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In Brief
Kennedy et al. develop HTT-
OMNI, a web-based platform for
the visualization and analysis of
huntingtin (HTT) PPIs and multi-
omic data integration. They
demonstrate the utility of HTT-
OMNI for analyzing existing, as
well as user-uploaded, datasets.
Highlights
• HTT-OMNI facilitates the exploration of huntingtin (HTT) PPIs and multi-omic data.

• The platform allows for the analysis of both existing studies and user-uploaded data.

• HTT-OMNI enables filtering of PPIs via metadata (model organism, method, etc.).

• Analysis of tissue-specific HTT interactomes in mouse models of Huntington’s disease.

• Relative stabilities of HTT PPIs in the cortex differ from those in the striatum.
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TECHNOLOGICAL INNOVATION AND RESOURCES
HTT-OMNI: A Web-based Platform for Huntingtin
Interaction Exploration and Multi-omics Data
Integration
Michelle A. Kennedy‡ , Todd M. Greco‡ , Bokai Song , and Ileana M. Cristea*
Huntington's disease (HD) is a progressive neurological
disorder that is caused by polyglutamine expansion of the
huntingtin (HTT) protein. With the hope to uncover key
modifiers of disease, a focus of the field of HD research
has been on characterizing HTT-interacting proteins
(HIPs) and the effect of the HTT polyglutamine expansion
on the cellular omics landscape. However, while hundreds
of studies have uncovered over 3000 potential HIPs to
date, a means to interrogate these complementary inter-
action and omics datasets does not exist. The lack of a
unified platform for exploring this breadth of potential
HIPs and associated omics data represents a substantial
barrier toward understanding the impact of HTT polyQ
expansion and identifying interactions proximal to HD
pathogenesis. Here, we describe the development of a
web-based platform called HTT-OMNI (HTT OMics and
Network Integration). This application facilitates the visu-
alization and exploration of ~3400 potential HTT inter-
actors (from the HINT database) and their associated
polyQ-dependent omics measurements, such as tran-
scriptome and proteome abundances. Additionally,
HTT-OMNI allows for the integration of user-generated
datasets with existing HIPs and omic measurements. We
first demonstrate the utility of HTT-OMNI for filtering
existing HTT PPIs based on a variety of experimental
metadata parameters, highlighting its capacity to select
for HIPs detected in specific model organisms and tis-
sues. Next, we leverage our application to visualize the
relationships between HTT PPIs, genetic disease modi-
fiers, and their multiomic landscape. Finally, we generate
and analyze a previously unreported dataset of HTT PPIs,
aimed at defining tissue-specific HTT interactions and the
polyQ-dependent modulation of their relative stabilities in
the cortex and striatum of HD mouse models.

Huntington’s disease (HD) is an inherited neurodegenerative
disorder characterized by progressive increases in involuntary
motor movements, cognitive impairment, and behavioral ab-
normalities (1). HD is caused by a trinucleotide CAG repeat
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expansion in exon 1 of the huntingtin (Htt) gene (2). Although
the underlying genetic mechanisms of HD pathogenesis are
relatively well understood, the molecular, cellular, and sys-
temic mechanisms that contribute to HD progression remain
unknown. Furthermore, functions of the wild-type huntingtin
protein (HTT) are still being uncovered in diverse cellular
processes, including autophagy, endocytosis, vesicular traf-
ficking, synaptic transmission, mitochondria homeostasis,
transcription/translation (3), and more recently, DNA repair (4).
Given that the disruption and dysregulation of protein in-
teractions is known to underlie many human diseases (5, 6),
efforts to understand the function of wild-type and mutant
HTT in HD model systems have focused, in part, on charac-
terizing HTT protein–protein interactions (PPIs). Over the last
25 years, >230 studies have characterized HTT PPIs, also
referred to as huntingtin-interacting proteins (HIPs), using a
plethora of different model systems, experimental techniques,
and perturbations, prompting the curation of a huntingtin
protein-protein interaction (HINT) database and delivery in an
online data portal, HDinHD (7). The latest curation of the HINT
database contains >9000 PPI reports corresponding to >3000
unique human orthologs. Reconciling the breadth of these
interactions represents a substantial barrier toward under-
standing how Htt gene variants and polyglutamine expansion
influence age of onset and disease progression in HD.
In addition to uncovering HIPs, another major focus of

recent HD research has been the characterization of tran-
scriptome and proteome changes in healthy and diseased
states (e.g., upon polyQ expansion) using mouse models.
Meaningful integration of this information with the vast number
of potential HIPs is challenging. Presently, various tools are
available that enable researchers to explore these datasets.
For example, the HDinHD portal (7) (hdinhd.org), curated by
the CHDI Foundation and its academic and commercial
partners, provides individual tools that facilitate either the
interrogation of HTT PPI datasets (via HD Explorer) or polyQ-
dependent measurements of RNA and protein levels (via
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Exploring HTT interactions and omics data with HTT-OMNI
ASViewer or HD Proteome Base). Another tool, HDNetDB (8),
integrates molecular interactions with many HD-relevant
datasets to allow researchers to visualize and prioritize rele-
vant HTT targets and gene networks. However, HDNetDB is
no longer available (9), and this tool only leveraged a subset of
HTT interaction studies as it likely preceded the initial release
of the curated HINT database. As such, simultaneous analysis
of HTT-interacting proteins and their respective omics data is
not currently possible with available tools.
To address these challenges, here, we describe the devel-

opment of HTT-OMNI, a web-based platform for HIP visuali-
zation, exploration, and multi-omic integration. Within this
paper, we (1) describe the development of the HTT-OMNI tool,
(2) demonstrate its utility for visualizing and analyzing existing
HTT PPI datasets, and (3) show how HTT-OMNI can be
leveraged to examine a user-generated dataset. For this final
purpose, as a proof of concept, we characterized alterations in
HTT protein interactions in the cortex of HD mouse models.
Specifically, we profiled HIPs in the cortex of an HTT Q140
knock-in HD and normal (HTT Q20) mouse using comple-
mentary label-free and isotope-labeled IP-MS approaches.
While the striatum brain region shows the most striking
neuropathological consequences of HD (10), impaired
neuronal communication is observed between cells in the
striatum (medium spiny neurons) and cortex (pyramidal neu-
rons), particularly in early stages of the disease (11). Therefore,
comparisons of PPI characteristics between the cortex and
striatum of HD mouse models provide insights into cellular
functions or pathways that may be common and tissue spe-
cific. Ultimately, HTT-OMNI summarizes and integrates known
HTT PPIs with Q-dependent transcriptome and proteome
measurements, providing an all-in-one exploratory platform
that facilitates the prioritization of target genes that may
contribute to HD pathogenesis. Our tool is freely available
online at http://htt-omni.princeton.edu:5006/.
EXPERIMENTAL PROCEDURES

Generation of HINTomics Database

A combined huntingtin protein interaction and HD omics database
was generated as follows. STEP I: An existing catalogue of docu-
mented HIPs (HINT database) was downloaded in Excel format from
the “Curated HD Datasets” section of the website HDinHD.org
(2022_03), which contained 9951 unique HTT PPI observations
compiled from 239 studies. STEP II: The HINT database was sup-
plemented with two recent PPI studies (12, 13) that added an addi-
tional 388 entries to HINT (supplemental Table S1). Nonhuman gene
symbols were mapped to their nearest human orthologs using the
dbOrtho function of bioDBnet (14) or the DIOPT Ortholog Finder (15)
(ver. 9.1). STEP III: A database of omics targets (genes/proteins) was
assembled that were measured by proteomic and/or transcriptomic
analysis of the allelic series HD mouse models (16). Processed tran-
scriptome (mRNA-seq) and proteome (LC-MS/MS) datasets were
obtained from the William Yang group, based on the study by Lang-
felder et al. (16), and from the “Mouse Allelic Series” section of
HDinHD.org (7). Relative mRNA expression and protein abundances
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were collected from the striatum, cortex, cerebellum, hippocampus,
heart, and liver tissues for Q50, Q80, Q92, Q111, Q140, and Q175 vs
Q20 (control) mice at 2 (except for Q50), 6, and 10 months of age. The
Q20 knock-in mouse was used as control, given that it is within the
range of polyQ-lengths for the nonmutant huntingtin allele in the hu-
man population (2). For the HTT-OMNI application, replicate mea-
surements for male and female were averaged. Nonhuman gene
symbols were mapped to their nearest human orthologs as described
in STEP II above (supplemental Table S2). STEP IV: For targets with
bulk proteome and/or transcriptome measurements, values were an-
notated by single-nuclei RNA-seq relative expression in the striatum of
HttQ175/+ vs WT mice (17) and single-cell RNA-seq fractional expres-
sion in wild-type mouse striatum (18). STEP V: From the consolidated
HD omics database (STEPS III and IV), we used the HINT database
(STEP II) to annotate targets that were positive HIPs in at least one
study. Note, any targets without a human ortholog were excluded from
HINTomics database. In total, the human-centric HINTomics database
contained 15,399 nonredundant entries (by gene ID), of which 3844
have been observed as HIPs in at least one study (n = 241).

External Published Datasets and Localization Annotations

Mouse gene symbols were obtained from supplemental Table S14
of the study by Langfelder et al. 2016 that were differential at both
RNA and protein levels by continuous Q statistical analysis (16).
Mouse gene symbols were obtained from supplemental Tables S2 and
S3 of the study by Wertz et al. 2020 that were identified as candidate
HD modifiers from zQ175 HD mice, but were not found to be neuronal
essential genes in the wild-type mouse striatum (19). For all datasets,
mouse gene symbols were mapped to their nearest human homologs.
Genes without a human homolog were excluded from the analysis.
When applicable, the subcellular localizations of targets were deter-
mined stepwise by sourcing annotations from UniProt (20) and the
Human Protein Atlas (21) and then manually assessed for assignment
quality. Proteins that had multiple localizations were represented as
being localized to multiple compartments (e.g., cytoplasm and nu-
cleus) so that this information was retained. These curated localization
annotations were then uploaded to HTT-OMNI as a custom categor-
ical annotation using the header flag “QUANT_localization.”

Network Structure Development

HIPs were sourced from the assembled HINTomics database (see
“Curation of HINTomics database”) to define the potential nodes
available to HTT-OMNI for network generation. Since the HINT data-
base contains extensive annotations (>70 columns), we prioritized a
subset of these columns (model, model_organism, tissue, htt_length,
common_name, cell_culture_comment, detection_method, and
study_identifier) to be available for data filtering. Only interactions
annotated as confirmed interactions (e.g., marked with “Y” in the
“interaction result” column) were included in HTT-OMNI. Note that the
model and model_organism columns were partially redundant, so we
combined these two columns into a single annotation “mod-
el_species.” Edges between nodes were downloaded from STRINGdb
(22) using the Entrez Gene ID of each node as an identifier to query the
protein.aliases.v11.5.txt.gz and protein.links.v11.5.txt.gz files available
for download on the STRINGdb website.

Application of Network Filters

To filter HTT interactions based on the aforementioned data filters,
we applied the given filter conditions at the interaction level (e.g., on
the raw HINT data). This allows the user to specifically select HTT
interactions derived from individual experiments that fit the filtering
criteria. The options selected under each individual filter can be
applied with one of three logical operators (AND, OR, or NOT), which
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are applied to all selected filter options selected for a given filter. For
example, if “Mice” and “Human” have been selected with an “AND”
logical operator under the “Model (organism)” filter, all HTT-interacting
proteins that have been identified at least once in mice AND at least
once in humans will be returned. For the sake of simplicity, the logical
operator applied to different filters is always treated as “AND.” For
example, if “Mice” is selected under the “Model (organism)” filter and
“brain” is selected under the “Tissue” filter, all HTT-interacting pro-
teins identified in experiments in mice brain tissues will be returned.

Enrichment Analysis Using PANTHER

Enrichment analysis is performed using the PANTHER (23) data-
base overrepresentation enrichment API using all genes in the HIN-
Tomics database as a background gene list. Statistical significance is
determined using Fisher’s exact test with a false discovery rate
correction. The annotation set that is queried is determined via user
selection (GO biological process, GO molecular function, GO cellular
component, GO SLIM molecular function, GO SLIM biological pro-
cess, GO SLIM cellular component, Panther pathways, or Reactome
pathways).

Programs and Software

HTT-OMNI uses the following Python packages: Panel (version
0.13.0; dashboard development), HoloViews (version 1.14.8; interac-
tive plotting), Pandas (version 1.4.2; data manipulation), Networkx
(version 2.7.1; network creation), Requests (version 2.27.1; REST API
querying of PANTHER), and Conda (version 4.12.0; environment
management). An environment.yml file is available on GitHub to
reproduce the Conda environment used in this study and to run HTT-
OMNI locally. Figures were made in Microsoft PowerPoint.

Mouse Strains

The huntingtin N-terminal Flag-tagged control (Htt3xFlagQ20/+) and
HD knock-in (Htt3xFlagQ140/+) male and female mice are congenic in
theC57BL/6J background. Thesemicewere obtained from thegroupof
Scott Zeitlin (University of VirginiaSchool ofMedicine), as in thestudyby
Greco et al (12). Mice were housed in a humidity- and temperature-
controlled room with 12-h light–dark schedule. Food and water were
provided ad libitum. All experimental procedures were approved by the
University of Virginia (UVA) Institutional AnimalCare andUseguidelines,
and precautions were taken to minimize stress and the number of ani-
mals used. The UVA is fully accredited by the Association for Assess-
ment and Accreditation of Laboratory Animal Care (AALAC), and the
university has a Public Health Service (PHS) Assurance on file with the
Office of Laboratory Animal Welfare (PHS Assurance # A33245–01).
Brains were harvested frommale and female 2- and 10-month-oldmice
following isoflurane anesthesia and cervical dislocation.Brainswere cut
in half sagittally and immediately frozen in 2-methylbutane pre-
equilibrated in dry ice. Cortices were isolated in a Petri dish on ice and
placed immediately in 1.5-ml tubes prechilled in dry ice. Tissues that
were used in paired control and experimental immunoaffinity purifica-
tions within the same biological replicate were sex matched.

Experimental Design and Statistical Rationale

Label-free FLAG IP-MS experiments were performed from cortical
tissues of Htt3xFlagQ20 and Htt3xFlagQ140 mice at 2 months and
10 months age, in three biological replicates for each genotype-age,
including parallel IgG controls samples, also performed in three bio-
logical replicates. Isotope-labeled IP-MS experiments were performed
in duplicate experiments. Overall, these numbers of replicates are
influenced by practical sources of tissue availability in HD mouse
model and supply of heavy-labeled mouse brain tissues. Overall, they
are adequate for assignment of significant/differential interactions as
we employed both statistical testing (student’s t test) and a strict fold-
change difference threshold (FC ≥ 2.0).

HTT Immunoaffinity Purification-Mass Spectrometry Analysis
From the Mouse Cortex

Htt3xFlag IP-MS experiments in cortical tissues were performed as
previously described (12) except the mass spectrometry analysis was
conducted on a Q Exactive HF mass spectrometer (Thermofisher
Scientific). Frozen tissues were removed from −80 ◦C and thawed on
ice. Tissues were transferred to a precooled Potter-Elvehjem tissue
grinder, lysed in 4 ml of lysis buffer (1xTBT buffer, 1% Triton X100,
150 mM NaCl, 2× Halt Protease and Phosphatase Inhibitors Cocktail,
100U/ml universal nuclease) with 2 × 10 strokes, incubated on ice for
5 min, and transfered to precooled 2 × 2-ml Eppendorf tubes. The
insoluble material was removed by centrifugation (20,000g at 4 ◦C for
10 min). The supernatant was diluted to 10 ml with lysis buffer, and
2 × 4.5-ml aliquots were used for anti-FLAG and control IgG IPs in
5-ml Lo-bind tubes.

Anti-FLAG and nonspecific IgG antibodies were conjugated to
Protein A/G magnetic beads (12 μg of antibodies for each 30 μl of
bead slurry). The unconjugated beads were washed 3 × 500 μl of
1× TBT and then incubated with antibody for 1 h at 4 ◦C. After
conjugation, beads were washed 2 × 500 μl of in lysis buffer. The IPs
were carried out in biological triplicate using 30 μl of antibody-
conjugated beads/IP, which were added directly to the supernatant
of the lysed tissue and incubated for 1 h at 4 ◦C. The beads were
collected on magnets and washed with lysis buffer (3 × 500 μl) and
water (2 × 500 μl). Captured proteins were eluted in 1× TEL buffer
(50 μl) heated at 70 ◦C for 10 min with brief vortexing and recovered by
magnetic separation. Eluted proteins were reduced and alkylated with
Tris(2-carboxyethyl)phosphine hydrochloride (0.5 μl of 500 mM TCEP)
and chloroacetamide (1.5 μl of 500 mM), respectively, by heating at 70
◦C for 20 min.

Filter-aided sample preparation was used to perform protease
digestion of the samples using trypsin, followed by StageTip desalting
and peptide fractionation (n = 3 fractions) as previously described
(24, 25). Peptide fractions were suspended in 1% FA/1% ACN in a
final volume of 5 μl. Desalted peptides (2 μl) were analyzed by data-
dependent LC-MS/MS on a Q Exactive HF Hybrid Quadrupole-
Orbitrap (QE) mass spectrometer (ThermoFisher Scientific).

Metabolic Labeling Immunoaffinity Purification of 3×FLAG-Htt

13C6-lysine (≥97% enriched)-labeled mouse whole brain tissues
collected at 2 months of age was purchased from a commercial
source (MT-LYSC6-MB-PK, Cambridge Isotopes) for use in metabolic
labeled IP-MS experiments as labeled cortical tissues were not
practical to produce. The reported extent of 13C protein enrichment in
these samples has been previously validated by whole-proteome
analysis of heavy-labeled tissue (12). Immunoaffinity purification of
3xFLAG-Htt in metabolic labeled IP-MS experiments was performed
similar to the label-free IP-MS experiments above and as in the study
by Greco et al (12), except the cortical lysates (4.5 ml) were mixed with
an equal protein amount (w:w) of sex- and age-matched 13C6-lysine
labeled brain lysate extracted from the whole brain.

Informatics Analysis of IP-MS Experiments

Raw instrument files were analyzed in Proteome Discoverer
(v2.4.0.305), which recalibrated precursor ion masses, extracted
MS/MS spectra, and performed a database search with Sequest HT
(v1.17) to assign peptide spectrum matches (PSMs) against a mouse
protein sequence database appended with common contaminants
and concatenated with reverse entries for calculation of FDR thresh-
olds (UniProt reviewed entries, downloaded 2017–07, 30,060
Mol Cell Proteomics (2022) 21(10) 100275 3



Exploring HTT interactions and omics data with HTT-OMNI
sequences). The database search was performed with the following
settings: full trypsin cleavage specificity, allowing for up to two missed
cleavages, a precursor and fragment ion match tolerance of 4 ppm
and 20 ppm, respectively, fixed modifications of carbamidomethyla-
tion of cysteine, and variable modifications of oxidized methionine,
deamidation of asparagine, and loss of methionine plus acetylation of
the protein N-terminus. For isotope-labeled experiments, an additional
variable modification of heavy 13C6-lysine was specified. Percolator
(v3.02.1) was used to calculate PSM q-values for local FDR estimates.
Search results were assembled using a consensus report that lever-
aged q-values to control global FDR to ≤1% at the spectra, peptide,
and protein levels. Specific versus nonspecific interactions were
determined with Significance Analysis of INTeractome (SAINT) (26) on
the REPRINT server (https://reprint-apms.org/?q=reprint-home) using
spectral counts as input from bait (Htt3xFlag) and control (IgG) IgG
IPs. For each IP sample group, the two highest SAINT scores were
averaged. Specific PPIs were assigned using an average score of 0.8.

Differential HTT interactions were quantified by precursor intensity-
based label-free analysis using Minora in Proteome Discoverer
(v2.4.0.305), which assigns features and links them to respective PSMs.
A consensusanalysiswasperformed that aggregated individual sample
results, which controlled global FDR to 1% at the peptide and protein
levels and performed retention time recalibration and feature matching
between runs. Additionally, data normalization was performed with the
bait protein levels (mouse huntingtin, Htt) and interacting protein ratios
(Q140/Q20) were calculated using the protein ratio-based method.
Protein abundances were calculated by summed peptide abundances.
Proteinswere retained that had≥2 quantitative values in all replicates of
at least one sample group. An initial consensus analysis was performed
containing four sample groups (Q20-2M, Q140-2M, Q20–10M, and
Q140–10M) eachwith threebiological replicates.Resultswere exported
toExcel, and for eachsamplegroup, the twosamples thatminimized the
coefficient of variance (CV) between replicates were selected for a
second consensus analysis using the same parameters as described
above. The results were exported to Excel, and statistical significance
between sample group abundances was performed by Student’s t-
testing. Interacting proteins were considered differential if |log2(Q140/
Q20)| > 1.0 and p-value < 0.05.

For isotope-labeled data (Q20-2M and Q140-2M), quantification
was performed in Proteome Discoverer with the Minora node as
above, except an isotope-labeled MS1-based quantification method
was used that specified lysine-containing peptides could be either the
light (12C) or heavy (13C6) isotopologue. In the consensus analysis,
peak matching was used to assign nonsequenced light- and heavy-
labeled peptides for which the cognate heavy and light iso-
topologues, respectively, were sequenced by MS/MS and had
confidently identified PSMs (<1% FDR) and a valid MS1 feature as
assigned by Minora in the Processing workflow.
RESULTS

Development of HTT-OMNI: an Interactive Platform for HTT
PPI Exploration

An important hurdle in extracting biologically relevant HTT
PPI targets remains the integration and visualization of new
and existing PPI and “omics” datasets. To address this issue,
we have developed a deployable, user-friendly web-based
application that can simultaneously integrate and visualize
information contained within the HINT PPI database and a
curated set of HD-relevant omics datasets. We have named
this tool the HTT-OMNI (HTT OMics and Network Integration)
viewer. An essential aspect of this endeavor has been creating
4 Mol Cell Proteomics (2022) 21(10) 100275
a user-friendly interface that can distill the vast amount of
available multi-omics data down to a manageable and visu-
alizable level. To accomplish this, we have taken advantage of
the HoloViz Python metapackage, which provides powerful
tools for browser-based data visualization and application
dashboarding. Specifically, we leveraged the Panel library (27)
to develop the application components and the HoloViews
library (28) for interactive network and omics data plotting. To
highlight the main functionalities of HTT-OMNI, we provide a
video tutorial that guides users through its different features
and capabilities (supplemental Movie S1).
The main elements of HTT-OMNI consist of a functional

network of HTT PPIs and linked panels for visualizing HIP-
associated HD omics resources. Currently, an extensive re-
pository of >9000 reports of HIPs from 239 studies is available
through the HDinHD portal (7), and independently, several
large-scale omics studies in mice provide systems-level
perspective on disease pathogenesis (16–18). Yet, for HTT-
OMNI to leverage these rich resources, we needed to
generate a unified “HINTomics” database. To build this
resource, we first obtained the most recent HINT database
and supplemented it with recently published PPI studies
(12, 13) (supplemental Table S1). Next, we generated an
HDomics database from bulk proteome and transcriptome
measurements from the mouse allelic series (AS) HD model
(16) in combination with polyQ-dependent single-nucleus RNA
(snRNA) measurements from the striatum of an HTTQ175 HD
mouse model (17) and single-cell RNA measurements from
the striatum of wild-type mice (18) (supplemental Table S2).
These independent omics datasets represent a valuable
resource to the HD community as the mouse models are all
similarly constructed with knock-in of control or disease-
causing CAG expanded alleles of huntingtin, which results in
a progressive disorder in mice that recapitulates many as-
pects of the transition from presymptomatic to manifest HD in
the human disease (29, 30). In both the supplemented HINT
dataset and the HDomics database, we mapped nonhuman
targets to their human homolog (if known) and generated the
HINTomics database by annotating the HDomics database
with positive PPIs in HINT. Using this unified resource, a
protein detected in at least one PPI study in the supplemented
HINT dataset is available as a node in the HTT-OMNI network
viewer, and edges between the nodes represent known in-
teractions that have been imported from the STRINGdb (22)
database (Fig. 1, A and B).
A benefit of leveraging the HINT database is that it contains

detailed experimental metadata for all PPI observations. Given
the value of being able to include or exclude HIPs identified
under certain experimental conditions, we designed HTT-
OMNI to be able to dynamically filter functional networks in
real time across different model systems, HTT construct
lengths, disease models, tissues, experimental approaches,
and studies (Fig. 2A). HTT-OMNI also provides the ability to
only show HIPs that have been identified in at least a certain

https://reprint-apms.org/?q=reprint-home


FIG. 1. HTT-OMNI is an interactive platform for HTT PPI and omics exploration. A, schematic overview of the HTT-OMNI platform. B,
annotated screenshots highlighting different features of the main HTT-OMNI interface.
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FIG. 2. The HTT-OMNI interface is intuitive and user-friendly. A, HTT-OMNI sidebar functionalities that include configuration of network
aesthetics (top) and filtering of interactions by experimental metadata (bottom). B, HTT-OMNI network view after applying the settings from panel
A. Various hover, click, drag, and plot control functionalities are annotated across the network. C, HTT-OMNI provides control over which mouse
tissues and ages are visible in the RNA and protein levels “omics” graphs. D, gene ontology (GO)/pathway enrichment analysis by HTT-OMNI.

Exploring HTT interactions and omics data with HTT-OMNI
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number of studies (Fig. 2A). Furthermore, users can also
configure different aesthetic network properties, such as how
many nodes are visible, how nodes are colored and their
corresponding colormap, a confidence threshold for edges
imported from STRINGdb, edge bundling, and the graph
layout algorithm (Fig. 2A). We also provide not only the
capability to export the network as a scalable vector graphic
image but also the ability to download the network nodes and
edges as text files that can be externally uploaded to other
network visualization software (e.g., Cytoscape (31)) (Fig. 2B).
Ultimately, the PPI network rendered by HTT-OMNI provides a
dynamic interface for user interaction with HTT PPIs, with
click, drag, and hover functionalities that augment the user
experience (Fig. 2B).
In addition to the HTT interaction network described above,

our application also provides intuitive, reactive access to the
HD-relevant omics datasets within HINTomics (see above)
(Fig. 2C). Access to measurements within these datasets for
an individual PPI is facilitated by clicking on a node within the
interaction network, which then renders the corresponding
data in the “Omics data (selected node)” panel (Fig. 2C).
Furthermore, we provide access to this data at a network-
aggregated level by computing the sum of all measurements
or median measurement (depending on the data type) across
all nodes in the filtered network view, which can be viewed in
the “Omics data (filtered nodes)” panel. To assist with inter-
pretation of functional gene clusters within a given filtered
network view, we also provide direct access to gene ontology
(GO) and pathway overrepresentation analysis via RESTful API
querying of the PANTHER (23) database (Fig. 2D).
In addition to filtering and exploring existing HIPs, another

key function of our application is to aid in the interpretation
and analysis of newly generated HTT PPI datasets that have
not yet been integrated into the HINT database. We have
therefore included functionality to allow users to upload their
own datasets into the application, which allows for the visu-
alization of overlap between newly generated datasets and
existing HINT PPIs (Fig. 2E). By including “QUANT_” as a tag
at the beginning of any column header (e.g., “QUANT_abun-
dance”), users can optionally associate custom quantitative
(e.g., fold change, abundance, etc.) or categorical annotations
for genes/proteins within their datasets. These user-defined
annotations are then added to the “node color” dropdown
options (see Fig. 2A) and can be visualized as overlays on top
of the PPI network. Given that the consolidated omics data
(transcriptome, proteome, snRNA-seq, single-cell RNA
sequencing) contain measurements for over 15,000 targets
(see Experimental Procedures and supplemental Table S2),
users can explore omics data for their uploaded data, even
when a given gene was not initially present in the base
Available annotation query sets include full and slim versions of GO biolo
well as Panther and Reactome pathways. E, HTT-OMNI provides the ab
browse to select and upload an appropriately formatted tab-separated fi
HTT-OMNI network (i.e., HINT database containing ~3400
HIPs). Altogether, HTT-OMNI brings together HTT PPIs and
HD-relevant omics data into a unified platform for data
exploration, analysis, and visualization. In the following sec-
tions, we highlight specific use cases that demonstrate the
functionalities of HTT-OMNI for (1) filtering existing HTT PPIs
based on experimental metadata, (2) visualizing the relation-
ships between HIPs and genetic disease modifiers and their
multiomic landscape, and (3) analyzing a user-generated
dataset of HTT PPIs from mouse cortex samples that has
not been previously reported and is not present in HINT.

Filtering Existing HTT PPIs Based on Experimental
Metadata and Visualization of Omics Patterns

Having described the development of HTT-OMNI, we next
wanted to demonstrate its utility within the context of
analyzing existing HTT PPI studies. Given that such studies
have been conducted within a wide variety of experimental
contexts, the ability to filter/visualize potential HTT PPIs based
on this associated metadata is of high value. Not only does
HTT-OMNI facilitate the specific inclusion or exclusion of
certain experimental criteria, but it also allows for this meta-
data to be simultaneously visualized as a user-selected color
mapping for nodes in the PPI network (Fig. 2B). For example,
HTT PPIs can be filtered for those identified only with full-
length HTT, in mice models, and in whole brain AND stria-
tum AND cerebral cortex mouse tissues. Applying these filter
settings within HTT-OMNI yields a refined set of 130 HTT-
interacting proteins (out of ~3400 proteins in HINT) that have
been identified as HTT interactions between 1 and 10 times
across all HINT studies (Fig. 3, A and B). This subset of HIPs
formed a highly interconnected network of 128 nodes
(STRINGdb interaction scores ≥0.4), with only two HIPs
(BCAN and MAP3K12) being unconnected. As expected,
given its large number of known interactors, HTT exhibited
many connections within this network, including a connection
to the well-known HIP F8A1 (32, 33) (also known as HAP40).
Within this filtered network, a small subset of these HIPs
display high connectivity with other HIPs, suggesting that
these targets could serve as hubs of HTT interactions (Fig. 3B,
node color). For example, HSPA8, GAPDH, and SNAP25 are
each connected to more than 35 other nodes within this
subnetwork. The functionality of HSPA8 and GAPDH in
modulating the cellular toxicity of expanded polyQ HTT has
been well studied (34, 35), and SNAP25 has been investigated
in the context of neurodegenerative diseases (36). Taken
together with their numerous physical and functional con-
nections to other HIPs and across the proteome underscores
one of the challenges in considering “well connected” HIPs as
targets for therapeutic intervention.
gical process, GO molecular function, and GO cellular component, as
ility for users to upload their own datasets. Simply drag-and-drop or
le.
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FIG. 3. Filtering existing HTT PPIs based on experimental metadata and visualization of omics patterns. A, concentric Venn diagram
depicting the number of HTT interactors that pass the following filters: detected as an interactor with full-length HTT, in mice models, and in the
whole brain, striatum, and cerebral cortex mouse tissues. B, the resulting HTT interaction network after applying the filters described in panel A.
C, reactome pathway overrepresentation analysis of the filtered interaction network depicted in panel B. D–E, SYT1 RNA (D) and protein (E)
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For larger interaction networks, e.g. >100 nodes, summa-
rizing the functionality at the pathway level is often informa-
tive. Using the GO/pathway enrichment analysis tool in
HTT-OMNI, 16 Reactome Pathway terms were found
enriched (p ≤ 0.001), many of which are associated with
cellular vesicle trafficking and synaptic transmission (Fig. 3C).
These pathways are consistent with known cellular functions
of HTT (3), underscoring the value of filtering HIPs identified
from relevant tissues of HD mouse models.
One of HTT-OMNI’s features is to efficiently link and visu-

alize omics relationships at the network and individual HIP
levels. At the network level, we observed that, on average,
these HIPs did not show strong correlations with polyQ-length
at the respective transcriptome and proteome levels
(supplemental Fig. S1, A and B). Consistent with this, striatal
snRNA levels in Q175 vs WT mice were not dramatically
altered across most striatal cell subtypes (supplemental
Fig. S1C). However, the genes corresponding to these PPIs
were found to be preferentially expressed in D1 and D2 me-
dium spiny neurons (MSNs), as well as interneurons from the
striatum of WT mice (supplemental Fig. S1D). An example of
omics changes at the individual protein level was observed for
the protein synaptotagmin-1 (SYT1), an essential mediator of
fast synaptic neurotransmitter release and endocytosis. Bulk
mRNA and protein levels for SYT1 in the allelic series HD
mouse models show subtle polyQ-dependent effects, with
RNA levels increasing with expanded polyQ in the cerebellum
at 10 months of age (Fig. 3D) and protein levels potentially
showing an increase in the cortex (Fig. 3E). At the single-cell
level, SYT1 showed a strongly accentuated preference for
D1 and D2 MSNs and interneurons compared to the whole
network (Fig. 3F vs supplemental Fig. S1D). Although astro-
cytes have lower relative levels of SYT1 whole cell expression
than other cell types in the striatum, this cell type showed the
largest relative polyQ-dependent increase in snRNA expres-
sion levels (Fig. 3G).
Our comparison of omics relationships for HIPs at the

network and individual levels raises an interesting question of
how often they are targets of regulation at the RNA or protein
level by expanded polyQ HTT. To explore this question, we
used the “Search for Genes” function of HTT-OMNI to refine
the mouse brain HIP network (e.g., Fig. 3B) by the genes/
proteins that were differential in both the transcriptomes and
proteomes of allelic HD mouse models (16). In total, 788 gene
symbols with human homologs were associated with differ-
ential targets from the “continuous Q” statistical analysis (see
Experimental Procedures and supplemental Table S3). After
levels across different mouse tissues, ages, and Q-lengths.Gray-shaded
datapoint is outside of these bounds, it is in the upper or lower 5% of
different striatal cell subtypes in wild-type (WT) mouse striatum. Dark blue
SYT1. G, SYT1 snRNA expression levels for Q175 vs. WT mouse mod
indicate cell types with a |log2(Q175/WT)| ≥ 0.15 (>10% increase or dec
hippocampus, STR, striatum; scRNA, single-cell RNA; snRNA, single-nu
filtering, only 14 of these targets were shared with the mouse
brain HIP network (supplemental Fig. S1E). The network level
omics dataset for this small subset of HIPs shows on average,
a decreasing polyQ-dependent RNA expression in the stria-
tum of older mice (supplemental Fig. S1F). Moreover,
searching the complete HINT database (3392 nodes) for these
788 differential targets only returned 292 HIPs, showing that
less than 10% of HIPs may be coordinately regulated at the
proteome and transcriptome levels. Overall, the ability of HTT-
OMNI to apply experimental metadata and external gene list
filters and visualize network and omics datasets supports a
hypothesis that proteins within the HTT interactome are rarely
targets of differential expression/abundance at the tran-
scriptome and proteome levels.

Network and Multiomics Interrogation of HTT PPIs Through
the Lens of Genetic Disease Modifiers

While the previous use case suggested that HIPs are not
often regulated by polyQ length in terms of their RNA
expression or protein abundance, this does not imply that
HIPs are not relevant to disease progression. In studies from
our laboratory and others, the genes of HIPs have been shown
to be modifiers of disease progression in HD animal models
(12, 37, 38). To visualize and interrogate the HIPs that are
potential genetic modifiers of HD, we leveraged a recent study
from Wertz et al (19), which identified disease-relevant genetic
modifiers using genome-wide approaches in mouse models of
HD. For this use case, we used HTT-OMNI to display HIPs
that were common to a list of candidate HD modifiers identi-
fied from the zQ175 full-length mHTT knock-in mouse model
(19), herein termed “PPI genetic modifiers” (supplemental
Table S4). In total, 111 HIPs could be classified as PPI ge-
netic modifiers and were assembled into a functional inter-
action network that was overlaid with each candidate’s
respective DrugZ score, a measure of the gene’s potential
protective (negative value) or vulnerable (positive value)
modification of mHTT-induced cell toxicity (Fig. 4A). This
representation illustrated that essentially equal numbers of PPI
genetic modifiers were classified as protective versus vulner-
able, and these proteins included frequently reported HTT
interacting proteins in HINT (Fig. 4A, node size) across several
model systems (supplemental Fig. S2A), such as seques-
tosome 1 (SQSTM1), the mitochondrial chaperone HSPD1,
dynamin-1-like protein (DNM1L/DRP1), and Transcription
elongation regulator 1 (TCERG1). A majority of these PPI ge-
netic modifiers (n = 66) had at least one subcellular localization
annotation as the nucleus (supplemental Figs. S2B and S3), as
boxes represent a bounding box for 90% of the underlying data (i.e., if a
the data at that Q-length). F, SYT1 scRNA expression levels across
bars indicate ≥80% (value ≥0.8) of the analyzed single cells expressed
els across different striatal cell subtypes. Dark blue or dark red bars
rease for Q175 relative to WT). CRB, cerebellum, CTX, cortex, HPC,
cleus RNA.
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FIG. 4. Network and multiomics interrogation of HTT PPIs through the lens of genetic disease modifiers. A, HTT-OMNI network of 111
genetic modifiers fromWertz et al. 2020 that overlap with HTT interactors in the HINT database. Node color indicates the relative DrugZ score for
a given target, a measure of the gene’s potential protective (negative value) or vulnerable (positive value) modification of mHTT-induced cell
toxicity. B, TCERG1 RNA levels across different mouse tissues, ages, and Q-lengths. Gray-shaded boxes represent a bounding box for 90% of
the underlying data (i.e., if a datapoint is outside of these bounds, it is in the upper or lower 5% of the data at that Q-length). C, TCERG1 snRNA
expression levels for Q175 vs. WT mouse models across different striatal cell subtypes. Dark blue or dark red bars indicate cell types with a log2
fold change value ≥0.15 (>10% increase or decrease for Q175 relative to WT). CRB, cerebellum; CTX, cortex; HPC, hippocampus; LIV,
liver; STR, striatum; snRNA, single-nucleus RNA.
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documented by UniProt (20) and/or the Human Protein Atlas
(21). Among the PPI genetic modifiers that have been
frequently observed and nucleus annotated, TCERG1 stood
out as a notable target (highlighted in Fig. 4A). TCERG1
contains a Gln-Ala repeat track and can modulate transcrip-
tion elongation and mRNA splicing through interaction with
RNA Pol II and splicing factor SF1 (39). The HTT–TCERG1
interaction has been documented in yeast two-hybrid and
in vitro studies (supplemental Fig. S4A) (40–43). At the omics
level, polyQ-dependent regulation of TCERG1 is apparent in
the allelic series mouse models at the RNA level (Fig. 4B).
Specifically, the striatum showed the greatest relative in-
crease, though most tissues show a positive correlation with
polyQ-length, particularly at 10 months of age (Fig. 4B).
PolyQ-dependent snRNA expression of TCERG1 suggests
this striatal expression increase is driven primarily by oligo-
dendrocytes, with a smaller contribution by astrocytes and
MSNs (Fig. 4C). However, these data also indicate opposing
lower magnitude decreases in TCERG1 RNA across inter-
neuron cell types. This could be biologically relevant as under
homeostatic conditions, TCERG1 expression has preferential
expression in interneurons, closely followed by MSNs
(supplemental Fig. S4B). In contrast to RNA levels, striatal
proteome levels of TCERG1 in the allelic series models are
negatively correlated with polyQ length at 6 and 10 months of
age (supplemental Fig. S4C). In the context of HD patients, the
repeat track of TCERG1 was initially found to have a slight
contribution to disease age of onset (40), while more recent
genome-wide studies by GEM-HD found that TCERG1 was
one of the most significant age-of-onset hits (44). Overall, the
ability of HTT-OMNI to allow filtering of HINT by non-PPI
datasets, exemplified here by HD genetic modifiers, and
seamless access to multiple omics-level studies, allowed us
to perform a targeted extraction of systems-level dynamics of
TCERG1.

Functional Network Visualization of Tissue- and
polyQ-Dependent HTT PPIs From the Cortex and Striatum

Having demonstrated the utility of HTT-OMNI for analyzing
existing PPI datasets, we next aimed to show how HTT-
OMNI can analyze a user-supplied quantitative IP-MS data-
set that has not been previously reported. In individuals with
HD, impaired neuronal communication is observed between
cells in the striatum and cortex tissues, particularly in early
stages of the disease (11). Therefore, comparison of dysre-
gulated HIPs in the cortex of HD mice to existing PPI data-
sets in HD mouse models can provide insights into cellular
functions or pathways that may be common or tissue spe-
cific. To this end, we immunoaffinity purified HTT from mouse
cortex expressing normal (3xFLAG-HTT Q20) or mutant HTT
(3xFLAG-HTT Q140) at 2 and 10 months of age. We have
selected these two ages as molecular and phenotypic anal-
ysis of HD mouse models at these time points show a pro-
gressive disease course (16, 29, 30). For example, in HD
mouse models with various polyQ lengths, transcriptional
dysregulation is relatively modest at 2 months of age (~100
RNAs), while at 10 months of age, ~3000 genes become
dysregulated (16). Moreover, early neuron dysfunction in
HD mice progresses to neuronal loss at later disease stages
(29, 30). Additionally, we have recently demonstrated
age-dependent dysregulation of specific HIPs in the striatum
of HD mice at these two ages (12).
Following immunoaffinity purification of HTT protein com-

plexes, we relatively quantified the co-isolated proteins using a
previously described label-free IP-MS approach (Fig. 5A,
supplemental Table S5 and S6) (12). Nonspecific interactions
were filtered from bait IPs using the SAINT algorithm (26),
producing 262 potential HTT interactions across all sample
groups (Fig. 5A). Interaction abundances were measured by
precursor-based label-free quantification (LFQ) and normal-
ized to HTT, resulting in high correlation in protein abundances
between replicate IPs (Fig. 5B, and Experimental Procedures).
As not all user datasets will contain quantitative data, we first
demonstrated how to perform a qualitative comparison of PPIs
identified between a user’s data and an existing study within
HTT-OMNI/HINT. The 262 HIPs were uploaded with their hu-
man gene symbols to HTT OMNI and an annotation column
that links each HIP to a “study_id” of “Kennedy Cortex IP-MS.”
HTT-OMNI indicated that 221 HIPs have been observed by at
least one other study, while 41 represent previously unre-
ported HTT PPIs. Within HINT, a recent study from Sap et al
(13) used cross-linking IP-MS to identify 57 HIPs from the
cortex of HD mice. Visualization of these two datasets in HTT-
OMNI (supplemental Fig. S5A) showed a common set of 10
HIPs (supplemental Fig. S5, B and C). Given the different
isolation conditions for XL-IP-MS (e.g., lysis buffer and work-
flow), these shared interactions may represent direct in-
teractions, which is supported by the higher proportion of
overlap (81%) of “Kennedy Cortex IP-MS” with HINT
compared to Sap et al. (supplemental Fig. S5, B and C).
Next, to gain insights into possible tissue-dependent HIPs,

we compared this cortex dataset to our recently reported HIP
dataset from the striatum (279 HIPs), which we annotated in
HTT-OMNI with the study identifier “Greco 2022 Cell Syst”.
Application of an “OR” “Study” filter between the two datasets
produced a unified interaction network of 387 HIPs (Fig. 5C).
At the network level, node color was mapped by the different
study identifiers to visualize the 154 shared HIPs versus the
125 and 108 HIPs that were scored as HIPs specifically
enriched within the striatal or cortex datasets, respectively
(Fig. 5C). Given that both the cortex and striatal datasets have
associated LFQ interaction abundances, we were able to
directly compare the impact of expanded polyQ and age on
changes in interaction levels. We present two complementary
strategies to visualize differential interactions when performing
pairwise comparisons of different experimental conditions.
In the first approach, we focused on the common in-

teractions that were quantified in both the striatum and cortex
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FIG. 5. Characterization of HTT interactions in mouse cortex via IP-MS at 2 and 10 months of age. A, schematic depiction of HTT IP from
mouse cortex samples and subsequent analysis and visualization of specific interactions (as determined by SAINT) via HTT-OMNI. B, repro-
ducibility of protein abundances from two biological replicates of cortex HTT IPs. The number next to each line in the legend indicates the
Pearson correlation for that set of samples. C, overlap between cortex (this study) and striatum (Greco et al. 2022) IPs, as visualized by HTT-
OMNI. Node color indicates whether a given node was identified as a specific HTT interactor in the cortex (Kennedy Cortex IP-MS), striatum
(Greco 2022 Cell Syst), or both (Greco 2022 Cell Syst & Kennedy Cortex IP-MS). All HTT-interacting proteins detected at any age or Q-length are
depicted in this network.
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(Fig. 5C, orange nodes). We performed categorical assign-
ment of differential polyQ (Q140/Q20) interaction abundance
based on fold-change and p-value thresholds of ≥ ±2.0 and
<0.05, respectively (supplemental Table S7). HIPs were then
visualized as described above, separately visualizing the
polyQ abundance classifications for 2 and 10 months (Fig. 6).
These network visualizations reveal several key points
regarding polyQ-dependent interactions: (1) increases in in-
teractions predominate in the common pool of cortex and
striatum HIPs, (2) at the same age, there are more differential
interactions in the striatum and few uniquely differential in-
teractions in the cortex, and (3) the number of differential
cortex and striatum interactions increases with age. As striatal
neuronal dysfunction is an early hallmark of the disease, we
used the “Search for Genes” Data filter to visualize the
12 Mol Cell Proteomics (2022) 21(10) 100275
2-month subnetwork of striatum-specific differential PPIs that
could contribute to early disease pathogenesis (supplemental
Fig. S6A). The PPIs underlying these functions are largely
represented by two densely connected modules containing
subunits of the Arp2/3 complex (ACTR3B, ARPC1A, ARPC2,
ARPC3, ARPC4), glutamate receptors (GRIN1, GRIN2B,
GRIA1, GRIA2), catenins (CTNNB1, CTNND2), and regulators
of vesicle fusion and recycling (e.g., STX1B, SYN1, SYN2, and
PCLO).
The second approach we present for network depiction of

differential interactions is to directly overlay relative interaction
abundances (i.e., log2 Q140/Q20 abundances). HIP networks
were constructed that contained SAINT-specific PPIs unique
to the cortex (Fig. 7A and supplemental Table S8) or striatum
(Fig. 7B and supplemental Table S9) at 2 and 10 months of



FIG. 6. Functional network visualization of polyQ-dependent interactions shared between cortex and striatum. HTT interactors that are
specific (SAINT score ≥0.8) in both striatum (STR) and cortex (CTX), classified by polyQ dependence at 2 or 10 months. Node color indicates
whether the interaction level was unchanged or increased (Up) in the cortex or striatum at a given age. PPIs were considered “Up” if their
respective log2 fold change (Q140/Q20) was ≥1 and they had a p-value < 0.05 as determined by two-tailed Student’s t test.
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FIG. 7. Visualization of polyQ-dependent interactions that are preferentially enriched in cortex or striatum. A, cortex-enriched HTT PPIs
passing a SAINT specificity threshold of at least 0.8 in cortex IP samples, but not in striatum IP samples. Node color indicates the relative change
in HTT interaction with a given protein in Q140 vs Q20 mice models. B, striatum-enriched HTT PPIs passing a SAINT specificity threshold of at
least 0.8 in striatum IP samples, but not in cortex IP samples. Node color indicates the relative change in HTT interaction with a given protein in
Q140 vs Q20 mice models.
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age (Fig. 7B, left vs right). Interaction fold change was node
color coded on the same scale, illustrating the larger magni-
tude of change observed for putative striatum-specific in-
teractions compared to the more subtle changes in cortical
PPIs, which is consistent with our comparison of shared in-
teractions between the cortex and striatum (Fig. 6). Within the
cortex networks, several HIPs that have been frequently
observed in previous studies were present, including voltage-
dependent anion-selective channel protein 2 (VDAC2), gua-
nine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2
(GNB2), and serine/threonine-protein phosphatase PP1-
alpha catalytic subunit (PPP1CA). Our IP-MS dataset also
contained many PPIs that have not been previously observed,
including two voltage-dependent calcium channels (CAC-
NA1A and CACNG3) and calmodulin-regulated spectrin-
associated proteins (CAMSAP1 and CAMSAP2).

Defining the Relative Stability of Tissue-Dependent HTT
PPIs From the Cortex and Striatum

We have previously shown that the presence of mutant HTT
can induce changes in the relative stabilities of HIPs isolated
from the striatum (12). To determine whether the presence of
alterations in interaction stabilities is a tissue-dependent
feature, we aimed to explore the polyQ-dependent stability
landscape of HIPs in the cortex. We implemented an approach
that merges label-free and metabolic labeling IP-MS (45, 46) to
assess both the relative stabilities and specificities of protein
interactions (25). For this, we immunoaffinity purified FLAG-
HTT from a mixed brain lysate, in which the cortex from
FLAG-Htt HD mice was mixed 1:1 (w:w) with heavy (13C6-Lys)-
labeled whole-brain lysates of wild-type and age-matched
mice (Fig. 8A). As previously shown by studies performed in
either cells or mouse tissues (12, 46), the relative quantifica-
tion of co-isolated proteins in their light (endogenous) and
heavy (reference) isotope forms allows for the determination of
a relative interaction stability ratio. Ratios closer to one indi-
cate little in-solution exchange, and thereby, more stable in-
teractions, while stability ratios closer to 0.5 represent fast-
exchanging or transient associations. Based on our prior ob-
servations of changes in HIP relative stability for selective
functional classes at 2 months of age (12), we selected this
age for comparison with the cortex. In these isotope-labeled
IP-MS experiments (n = 2 biological replicates), we quanti-
fied ~90% of the specific HIPs (234/262) that were also
measured in LFQ experiments (see Figs. 5, 6 and
supplemental Table S5). These HIPs showed good correlation
of isotope stability ratios across replicates (Fig. 8B). Com-
parison of relative stability ratios to SAINT-based specificity
scores showed that ~20% of HIPs were both stable and
specific for HTT Q20 and Q140 (Fig. 8, C, D and supplemental
Table S10). Moreover, very few HIPs exhibited relative stabil-
ities that were polyQ-dependent, except MAP3K12, which had
a lower stability ratio with mutant (Q140) HTT (Fig. 8C).
Comparison of stable and specific HIPs between the cortex
and striatum showed that a greater percentage of HIPs are
assigned to this class in the striatum (Fig. 8D), with 119 stable
and specific HIPs occurring in the striatum. Visualization of the
connectivity (supplemental Fig. S6B) of this subnetwork and
GO analysis (Fig. 8E) revealed enrichments in terms associ-
ated with synaptic vesicle exocytosis, regulation of synaptic
vesicle fusion and membrane organization, and actin filament
capping. Finally, we visualized the 19 HIPs ( see Fig. 8D) that
were common between the striatum and cortex (Fig. 8F). Most
of these HIPs had known functional relationships, centered
around glutamate (NDMA1/NDMA2B) and AMPA (GluR1/
GluR2) receptors and factors localized to the postsynaptic
density. In summary, HTT-OMNI facilitated the rapid com-
parison of tissue-derived HTT interactomes through its cate-
gorical and quantitative network visualization functionalities
and helped pinpoint tissue-specific candidate HIPs for func-
tional validation.

DISCUSSION

The extensive number of potential HTT interactors that
have been identified across hundreds of studies using
different organisms, experimental approaches, and pertur-
bations has made it challenging to identify high-value targets
for therapeutic design. Moreover, the integration of HIPs with
their associated multiomic measurements has not been
made easily accessible. Here, we describe HTT-OMNI, a
web-based application for HIP network analysis, visualiza-
tion, and omics data exploration. We have demonstrated the
utility of HTT-OMNI for a variety of use cases, highlighting its
ability to filter and visualize HIPs by their experimental met-
adata and to integrate user-uploaded datasets into existing
HIPs from the HINT database. Given that HINT serves as the
foundation of HTT-OMNI, it will be straightforward to
continue updating the base HTT-OMNI interaction network
following regular updates to the HINT database. Furthermore,
the modular development of the application itself makes the
inclusion of additional quantitative modules (e.g., additional
omics datasets) feasible.
We also exploited the ability of HTT-OMNI to visualize and

derive biological insights from diverse HD datasets. Simulta-
neous visualization of differential HIPs identified from our
previous IP-MS study (in the striatum) and an IP-MS dataset
generated here (from cortex) revealed that polyQ-dependent
regulation of HIP abundances and stabilities were more
prominent in the striatum of HD mice at both 2 and 10 months
of age. This may reflect the differential impacts of HD patho-
genesis on these two tissues and is consistent with the
striatum brain region being especially vulnerable to expanded
polyQ-associated cell toxicity (10). More broadly, the inte-
gration of OMICS resources to PPI networks suggested that
the majority of HIPs are not concurrently modulated at the
proteome or transcriptome levels, though continued single-
Mol Cell Proteomics (2022) 21(10) 100275 15



FIG. 8. Visualization and functional analysis of tissue-dependent PPI stability networks. A, schematic depiction of isotope-labeled HTT IP
from mouse cortex samples mixed with heavy-labeled whole brain. Mass spectrometry analysis was used to determine light/[light+heavy]
stability ratios and were compared to SAINT-specific interactions (see Fig. 5) to assign specific and stable HIPs. Analysis and visualization of
HIPs was performed by HTT-OMNI. B, reproducibility of stability ratios between two biological replicates of isotope labeled HTT IPs. The number
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cell analyses may reveal additional cell-type-specific regula-
tory mechanisms. We also demonstrate that the utility of HTT-
OMNI is not limited to IP-MS datasets. Given the simple, but
flexible, structure of data uploaded to HTT-OMNI, it possible
to use this tool to analyze various systems level HD datasets
outside the context of interaction studies (as shown by our
analysis of the genetic modifiers from Wertz et al. 2020). In
summary, HTT-OMNI is poised to grow with the HD field,
incorporating new studies as they become available and
providing a unified platform for HIP network and omics data
exploration.
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