conditions were the same as those used in the optimization of the MSI classification 
model. The optimized model was archived with the following hyperparameters: a batch size of 96 and learning 
rate of 10−5 with fully trainable weights. It showed an average accuracy of 0.9523 (95% CI 0.9424–0.9623) in the 
test set of the tissue classification  dataset16. The parameters used for tissue segmentation model optimization are 
summarized in Supplementary Table  4.

Cell (nuclei) detection model. We used PanNuke pretrained HoVer-Net for cell  detection24,25,37. HoVer-
Net showed a high level of performance in the PanNuke dataset  benchmark37. For inference, patches of the MSI 
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dataset were upsampled from 0.5 µ m (224 px × 224 px, equivalent to 20× ) to 0.25 µ m (448 px × 448 px, equiva-
lent to 40× ) using bicubic interpolation.

Gland detection model. MaskRCNN was trained using the GlaS dataset for gland detection. The dataset 
contains 165 H&E images with benign and malignant gland segmentation masks (annotations). The images and 
corresponding annotations of the GlaS dataset were upsampled from 0.62 to 0.5 µ m using bilinear and nearest 
interpolation, respectively. We optimized the model at learning rates of 10−3 , 10−4 , and 10−5 with hyperparam-
eters as follows: maximum epochs = 200, momentum = 0.9, weight decay = 0.0005. Vertical flip and horizontal 
flipping with 50% probability were applied as augmentation and non maximum suppression was applied to the 
segmented objects. A segmented object showing intersection over union (IoU) over 0.5 with a ground truth 
object was counted as a true positive; otherwise, it was counted as a false-positive. A false negative is defined 
as a ground truth object that has no corresponding detected object or shows less than an IOU of 0.5 by its cor-
responding detected object The F1-score of the validation fold was calculated every 10 epochs (see “Metrics” 
subsection for the definition of the F1-score). In the cross-validation process, the highest F1-score was achieved 
at a learning rate of 0.001, and the average number of validation steps was 11. Based on this cross-validation 
training parameter, we trained a single model with a learning rate of 0.001 with 110 epochs. The results of the 
gland detection model are summarized in Supplementary Table  5.

Low‑level MSI classification model. We generated case-level features to train LGBM to predict MSI 
at the case level. The probabilities of tissue classes and the number of cells (=nuclei) and glands were grouped 
by case level using these seven functions: minimum (min), maximum (max), average (avg), standard devia-
tion (std), and 25%, 50%, and 75% quantiles. Through this case-level feature generation, the 17-dimensional 
features at the patch level became 119-dimensional features at the case level. The input features are scaled the z 
score, which is defined as z = (x - (mean of x in train folds) / (standard deviation of x in train folds). The fivefold 
configuration was the same as the high-level approach at the case level, and the model was searched in the fol-
lowing search space: 0.1, 0.01, and 0.001 for learning rate; 1.0, 0.8, and 0.5 for both bagging fraction and feature 
fraction; 0.0, 0.1, and 0.2 for lambda l1 and l2. Other hyperparameters were metric = binary, number of trees = 
31, iterations = 5000, early stopping = 300, and boosting type=gradient boosted decision trees. We selected the 
model showing the highest performance on the test set. To calculate feature importance, a permutation test was 
conducted. Case-level features derived from each low-level feature were permutated randomly 500 times, and 
the permutated performances were evaluated. For example, min, max, avg, std, and 25%, 50%, and 75% quantiles 
of counts of necrosis cells were permutated to archive the feature importance of counts of necrosis cells. The 
optimization result of the low-level approach is summarized in Supplementary Table  6.

Metrics. AUROC is defined as the area under the sensitivity–(1− specificity) curve. Other metrics used in 
this study are defined as follows:

The performance evaluation of the high- and low-level approaches using the metrics is summarized in Sup-
plementary Fig.  3.

Cohort aggregation. We added the STAD cohort data to the MSI dataset for training data. For the high-
level approach, EfficientNet was trained on both the CRC and STAD cohort training sets with the hyperparam-
eters of the best model trained on the CRC cohort training set (Supplementary Table  2). We used the same 
hyperparameters of the best EfficientNet model: batch size of 96, learning rate of 10−5 , and partially frozen 
weights (41 trainable tensors, 1,895,698 tranable parameters). For the low-level approach, LGBM was optimized 
in the same search space used in optimization of the low-level approach: 0.1, 0.01, and 0.001 for the learning rate; 
1.0, 0.8, and 0.5 for both bagging fraction and feature fraction; 0.0, 0.1, and 0.2 for lambda l1 and l2 using both 
of CRC and STAD cohort training sets.

Case review. The review was conducted by Y.R.C., a pathologist with 5 years of posttraining experience. 
Based on the difference in case-level prediction, we selected 12 cases (Table 2; Supplementary Fig.  2). In these 
cases, we sampled the patches having the top 10% and bottom 10% of the MSI scores of the high-level approach 
for review.

Accuracy =

TP + TN

TP + TN + FP + FN

Precision =

TP

TP + FP

Recall = Sensitivity =

TP

TP + FN

F1 score =
2 ∗ Precision ∗ Recall

Precision+ Recall
=

2 ∗ TP

2 ∗ TP + FP + FN

Specificity =

TN

FP + TN

(TP, true positive;TN , true negative; FP, false positive; FN , false negative )
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Environment. All of the analyses except the training and inference of MaskRCNN (gland detection model) 
were performed on Python version 3.8.8 and PyTorch version 1.8.1 with CUDA 11.1 and cuDNN 8 (base Docker 
image tag: pytorch/pytorch: 1.8.1-cuda11.1-cudnn8-runtime). For the training and inference of MaskRCNN, we 
used Python version 3.7.11 and PyTorch version 1.11.0 with CUDA 11.3 and cuDNN 8 (base Docker image tag: 
pytorch/pytorch:1.10.0-cuda11.3-cudnn8-runtime). We used the lightgbm python package version 3.3.1 for the 
LGBM. Additional details about the environmental configuration were provided along with our published code 
(see Code Availability section for the link).

Data availability
Image patches for MSI classification task are available at https:// doi. org/ 10. 5281/ zenodo. 25308 35. We used only 
patches of formalin-fixed paraffin-embedded (FFPE) diagnostic slides and followed their train/test set split. 
Tissue classification data is available at https:// doi. org/ 10. 5281/ zenodo. 12144 56. The gland segmentation (GlaS) 
challenge dataset is available at https:// warwi ck. ac. uk/ fac/ cross_ fac/ tia/ data/ glasc ontest/. Code for Hover-Net 
model and PanNuke trained weights are available at https:// github. com/ vqdang/ hover_ net.

Code availability
Source codes with model weights for the test are available at https:// github. com/ jeong hyukp ark/ msi_ highl ow.
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