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Abstract With the dramatic increase in the volume of

experimental results in every domain of life sciences,

assembling pertinent data and combining information from

different fields has become a challenge. Information is

dispersed over numerous specialized databases and is

presented in many different formats. Rapid access to

experiment-based information about well-characterized

proteins helps predict the function of uncharacterized pro-

teins identified by large-scale sequencing. In this context,

universal knowledgebases play essential roles in providing

access to data from complementary types of experiments

and serving as hubs with cross-references to many spe-

cialized databases. This review outlines how the value

of experimental data is optimized by combining high-

quality protein sequences with complementary experimen-

tal results, including information derived from protein

3D-structures, using as an example the UniProt know-

ledgebase (UniProtKB) and the tools and links provided on

its website (http://www.uniprot.org/). It also evokes pre-

cautions that are necessary for successful predictions and

extrapolations.
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Introduction

Combining vast amounts of data with the aim of under-

standing the complexity of living beings, e.g., in the

context of systems biology, is a central issue of modern

biology. The technological progress of the last few years

has led to a literal explosion in the quantity of available

data in life sciences, starting with the number of nucleotide

and protein sequences, but also data from proteomic and

transcriptomic studies. Likewise, the number of protein

3D-structures that are deposited at wwPDB (http://www.

wwpdb.org/) and integrated via its sites at RCSB PDB,

PDBe (formerly MSD), PDBj, and BMRB [1–4] has

increased dramatically, and ever more protein structures

are being solved. Complementary central databases and

knowledge repositories, such as the protein structure ini-

tiative structural genomics knowledgebase (PSI-SGKB) [5]

and the UniProt Knowledgebase (UniProtKB) [6, 7], play

essential roles in simplifying access to information about
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proteins and protein structures, and in combining results

from experiments with functional annotation.

Much of the recent data are from large-scale studies, and

most new nucleotide sequences code for otherwise

uncharacterized proteins from a wide range of species,

from mammals to microbes, virus isolates, and environ-

mental samples. For the correct prediction of the function

of individual proteins and for the automated annotation of

entire genome sequences, one needs central knowledge

resources that provide information about characterized

proteins. For successful predictions, it is essential to use a

maximum of validated experimental findings from com-

plementary experiments, and to take account of the sources

of the information. The Universal Protein Resource

KnowledgeBase (UniProtKB) (http://www.uniprot.org/)

provides the scientific community with one such resource.

It gives rapid access to high-quality, reliable information,

has excellent search tools for the retrieval of specific sets of

proteins, and puts emphasis on information that is directly

derived from experimental evidence. At the same time, it

serves as a hub providing links to other databases, allowing

access to information and data which are stored in many

different formats (Fig. 1). This facilitates the interpretation

of novel experimental results and provides a solid basis for

predictions and for planning new experiments. Small

datasets can be directly downloaded from the UniProtKB

web site by following the download link on any search

result page. For downloading complete datasets, it is

recommended to use the UniProt FTP site (ftp://ftp.

uniprot.org/). UniProtKB values feedback from the scien-

tific community, with each entry displaying the appropriate

external links.

UniProtKB contains two mutually exclusive, non-

redundant sections that together give access to all the

protein sequences which are available to the public.

However, UniProtKB excludes protein sequences for most

non-germline immunoglobulins and T-cell receptors, pat-

ent application sequences, synthetic sequences, short

fragments, pseudogenes, and fusion proteins. More than

99% of the protein sequences provided by UniProtKB

come from the translations of coding sequences (CDS)

submitted to the EMBL-Bank/GenBank/DDBJ nucleotide

sequence resources. New protein sequences are integrated

in UniProtKB/TrEMBL, together with information pro-

vided by the submitting authors concerning the species and

the protein and/or gene name. Highly automated tools are

used for further annotation. Proteins are classified using

protein signatures, and assigned to families and domains.

The major protein signature databases are available

through the InterPro database [8, 9], the main tool for

characterizing and classifying UniProtKB sequences.

Depending on the entry, further information may be added

by automated annotation, using automated and manually

curated annotation rules from the UniProt RuleBase. Thus,

while users have access to high-quality automated anno-

tation and cross-references to numerous databases,

including PDB, annotation is mostly restricted to the

description of sequence-based similarity. In the same vein,

the protein name is often derived from a clone identifier,

and further efforts are required to establish the identity of

the protein. When sequences differ from existing sequen-

ces, UniProtKB/TrEMBL creates separate entries for the

gene products from a given organism. For popular or

highly expressed genes, a huge number of slightly different

sequences exists for the products of each gene, e.g., due to

polymorphisms or alternative splicing events. This gives

rise to a large number of individual UniProtKB/TrEMBL

entries, making it difficult to keep track of the differences

and identify the most relevant sequence.

In contrast, UniProtKB/Swiss-Prot contains manually

annotated protein sequences, where annotators add infor-

mation gathered from scientific publications and from

protein 3D-structures, and check the output from bioin-

formatics tools. When several different protein sequences

are available for the products of one gene from a given

Fig. 1 UniProtKB serves as a knowledge repository and as a central

hub that provides links to numerous other databases. New protein

sequences are integrated in UniProtKB/TrEMBL and annotated by an

automated procedure. UniProtKB/Swiss-Prot entries are manually

annotated, combining carefully checked protein sequences with

information from the scientific literature, protein 3D-structures, and

specialised databases, together with feedback from the scientific

community
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species, the sequences are carefully analyzed, and a master

sequence is selected by annotators. Other sequences are

then merged, and differences are carefully documented,

with the result that one UniProtKB/Swiss-Prot entry rep-

resents the products of one gene for a given species.

UniProtKB/Swiss-Prot puts emphasis on showing experi-

mental evidence, and displays in-depth information. Within

this context, protein 3D-structures are highly valuable

sources of information; they give detailed information on

interactions with other macromolecules or with small

ligands, and contribute to elucidating enzyme mechanisms.

Likewise, they can provide a basis for understanding the

molecular causes of disease, elucidate the interactions

between pathogens and their hosts, and help with the tar-

geted design of new drugs and inhibitors. 3D-structures can

reveal the details of post-translational modifications, such

as disulfide bonds, or the covalent attachment of cofactors,

sugars, or lipids. Protein 3D-structures help to classify

proteins, assign proteins with low sequence similarity to

known families, or identify new folds. The challenge is

then to combine knowledge derived from protein structures

with high-quality information about the protein sequence

and its variants, complement it with results from other

types of experiments, such as site-directed mutagenesis and

biochemical analyses, and make the cumulated information

accessible to the scientific community. This is the goal of

UniProtKB/Swiss-Prot, a manually annotated knowledge

resource that facilitates access to data from multiple

sources, and brings together results from protein 3D-

structures and biochemical and genetic analyses, and pro-

vides cross-references to numerous other databases.

Information gathered for well-characterized proteins is

used for propagation to uncharacterized family members,

applying stringent rules. This is accomplished by highly

trained annotators; indeed, this type of work takes expert

knowledge and constant vigilance.

Focus on model organisms and pathogens

UniProtKB/Swiss-Prot prioritizes annotation of proteins

from model organisms and from important pathogens, with

particular emphasis on proteins with known 3D-structure.

Since autumn 2008, UniProtKB/Swiss-Prot entries are

available for all 20,330 human protein-coding genes;

keeping pace with the information flood and continuing to

add all the relevant information to the entries is now the

next major challenge [10]. Another major priority is the

annotation of important human pathogens from all bran-

ches of life, with particular emphasis on bacteria, such as

Mycobacterium tuberculosis and Staphylococcus aureus,

and on viruses. A dedicated web portal, ViralZone

(http://www.expasy.org/viralzone/), simplifies access to

information about viruses and viral proteins, and the

associated 3D-structures. For species where the entire

proteome has been annotated in UniProtKB, the complete

set of entries can be retrieved using the keyword ‘‘Com-

plete proteome’’, e.g., for Saccharomyces cerevisiae and

Schizosaccharomyces pombe, and for numerous bacteria

and archaea, such as Escherichia coli, Mycoplasma pneu-

moniae and Methanococcus jannaschii.

UniProtKB/Swiss-Prot release 57.11 (November 2009)

contains 512,994 entries, and out of these, 15,223 contain a

database link to PDB. This corresponds to 48,904 PDB

entries—the numerical discrepancy arises from the fact that

often several structures are determined for a single protein.

In addition, a single PDB entry may contain several distinct

protein chains corresponding to several UniProt entries.

Reciprocal cross-references between UniProtKB, PDB, and

PDBSum [11] facilitate access to experimental data and

further tools. In UniProtKB, adding information from

protein 3D-structures has high priority, meaning that the

majority of proteins with experimental 3D-structures are in

the manually annotated UniProtKB/Swiss-Prot section. The

keyword ‘‘3D-structure’’ can be used to retrieve all the

corresponding UniProtKB/Swiss-Prot entries, and in com-

bination with other search terms permits to recover the

entries of interest.

Even when the structure of a protein has not been

determined, 3D-structures may be available for related

proteins, serving as templates for homology-based mod-

eling. Based on the assumption that high-quality models

can be obtained for proteins with at least 30% sequence

identity, homology-based modeling is possible for about

50% of all proteins in UniProtKB/Swiss-Prot [12, 13].

Access to automatically generated 3D-models is furnished

by database cross-references to the Swiss-Model Repos-

itory (SMR) [13] and ModBase [14], while links to HSSP

[15] help to find suitable templates. Obviously, the

quality of a model depends not only on protein similarity,

but also on human input, and thus in UniProtKB/Swiss-

Prot, a threshold of 40% sequence identity is set for

adding links to automatically generated models from

SMR.

Protein nomenclature: problems and solutions

Human beings are highly sociable and thrive on the

exchange of news and ideas. They are also adverse to

imposed rules and nomenclature systems, and yet, the use

of standardized vocabularies and nomenclatures greatly

facilitates sharing ideas and finding pertinent information.

Thus, organism-specific nomenclature systems for genes

and proteins have been created. For humans and verte-

brates, recommended gene names are based on the work of
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the HUGO gene nomenclature committee that assigns

unique, standardized, and user-friendly gene symbols to

human genes [16]. For microbes, the use of standard gene

names and ordered locus tags is common practice, but this

is unfortunately not the case for mammalian genes and

proteins, in spite of long-standing appeals for using stan-

dardized nomenclature [17, 18]. Many authors prefer to

coin their own names for the proteins that they are working

on, even when an official gene name already exists, with

the consequence that it is difficult to find all the informa-

tion related to a given protein. Worse, authors sometimes

name their favorite protein using a term that is already used

to design another protein or gene, or they choose names

that make it extremely hard to find relevant information,

e.g., the gene name ‘‘Light’’ used as synonym for mouse

Tnfsf14 (Q9QYH9). This goes without mentioning all

the proteins that are known as ‘‘p35’’, e.g., annexin A1

(P07150), sororin (Q96FF9), cyclin-dependent kinase 5

activator 1 (P61809), etc. Even people working in the field

may miss information about their favorite protein when it is

published using an alternative name. In an era where vast

amounts of data are generated, people need rapid and

accurate information on proteins they are not familiar with,

and the use of non-standard nomenclature makes it very

difficult to find all the relevant information.

To alleviate these problems and provide access to

essential information, UniProtKB/Swiss-Prot lists not only

the recommended names for genes and proteins, but also

the synonyms that are found in the literature. It is also

possible to retrieve protein entries using PDB identifiers or

sequence identifiers, such as AY037155 (for the nucleotide

sequence), or AAK67645 (for the protein sequence).

Indeed, more and more journals insist that authors cite a

sequence identifier from a public database, such as Uni-

ProtKB, EMBL-Bank [19], or GenBank [20], to indicate

unambiguously the protein and organism they used for

their experiments.

Finding relevant protein sequence information in a sea

of data

Currently, most protein sequences are deduced from the

nucleotide sequence of the corresponding gene or cDNA,

and proteins are often engineered in order to investigate a

particular phenomenon or to determine the 3D-structure of

an enzyme with bound substrate. Since the advent of

recombinant DNA technology, it is rare to study a protein,

or determine a 3D-structure, when the corresponding gene

has not been cloned. Exceptions exist, but these are mostly

directly-sequenced small proteins, e.g., snake venom neu-

rotoxin P59276. Reliable sequence information is an

essential basis for a large part of modern life sciences, and

access to high-quality protein sequence data is taken for

granted.

For eukaryotes, a single gene often gives rise to many

protein sequences, due to alternative splicing, alternative

initiation, or alternative promoter usage. Additional com-

plexity is created by polymorphisms and disease mutations.

Likewise, many similar sequences are submitted for pop-

ular microbial proteins. As a consequence, for a single

gene, many different sequences and many sequence data-

base entries may co-exist, making it difficult to keep an

overview and determine what is the most relevant

sequence. Different strategies exist to deal with this prob-

lem; for example, RefSeq [21] reduces this complexity

by displaying carefully chosen reference sequences. For

alternatively spliced genes, RefSeq provides separate

entries for individual isoforms. UniProtKB/Swiss-Prot

employs an alternative strategy and groups the protein

sequences derived from a single gene from a given

organism into a single entry. Differences are clearly doc-

umented, indicating whether these are due to alternative

splicing events, polymorphisms, or possible sequencing

errors. From one UniProtKB/Swiss-Prot entry, it is possible

to create all the splice variant sequences, so that these can

be analyzed independently. This helps in interpreting

BLAST searches, and in keeping the overview in a sea of

sequence data. Grouping all the submitted sequence data,

all the commonly used names, and all the corresponding

cross-references to the PDB archive in a single entry

facilitates the rapid retrieval of complementary information

associated with a protein.

For human, several groups and consortia endeavor to

find the most representative sequence for each protein-

coding gene, based on the genome sequence and infor-

mation about prevalent polymorphisms and isoforms, e.g.,

RefSeq and CCDS [22]. This also corresponds to the

goals of UniProtKB/Swiss-Prot regarding the protein

world, and constant efforts are being made to show both

the most relevant sequence and its variants. Database

cross-references are provided to resources dealing with

sequences and gene models, such as Ensembl [23] and

RefSeq, and sequences are constantly being reviewed in

collaboration with CCDS and Refseq. Information about

polymorphisms and human disease mutations is added

from scientific publications, and by integrating validated

polymorphisms from dbSNP [24]. For human and mouse,

the average entry contains, respectively, 6.8 and 4.3 cross-

references to EMBL, thereby ensuring the reliability of

the shown sequence, and providing information about

sequence variation due to alternative splicing events or

polymorphisms. Further information about human proteins

and defects that are linked to genetic diseases is found in

the Online Mendelian Inheritance in Man (OMIM) data-

base [25].
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Structured annotation helps find relevant information

When confronted with an unfamiliar protein, it is important

to have rapid access to a maximum of reliable information

about its function, the pathways it is involved in, known

interaction partners, its subcellular location, etc. This

includes information about the role of individual residues,

e.g., in binding a specific ligand or as active site residues in

catalysis. Another important angle is to identify proteins

that are still uncharacterized as targets for future research.

Finding information takes time, due to the fact that infor-

mation is dispersed in the scientific literature and in many

specialized databases. As a universal protein knowledge-

base, UniProtKB/Swiss-Prot combines carefully checked

protein sequences with detailed information from multiple

sources, including protein 3D-structures, and presents this

in a highly structured and user-friendly manner (Fig. 2).

The ‘‘general annotation’’ section indicates the function of

a protein, its subunit structure, subcellular location, possi-

ble involvement in human disease, and other such general

information. Information about the roles of individual

residues is found in the ‘‘sequence annotation’’ section,

where the use of dedicated ‘‘feature keys’’ simplifies

finding specific pieces of information, e.g., about residues

that bind metal ions or that are involved in catalysis.

Dedicated ‘‘feature keys’’ are also used to indicate the

extents of cleavable signal or targeting sequences of pro-

peptides, of the mature protein chains, or of particular

domains or repeats, as illustrated by human prostate-spe-

cific antigen KLK3 (P07288). Dedicated keywords, such as

‘‘Signal’’, ‘‘Secreted’’, ‘‘Serine protease’’, and ‘‘Zymogen’’

facilitate rapid classification and the retrieval of a set of

similar proteins. Experimental qualifiers are added when

specific information is propagated from a related entry or is

derived from a prediction. Thus, when the N-terminus of a

mature protein has been determined, as for KLK3

(P07288), no special comment is added. ‘‘By similarity’’

means that there is experimental evidence for a closely

related protein, while ‘‘Potential’’ indicates data derived

from the use of bioinformatics tools, e.g., for the prediction

of cleavable signal sequences or transmembrane segments,

where experimental evidence is not always available. This

distinction is important; analysis of experimentally deter-

mined signal sequences makes it possible to constantly

refine and improve prediction tools.

More and more of this information is presented under

the form of controlled vocabularies and ontologies, to

simplify data retrieval and computer-parsing. When inter-

preting data and building models, it is important to use

direct experimental evidence as far as possible, to know the

origins of the information, and to have access to the ori-

ginal data. Thus, UniProtKB/Swiss-Prot entries indicate the

publications from which the information was taken, and

provide database cross-references to specialized source

databases.

Rapid identification is essential, and key information is

already present in the lines devoted to the protein names.

This includes the ‘‘recommended name’’, the EC number

for enzymes, and commonly used ‘‘alternative names’’

found in the literature, plus abbreviations derived from the

recommended and alternative names. Likewise, keywords

and links to GO terms [26] permit a rapid classification of

proteins, regarding their molecular function, the process

they are involved in, or in which cellular component they

reside, and can be used to retrieve particular protein sets.

While GO terms are extremely popular and easy to use, one

should not forget to distinguish terms that are inferred from

direct assay (IDA) or from a traceable author statement

(TAS) from terms that are inferred from electronic anno-

tation (IEA), e.g., based upon InterPro matches. The fact

that a protein belongs to the pectinesterase family or con-

tains a pectinesterase domain does not necessarily mean

that it has pectinase activity, as exemplified by the E. coli

protein ybhC (P46130).

From primary to quaternary structure

The primary structure of a protein, i.e., its amino acid

sequence, contains all the information that is required to

determine its final 3D-structure, and hence its biological

activity [27]. While many small proteins fold as a single

unit, the tertiary structure of larger proteins is formed by

the assembly of several structural domains, motifs, or

repeats, a striking example being the 34,350-residue-long

scaffold protein titin (Q8WZ42). Two widely used dat-

abases, CATH [28] and SCOP [29], partition proteins into

domains and classify these in a hierarchical manner. CATH

classifies proteins according to class, architecture, topo-

logy, and homologous superfamily, while SCOP sorts

domains into classes, folds, superfamilies, and families.

Domains and repeats are the basic building blocks of

proteins, and the combination of several such modules

contributes to the evolution of functional diversity in pro-

teins [30]. These are catalogued in the InterPro database

[9], which integrates predictive models or ‘signatures’

representing protein domains, families, and functional sites

from multiple, diverse member databases (HAMAP [31],

Pfam [32], PROSITE [33], ProDom [34], SMART [35],

TIGRFAMs [36], PIRSF [37], SUPERFAMILY [38],

Gene3D [39], and PANTHER [40]). In all relevant

UniProtKB entries, the InterPro member databases are

cross-referenced in the ‘‘Family and domain databases’’

subsection. In addition, UniProtKB/Swiss-Prot indi-

cates the presence of particular domains or repeats in the

‘‘general annotation’’ section under the heading ‘‘sequence

From protein sequences to 3D-structures 1053



similarities’’. The exact extents of such domains, repeats,

and sequence motifs are displayed in the ‘‘sequence

annotation’’ section.

In addition to the many proteins and domains that have a

characteristic native fold, many others remain essentially

unstructured in the absence of their cognate ligand [41], as

shown for the major prion protein (P04156), alpha-synuc-

lein (P37840), and islet amyloid polypeptide (P10997).

Database cross-references to DisProt help to access infor-

mation about such unstructured proteins and domains [42].

Protein interactions are key elements in signaling path-

ways, and they can directly modulate protein function and

activity. Many protein–protein interactions are identified

by small-scale studies and are published in the scientific

literature. Considering the huge number of proteins in a

living cell, many of which are still uncharacterized, the

contribution of large-scale proteomics studies is vital to

identify protein complexes and chart protein interaction

networks. Thus, several groups have studied the interac-

tome of model organisms from yeast [43, 44] to

Caenorhabditis elegans [45] and human [46]. Interpreting

these findings and comparing results from different groups

is not easy, due to differences in design and evaluation of

the experiments, and because some studies aim to identify

Fig. 2 Extracts from the

UniProtKB/Swiss-Prot entry for

arylsulfatase A (P15289),

showing selected parts of the

General annotation, Sequence
annotation and Ontologies
section, and of one of the

summary pages that are linked

to individual ‘‘variant’’ lines.

The General annotation section

indicates the catalytic activity of

a protein, its subunit structure,

subcellular location, sequence

similarities, etc., and explains

post-translational modifications

and the involvement in human

disease. The Sequence
annotation section indicates the

roles of individual residues with

specific ‘‘feature keys’’

displaying the extents of signal

peptide and mature chain, active

site and metal-binding residues,

amino acid modifications and

natural variants. For each

variant, clicking on the amino

acid substitution leads to a

specific summary page

including, when available, data

from 3D-structure models.

Keywords and GO terms

complement the annotation
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binary interactions, while others investigate protein com-

plexes [47–49]. Novel and unexpected interactions may

represent artefacts, or may indeed shed new light on the

function of a protein. Data validation using several dif-

ferent technologies, and combination of interaction data

with studies on the subcellular location and coexpression of

putative interaction partners is essential. More and more

often, large-scale protein interaction data are deposited in a

public protein interaction database, using standardized

format and protein identifiers [50]. This is essential for

recovery of such information, and for comparing results

from different studies. Collaboration between interaction

databases, such as BIND [51], DIP [52], IntAct [53], and

MINT [54], aims to speed up data integration, including

data mined from the scientific literature, and to simplify

public access to these findings [50]. In UniProtKB, infor-

mation about protein interactions is gathered from the

scientific literature and shown in the ‘‘general annotation’’

section under the heading ‘‘subunit’’. There, one finds

detailed information about binary interactions between

proteins, but also about the composition of protein com-

plexes, and about factors, such as protein phosphorylation,

that modulate protein interactions. Manual evaluation

is time-consuming, and thus, in UniProtKB/Swiss-Prot,

additional information about binary protein interactions is

imported from the IntAct database, which contains both

manually annotated interactions from small-scale studies

and information derived from large-scale protein interac-

tion studies. The information is presented in the form of a

table under the heading ‘‘binary interactions’’, and links to

the IntAct annotation provide access to the experimental

details.

Ligand-binding sites and catalytic residues

A key issue for understanding the mode of action of a

protein is the identification of physiologically relevant

ligand binding sites and catalytic residues, and here protein

3D-structures are essential. Prior knowledge and human

evaluation are then required to identify ligands that are

physiologically relevant, whether these be metal ions,

nucleotides, or various organic compounds. Common

molecules, such as phosphate, citrate, or acetate, may, or

may not, occupy the binding sites of physiological sub-

strates or inhibitors. Likewise, inorganic ions may occupy

their cognate binding sites, but in other cases the observed

ionic interactions may simply reflect the buffer composi-

tion. Synthetic compounds may represent transition state

analogs or substances that are of pharmaceutical interest

and occupy physiologically relevant binding sites, or they

may be irrelevant buffer components. Likewise, heavy

metals may have been included for technical reasons, but

may also occupy physiologically significant binding sites,

as in the case of the cadmium-sensitive HTH-type tran-

scriptional regulator cmtR (P67731). In the PDB archive,

inorganic ions contribute the largest number of ligand

binding sites, with almost as many binding sites being

occupied by the large and heterogeneous class of synthetic

inhibitors and non-canonical biological molecules [55].

Dedicated tools facilitate retrieving this information from

PDB. There, scientists have access to all the data and can

extract information about the ligands they are interested in.

Public protein–ligand databases and tools, such as ReLi-

Base [56], Binding MOAD [57], and SRS 3D [58], help

find structures with particular ligands and analysis of

protein–ligand interactions. Likewise, PDBSum provides

access to excellent tools and links. Even so, recovering

relevant information takes time. In UniProtKB/Swiss-Prot,

annotators identify physiologically relevant ligands and

display information about their binding sites in text format.

Combining these data with complementary results from

other types of experiments, e.g., mutagenesis studies,

enhances the value of these findings. Dedicated ‘‘feature

keys’’ indicate residues that interact with specific classes of

ligands, such as metal ions, nucleotides, and other small

molecules, and such fine-grained annotation helps retrieval

of specific datasets. Likewise, a specific ‘‘feature key’’

indicates active site residues that are directly involved in

catalysis. There is no universally accepted definition of the

term ‘‘active site’’, and sometimes it is used in a very broad

sense, grouping residues that are directly involved in

catalysis with others that position the substrate, bind metal

cofactors, or simply line the active site pocket. In Uni-

ProtKB/Swiss-Prot, the term ‘‘active site’’ is reserved for

residues that are directly involved in catalysis, and dedi-

cated ‘‘feature keys’’ are used to indicate the roles of other

important residues, as illustrated by human arylsulfatase A

(P15289) (Fig. 2). Precise annotation rules ensure that the

same criteria are used throughout.

UniProtKB/Swiss-Prot annotation aims to show the

physiological situation, meaning that a ligand is named

‘‘ATP’’, or ‘‘substrate’’ even when a synthetic analog was

used. Frequently, several alternative names are used in the

literature for a single chemical entity, such as S-adenosyl-L-

methionine, which does not help find all the relevant

information. Using standardized vocabulary is one way to

guarantee the retrieval of information. The use of tools that

permit searches for specific chemical structures is another

solution, and PDB implements both. UniProtKB/Swiss-

Prot aims to use a single name for every ligand, with a

preference for terms found in CHEBI [59]. Likewise, the

use of generic ligand names, e.g., ‘‘substrate’’ for enzymes,

or ‘‘carbohydrate’’ in the case of lectins, helps find the

relevant information, and at the same time facilitates

propagation to other family members.
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The importance of post-translational modifications

While complex multicellular organisms, such as humans

or mice, can live with about 20,000 protein-coding

genes, the number of proteins is much higher, due to

alternative splicing events, but also due to post-transla-

tional modifications. Thus, the total number of human

proteins may be somewhere between 100,000 and

1,000,000 [60]. The chemical nature of post-translational

modifications is extremely diverse, ranging from proteo-

lytic cleavage to methylation, phosphorylation of specific

residues to the formation of disulfide bonds, and other

cross-links. This multitude of modifications results in an

equally wide spectrum of biological effects: targeting

proteins to specific cellular compartments, modulating

protein–protein interactions, or regulating protein func-

tion and turnover. For some enzymes, e.g., human

arylsulfatase A (P15289), post-translational modification

is essential for catalytic activity (Fig. 2). Currently,

large-scale proteomics studies make a major contribution

to the identification of protein glycosylation [61] and

phosphorylation sites, e.g., during mitosis [62]. Because

of their biological importance, UniProtKB/Swiss-Prot

prioritizes annotation of post-translational protein modi-

fications [63], using data from the scientific literature and

from protein 3D-structures.

As always, it is essential to present the information in a

user-friendly, simple, and accurate manner. General

information about post-translational modifications is shown

under the appropriate heading in the ‘‘general annotation’’

section, while the exact position and the chemical nature of

the modifications are shown in the ‘‘sequence annotation’’

section. Many of these modifications are also linked to

specific ontologies and keywords, e.g., ‘‘Glycoprotein’’ or

‘‘Phosphoprotein’’. Dedicated ‘‘feature keys’’, controlled

vocabularies, and strictly standardized annotation are

indispensable to show unambiguously the exact chemical

nature of each protein modification and the resulting mass

change, and this is achieved in collaboration with the

RESID database [64]. This database contains a compre-

hensive collection of pre-, co- and post-translational

protein modifications and cross-links. It provides system-

atic and alternative names, formulas, and structure

diagrams, and indicates the mass changes associated with

each modification. This in turn is required for the correct

identification of modified peptides by mass spectrometry.

Both RESID and UniProtKB/Swiss-Prot prioritize the

annotation of proteins involved in post-translational mod-

ifications. In UniProtKB/Swiss-Prot, the 480-odd classical

and up to 24 atypical protein kinases now believed to exist

in the human and mouse genome have been recently

updated and extensively annotated, providing access to up-

to-date and in-depth annotation of these proteins, plus

access to additional external resources by links from within

each entry [65].

Membrane-spanning domains: facts and predictions

Membrane proteins are essential for the manifold functions

exerted by biological membranes. They enable the ion

gradients required to drive energy metabolism, and permit

the uptake of nutrients and the export of signaling mole-

cules, waste products, and toxic compounds. Integral

membrane proteins serve as receptors that participate in

signaling cascades, and play important roles in host–path-

ogen interactions, both in invasion by pathogens and in

mediating defense responses. Membrane proteins consti-

tute about one-third of the human proteome, but they are

major targets of medical drugs, and the subject of numer-

ous pharmaceutical studies, as illustrated by the G-protein

coupled receptors (GPCRs) [66]. Thus, there is a huge

interest in elucidating the molecular mode of action of

membrane proteins. In spite of significant progress made in

the last few years, integral membrane proteins are still

severely underrepresented in structural databases. More

often, the structures of isolated soluble domains have been

determined, as exemplified by the mammalian toll-like

receptors. Still, more and more such structures are deter-

mined, e.g., the crystal structure of the E. coli rhomboid

protease glpG (P09391) [67, 68] or the solution structure of

human VDAC1 (P21796) [69]. Specialized databases, such

as the protein data bank of transmembrane proteins

(PDBTM) [70], help find membrane proteins of known

3D-structure.

In the absence of a 3D-structure, it is technically quite

difficult to determine which part of a protein is buried in a

membrane. Thus, for most proteins, putative transmem-

brane domains are predicted by bioinformatics tools. In

contrast to the situation for soluble domains, transmem-

brane domains are either all helical or all beta-strand, plus

eventual connecting loops. Numerous proteins cross the

membrane as beta-barrel structures, and protein 3D-struc-

tures have been essential for developing dedicated

prediction tools [71]. In UniProtKB/Swiss-Prot, these

proteins can be retrieved using the Keyword ‘‘Porin’’, e.g.,

E. coli maltoporin (P02943) and the mitochondrial voltage-

gated anion channel VDAC1 (P21796). Most prediction

tools have been developed to predict alpha-helical trans-

membrane domains, and they basically assume that a

hydrophobic stretch of the polypeptide chain crosses the

membrane by the shortest path, burying about 18–20 amino

acids in the membrane. This may be true for proteins with a

single transmembrane domain. For multipass membrane

proteins, helices frequently cross the membrane at a pro-

nounced angle, or are kinked, and so the path becomes
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longer, and a larger number of amino acid residues are

buried in the membrane. This is illustrated by GPCRs,

the largest group of integral membrane proteins with

over 1,000 family members in human. By now, structures

for several family members have been determined,

from bovine rhodopsin (P02699) to human ADORA2A

(P29274), ADRB2 (P07550), and turkey ADRB1

(P07700). These proteins all have an extracellular N-ter-

minus, seven transmembrane helices, and a cytoplasmic

C-terminus. Several of the transmembrane helices have

distinct kinks and are tilted up to 20� with respect to the

plane of the membrane.

For other integral membrane proteins, such as human

aquaporin-1 (P29972) or Clc channel family members

(P37019), the topology is highly complex. In addition to

the expected transmembrane helices, there are short in-

membrane helices that are followed by an in-membrane

loop structure, where the protein chain enters and leaves

on the same side of the membrane without crossing the

lipid bilayer. Again, a protein 3D-structure is the pre-

requisite for determining the membrane topology, and

manual evaluation is required to arrive at a correct result.

In the same vein, for leukotriene C4 synthase (Q16873)

and the arachidonate 5-lipoxygenase-activating protein

FLAP (P20292), two proteins involved in leukotriene

biosynthesis, prediction programs consistently detect

three transmembrane helices—the experimental structures

clearly show that there are four. Moreover, prediction

tools generally fail to detect transmembrane segments that

contain polar or charged amino acid residues, and yet this

is a common phenomenon for integral membrane proteins

that are involved in active or passive transport of

hydrophilic solutes. One extreme case is represented by

the voltage-gated potassium channels, such as Q9YDF8

and P62483, where a helical segment with a basic amino

acid residue in every third position is buried in the

membrane [72, 73].

Erroneous prediction of transmembrane domains is not

restricted to transporters and pore-forming proteins, as

exemplified by the caveolins (Q03135). The topology of

these proteins is known with both N-terminus and C-ter-

minus being in the cytoplasm [74]. In between is a

membrane-embedded ‘‘hairpin’’ structure that is interpreted

as a single transmembrane region by prediction programs,

leading to an erroneous prediction of the topology.

Establishing a correct prediction is further complicated

by the existence of certain proteins that on the one hand

exist as soluble, globular proteins, but on the other hand

can insert into lipid membranes, form pores and kill target

cells. Such proteins are essential constituents of the

complement membrane attack complex of cytolytic

T-cells (P07357, P02748), but are also produced by

microbes as cell-lysing toxins, e.g., Vibrio cholerae

hemolysin (P09545). Needless to say, predicting the

extent of transmembrane helices for such proteins is

extremely difficult, and 3D-structures are essential to

elucidate the conformation changes involved in membrane

insertion and pore formation [75, 76]. In short, predictions

of transmembrane segments should be accepted as highly

useful tools for generating a working hypothesis, knowing

that the prediction may differ from reality in several

essential points. Some transmembrane helices will be

predicted correctly, for others the extents will differ sig-

nificantly, and in other cases a transmembrane segment

will not be detected, or a hydrophobic stretch will be

erroneously predicted as transmembrane segment, mean-

ing that the predicted topology may be wrong. Taking

account of all the available experimental data is essential

to arrive at a correct result, and in this context protein

3D-structures are uniquely powerful sources of informa-

tion for establishing the correct transmembrane topology,

and the extents of the transmembrane segments. In

UniProtKB/Swiss-Prot, general information about the

subcellular location of a protein is shown in the ‘‘general

annotation’’ section, and the ‘‘sequence annotation’’ sec-

tion shows the precise details about the predicted or

experimentally validated topological domains. Manual

annotation of transmembrane domains based upon protein

3D-structures is time-consuming, but UniProtKB/Swiss-

Prot endeavors to use these data to show the correct

membrane topology.

The role of protein structures in health and disease

In spite of the low error rates associated with DNA repli-

cation, transcription, and translation, mutations occur with

a given low frequency. Large-scale alterations include the

deletion of entire genes and chromosomal cross-overs that

generate hybrid proteins, as shown for the proto-oncogene

tyrosine-protein kinase ABL1 (P00519), where defects due

to a chromosomal translocation with BCR (P11274) are a

cause of chronic and acute myeloid leukemia (CML and

AML) and of acute lymphoblastic leukemia (ALL). Protein

3D-structures show how this fusion leads to a constitutively

active kinase, and illustrate the mode of action of inhibitors

[77]. In UniProtKB/Swiss-Prot, the keyword ‘‘Chromo-

somal rearrangement’’ can be used to retrieve such

proteins. Likewise, the keyword ‘‘Proto-oncogene’’ indi-

cates proteins where mutations that alter its normal,

regulated activity or expression pattern convert the gene

product into a cancer-promoting oncogene. Such informa-

tion about disease mutations and their consequences is

displayed in the ‘‘general annotation’’ section. Cross-ref-

erences to the OMIM database provide access to further

information about such a disease.
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Missense mutations, i.e., the substitution of one base

for another, are the most common type of mutation [78].

The consequence then obviously depends on the nature

and the position of the amino acid substitution. Neutral

polymorphisms are most often conservative substitutions

in a non-essential part of the protein. On the contrary, any

mutation that affects a catalytic residue in an essential

polypeptide, or residues essential for proper protein

folding, may cause a disease phenotype. This information

is dispersed throughout the scientific literature and spe-

cialized databases. UniProtKB/Swiss-Prot, as a universal

protein knowledgebase, aims to facilitate access to

information about polymorphisms and disease mutations.

The data are gathered from the literature, and in the case

of polymorphisms, also from dbSNP. Each variant has its

own identifier and is linked to a summary page that dis-

plays the relevant information [79]. It describes the nature

of the mutation and shows it in the sequence context,

provides information about the disease that is linked to

this mutation, and lists relevant publications, and for

proteins where 3D-structures are available or modeling is

possible, it includes 3D-structure models and interactive

views of the mutated residue in its 3D environment

(Fig. 2).

Human disease can also be caused by protein misfolding

and misassembly that results in the formation of insoluble

fibrils and toxic aggregates, as shown for beta-2-micro-

globulin (P61769). Natural mutations that favor formation

of amyloid fibrils have been found in a number of proteins,

including the amyloid beta A4 protein (P05067), the prion

protein (P04156), transthyretin (P02766), and islet amyloid

polypeptide (P10997), and the keyword ‘‘Amyloid’’ can be

used to retrieve such proteins. 3D-structure analysis of

amyloid fibrils from several proteins reveals variations of a

common, characteristic cross-beta sheet structure [80].

Such fibrils can be formed by various short peptides, pro-

vided they have self-complementary sequences compatible

with the formation of a dry steric zipper. Typically, amy-

loidogenic peptides have low-complexity sequences with

residues of similar size, e.g., the sequence NNQQNY found

in yeast sup35 (P05453) [81]. Thus, the propensity towards

amyloidogenesis can be predicted [82]. Different mecha-

nisms for amyloidogenesis have been proposed, where

initially well-folded proteins would undergo structural

fluctuations and partial unfolding, leading to the exposure

of hydrophobic residues, while formation of helical ele-

ments in intrinsically disordered proteins would serve as

starting point for protein interactions and the formation of

aggregates [83–85]. In the case of transthyretin (P02766),

3D-structures have shown how small ligands can stabilize

the native tetrameric conformation and prevent amyloid

formation [86], indicating the way for a possible preventive

treatment.

The relationship between protein sequence, structure

and function

The protein sequence determines the native fold of a pro-

tein, and protein structure determines the function of a

protein, be this an enzyme, a cell-surface receptor, or a

cytoplasmic scaffolding protein. Thus, it is generally

assumed that similar protein sequences give rise to similar

3D-structures, and hence to similar functions [87–89]. This

paradigm generally holds true for orthologous proteins, and

provides the basis for the annotation of uncharacterized

proteins in newly sequenced genomes. In UniProtKB/

Swiss-Prot, annotators group orthologous proteins based on

sequence similarity and alignments. Information about

function, cofactors, subcellular location, protein–protein

interactions, etc., is then gathered from the scientific lit-

erature and from protein 3D-structures. When annotating a

group of related proteins, publications and 3D-structures

for orthologous proteins from several organisms are used to

establish annotation rules and determine the limits of

propagation. This approach is used for the annotation of

proteins from all branches of life, and is the basis of

automated and manual annotation using HAMAP family

rules [31]. The use of such automated annotation tools is

essential for keeping up with the constant arrival of freshly

sequenced microbial genomes, and new microbial protein

sequences. In November 2009, the HAMAP family data-

base comprised over 1,600 manually curated protein

families, providing the basis for the annotation of over

306,000 microbial proteins in UniProtKB/Swiss-Prot.

Obviously, the higher the degree of sequence identity, the

higher is the level of confidence, the determining factor

being the conservation of known key residues, such as

residues involved in catalysis or in ligand binding. Thus, it

is not a problem to assign the correct function to orthologous

housekeeping enzymes, such as cytosolic phosphoenolpyr-

uvate carboxylase, where the residues involved in catalysis

and substrate binding are absolutely conserved, from

bacteria (Q9AEM1) and archaea (Q9UY53) to vertebrates

(P05153) and human (P35558), in spite of overall sequence

divergence.

While one can infer function with high confidence when

there is only one copy of the gene for an essential protein,

much more caution is required when dealing with large

gene families, and when gene duplications have given rise

to paralogs. One gene copy may keep the ancestral function,

while other copies may evolve towards a new function, or

may accumulate deleterious mutations and become inactive

over time [87, 88, 90]. As long as the active site residues are

not mutated, the general function may be conserved, but the

substrate specificity may be somewhat different. In other

cases, family members may have lost the original activity,

in spite of high sequence similarity, and this even when the
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active site residues are conserved. Thus, within the sulfatase

modifying factor family, SUMF2 (Q8NBJ7) lacks enzyme

activity and serves as regulatory subunit that modulates the

activity of SUMF1 (Q8NBK3), even though essential resi-

dues are conserved [91]. Likewise, similar structures do not

guarantee similar function. Again, one has to distinguish

orthologs from paralogs, and that is not always easy. Thus,

5-hydroxyisourate hydrolases were first identified as trans-

thyretin-related proteins, before their enzyme activity was

established. Human transthyretin (P02766, 3bt0) and zeb-

rafish 5-hydroxyisourate hydrolase (Q06S87, 2h6u) have

35% sequence identity, and their structures are at first sight

almost identical. Both proteins are homotetramers, where

four subunits delimit a tunnel-shaped central cavity. Nev-

ertheless, this high degree of similarity is not a proof that the

proteins are orthologs and have similar functions. During

early vertebrate evolution, a duplication of the gene

encoding 5-hydroxyisourate hydrolase, an enzyme involved

in the breakdown of uric acid, gave rise to the gene for

transthyretin, a protein that transports thyroid hormone in

the blood stream. 5-hydroxyisourate hydrolase is found

from bacteria to mammals, and key residues are remarkably

conserved between prokaryotes and eukaryotes, but the

gene has been lost in the human lineage. Strikingly, the

residues that are necessary for 5-hydroxyisourate hydrolase

activity are not conserved in transthyretin [92].

So, precisely how much do you have to change a protein

before ending up with a different function? The answer is:

not at all, as exemplified by the duck eye lens crystallins,

where enzymes, such as argininosuccinate lyase (P24058),

have been recruited to contribute to the optical properties of

the crystallin [93]. Gephyrin (Q9NQX3) presents another

striking example of such a ‘‘moonlighting’’ protein: it

functions as microtubule-associated protein involved in

membrane protein–cytoskeleton interactions and is thought

to anchor the inhibitory glycine receptor (GLYR) to

subsynaptic microtubules, but is also involved in molyb-

denum cofactor biosynthesis and is required for the transfer

of molybdenum to molybdopterin. These examples serve as

a reminder that protein function depends critically on the

biological context, and that predictions based on sequence

or structural similarity have their limits. In the end, even the

best prediction cannot replace experimental characteriza-

tion. Then, databases, such as UniProtKB/Swiss-Prot, have

an essential role in integrating information and promoting

access to experimental data.

The role of protein 3D-structures for functional

characterization of novel proteins

Large-scale nucleotide sequencing has led to the prediction

of numerous novel protein-coding genes, and many of

these are entirely uncharacterized, and their function is not

known. Biochemical characterization is not easy, when

nothing is known about the physiological role of a protein.

Here, protein 3D-structures can help predict a possible

function for otherwise uncharacterized proteins. One initial

goal of the structural genomics initiatives was to provide

experimental protein structures for every type of fold, so

that high-confidence 3D-models could be generated for

most other proteins [12]. As a consequence, structural

genomics projects and individual scientists have targeted

proteins of biomedical interest, but also uncharacterized

microbial proteins with less than 30% sequence similarity

to already characterized proteins. This resulted in numer-

ous new 3D-structures for proteins both from mammals

and from microbial model organisms, notably E. coli,

M. tuberculosis and Bacillus subtilis, but also from archaea

and pathogenic viruses [94–98]. Since its beginnings,

structural genomics has made a large contribution to the

identification of novel folds by determining unique struc-

tures [12, 99, 100], but during the same period, the protein

universe has considerable expanded due to large-scale

sequencing of ever more microbial genomes. This yielded a

majority of proteins that can be assigned to known fami-

lies, but also a host of unique predicted proteins with very

low sequence similarity to already known protein families.

Structural genomics provides a starting point for fur-

ther structural and functional characterization, particularly

when combined with other data. This is exemplified by

the M. tuberculosis protein Rv1846c (P95163), a tran-

scription regulator of previously unknown function. Its

3D-structure showed strong similarity to S. aureus BlaI

(P0A042) and MecI (P68261), two repressors involved in

beta-lactam antibiotic resistance. In-depth functional

characterization of Rv1846c confirmed its function as

transcriptional regulator for genes involved in antibiotic

resistance analogous to BlaI, and it has been renamed

accordingly [101].

Other proteins are still waiting for biochemical charac-

terization. In some cases, it is possible to predict a general

function based on the structure and the genomic context;

for example, E. coli protein ydhR (P0ACX3), a putative

monooxygenase that may play a role in the metabolism of

aromatic compounds [102]. For other proteins, the presence

of a known domain, or of a fortuitously bound ligand, such

as NAD, can suggest a general function, in the latter case

that the protein may have enzyme activity and may func-

tion as an oxido-reductase. Still, numerous small microbial

proteins present novel folds without significant similarity

to characterized proteins, and their structures are devoid of

informative ligands. The prediction of at least an approx-

imate function for such uncharacterized proteins requires

careful manual evaluation of all the available data,

including sequence and structural similarities, genomic
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context, and regulation of gene expression, as well as data

and predictions about subcellular location and post-trans-

lational modifications. Strategies, prediction tools, and

their limitations have been the subject of several excellent

publications [87, 89, 103–105]. Tools that combine several

types of queries, such as ProFunc [106], facilitate this task,

but do not eliminate the need for characterization and

human effort. Often, predictions give clues towards several

possible functions, and in depth biochemical characteriza-

tion is required to establish the precise physiological role of

such proteins. Databases, such as UniProtKB and the PSI-

SGKB, have essential roles in promoting access to existing

experimental data and helping to identify new targets.

Conclusions

The present avalanche of sequence and structural data

requires central knowledgebases with rapidly accessible,

reliable, and up-to-date information that provide a solid

base for the interpretation of new results, and a starting

point for planning further experiments. Efficient harnessing

of knowledge derived from protein 3D-structures, and from

genetic and biochemical analyses, requires that these data

are easily accessible, and the value of experimental results

is optimized by the combination of complementary bio-

logical information. Exchange of data and active

collaboration between different types of databases, but also

between data producers and databases, is necessary. The

decreased cost of producing data and the technical progress

has led to an explosion in the amount of available data.

Now we need efficient means for handling these data and

making them publicly accessible.
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