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Abstract: Oxidative stress (OS) is an imbalance between free radicals/ROS and antioxidants, which
evokes a biological response and is an important risk factor for diseases, in both the cardiovascular
system and central nervous system (CNS). The underlying mechanisms driving pathophysiological
complications that arise from OS remain largely unclear. The vascular endothelium is emerging as a
primary target of excessive glucocorticoid and catecholamine action. Endothelial dysfunction (ED)
has been implicated to play a crucial role in the development of neurodegeneration in the CNS. The
retina is known as an extension of the CNS. Stress and endothelium dysfunction are suspected to be
interlinked and associated with neurodegenerative diseases in the retina as well. In this narrative
review, we explore the role of OS-led ED in the retina by focusing on mechanistic links between OS
and ED, ED in the pathophysiology of different retinal neurodegenerative conditions, and how a
better understanding of the role of endothelial function could lead to new therapeutic approaches for
neurodegenerative diseases in the retina.
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1. Introduction

Oxygen, which plays a crucial role for living organisms, is also considered a double-
edged sword. It can be actively involved in signal transduction, gene transcription, and
multiple cellular activities, but it also generates harmful effects on biomolecules in the form
of free radicals. Highly reactive atoms or molecules with one or more unpaired electrons
in their outer shells can form radicals when oxygen interacts with certain molecules [1],
such as the hydroxyl radicals (HO•), superoxide radical anion (•O2

−), hydroperoxyl
radicals (HO2•), and peroxyl radicals (ROO•). Free radicals can behave as oxidants or
reducers in cells by accepting or losing an electron [2]. Reactive oxygen species (ROS) and
reactive nitrogen species (RNS) refer to reactive free radicals and nonradical derivatives
of oxygen and nitrogen, respectively. ROS/RNS can be produced by all aerobic cells [3].
“ROS” stands for both oxygen free radicals and nonradicals (H2O2, 1O2, etc.) that can
be conveniently converted to free radicals [4–7]. ROS/RNS are not only associated with
energy extraction, immune defense, and signaling processes but may also generate harmful
effects [8]. Under normal circumstances, homeostasis ROS act as secondary messengers in
various intracellular signaling pathways of the cardiovascular system [9]. Nevertheless,
once the production of ROS/RNS and other oxidants exceeds the antioxidant defense, they
may trigger cellular oxidative stress (OS) [10]. OS may contribute to subsequent oxidative
modifications or damage to lipids, proteins, and DNA, with deleterious consequences
for metabolism and cardiovascular disease [9], which is considered to be responsible for
the pathogenesis of numerous age-related neurodegenerative diseases. ROS contribute
significantly to the degeneration of neuronal cells by regulating the function of biomolecules.
ROS involved in neurodegeneration includes hydrogen peroxide (H2O2), superoxide anions
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(O2
−), and highly reactive HO•. O2

− is generated by adding an electron to oxygen, and
several mechanisms exist to generate superoxide in vivo [11]. Moreover, electron transport
chains in the inner membrane of mitochondria reduce oxygen to water. During this process,
free radical intermediates are produced, which are usually tightly bound to the components
of the transport chain. However, some electrons keep leaking into the mitochondrial
matrix, which leads to the formation of superoxide [12,13]. In addition, the vascular
endothelium probably produces O2

− continuously to neutralize nitric oxide, other cells
generate superoxide to regulate cell growth and differentiation, and phagocytes produce
superoxide during oxidative bursts [14,15]. The results of a systematic review and meta-
analysis of randomized controlled trials indicated that markers of oxidative stress were
increased in glaucoma overall (effect size = 1. 64; 95% CI 1.20–2.09), which ranged from an
effect size of 1.29 (95% CI 0.84–1.74) in serum to 2.62 (95% CI 1.60–3.65) in aqueous humor.
Although antioxidative stress markers in serum were decreased (effect size = −0.41; 95% CI
−0.72 to −0.11), several were increased in the aqueous humor (superoxide dismutase, effect
size = 3.53; 95% CI 1.20–5.85; glutathione peroxidase, effect size = 6.60; 95% CI 3.88–9.31).
In addition, the increase in some antioxidant markers is probably a protective response of
the eye to oxidative stress [16].

Endothelial cells (ECs) form the innermost lining of the vasculature. In the retina, ECs
tightly interact with other cells within the neurovascular system to regulate blood–retina
barrier integrity, neurovascular coupling, immune signaling, and neuronal
metabolism [17–21]. While endothelial function plays a key role in the homeostasis of
retinal neurons, the endothelial function can be impacted by increased OS [22–24]. Special
receptors on EC membranes initiate intracellular signal cascades in response to agonists
that activate specific receptors or changes in cell surface shear stress caused by changes
in blood flow rate. Gap junctions allow crosstalk between adjacent ECs, thereby allowing
the transmission of intracellular reactions. Once activated, these cascades trigger the re-
lease of potent vasodilator substances, such as nitric oxide (NO) and prostaglandins and
vasoconstrictors, such as endothelin and endothelium-derived vasoconstrictors [25–27].
At low concentrations, ROS act as vasodilators, but at high concentrations, it may result
in vascular dysfunction [28]. Systemic oxidative stress is associated with reduced ocular
hemodynamic flow [29], which is linked to vascular permeability. Significantly higher
endothelin-1 blood levels have been found in patients with POAG [30]. The association
of nitric oxide with glaucoma has been previously reported [31]. Therefore, this review
focuses on the impact of OS on endothelial function and the roles of endothelial dysfunction
(ED) in retinal neurodegenerative diseases.

2. The Role of Endothelial Function in Human Diseases

Endothelial cells are located in the intimal layer of the vascular wall, making up about
1.5% of the total body weight [32–34]. Over the years, the endothelium has been recognized
as more than a simple barrier to boundary the vascular wall [32,35]. As the innermost
layer of blood vessels, the endothelium is considered to be a dynamic, adaptive interface
between the blood circulation and the internal environment. The vascular endothelial cells
are subjected to hemodynamic forces [36]. At the same time, ECs also send out various
necessary signals and regulate vascular permeability by producing many messengers,
which have good biological functions [37,38]. The biomechanical signals from blood and
surrounding tissues provide selective barriers for the permeability of macromolecular
substances while separating blood components from vascular wall matrix and tissues.
Depending on the needs of the tissue, endothelium regulates vascular tension and changes
vascular diameter by releasing vasodilator molecules, such as prostacyclin (PGI2) and
vasoconstrictor molecules, such as endothelin and thromboxane A2 [39]. In addition, ECs
also regulate blood fluidity by secreting anticoagulants, procoagulants, and fibrinolytic
substances, control angiogenesis by producing angiogenic growth factors, and regulate
acute and chronic by expression of cytokines, chemokines, and adhesion molecules. The
endothelium responds to hemodynamics through mechanical sensors [40]. Moreover, ECs
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can also reduce intracellular apoptosis by integrating neurohumoral and inducing adaptive
signaling pathways [41]. On all counts, the endothelium has anti-inflammatory and anti-
coagulant effects, contributes to the anti-thrombus formation, and controls permeability,
endothelium and muscle growth (reshaping blood vessel), and vasoconstriction.

3. Endothelium Dysfunction

The endothelium plays a significant role in regulating vascular tone through the
synthesis and release of a range of endothelium-derived diastolic factors, including the
vasodilators prostaglandins, NO, and endothelium-dependent hyperpolarizing (EDH) fac-
tors, as well as endothelium-derived contractile factors [42,43]. Endothelium dysfunction
is defined as an imbalance in the production of vasodilators and vasoconstrictors, which
predisposes the vascular system to a prothrombotic and proatherogenic phenotype [44]. ED
is primarily caused by reduced production or weakened activity of endothelial-derived re-
laxing factors, which are associated with a multitude of diseases, including atherosclerosis,
diabetes, coronary artery disease, hypertension, hypercholesterolemia, and hyperhomo-
cysteinemia (HHcy) [45,46]. ED has a multitude of distinguishing features, including
disruption of vascular tone, redox imbalance, increased inflammatory response within the
vessel wall [47], vasoconstriction (due to the impaired activity of vasodilator mediators),
overexpression of leukocyte and platelet adhesion molecules, platelet activation (the se-
cretion of active substances, increased von Willebrand factor and tissue factor), mitosis,
pro-oxidation, impaired coagulation (anticoagulant factors such as heparin decreased),
atherosclerosis, and thrombosis [44,48–50].

NO has a multi-biological regulatory role, including vascular smooth muscle cell relax-
ation and proliferation, leukocyte adhesion, angiogenesis, platelet aggregation, thrombosis,
vascular tone, and hemodynamics, as well as inhibiting the production and/or activity
of other vasoactive factors such as prostaglandins and endothelin-1 (ET-1) in response
to vasoconstrictors [51]. When the NO-mediated reaction is functionally impaired, PGI2
and/or EDH contribute to functional compensation. Subsequently, as the ability of ECs
to release NO gradually decreases, the production and activity of endothelium-derived
cyclic oxygenase-dependent contractile factor (EDCF) and/or ET-1 becomes prominent,
facilitating vasoconstriction. Simultaneously, due to the weakened protective effect of NO,
the expression of endothelial cell adhesion molecules (e.g., vascular cell adhesion molecule
1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1)) is enhanced, which promotes
leukocyte adhesion and infiltration. All these factors would result in the failure of the
endothelium to perform its basic activities (i.e., regulation of vasodilation and/or cellular
redox homeostasis), as well as decreased NO production is associated with damage to
vascular smooth muscle dilation [52] (Figure 1).
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4. Oxidative Stress and Endothelium Dysfunction

Oxidative stress (OS) occurs when there is an imbalance between ROS production
and the antioxidant defense system [53]. NO is the primary endothelial regulator of local
vascular tone, which is essential for maintaining vascular homeostasis in the endothelium.
NO bioavailability decreased due to O2

−-reducing NO production and/or increasing NO
degradation, which marks the beginning of ED [54]. The free form of NO is hazardous
to biomolecules. In addition, xanthine oxidase (XO), nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase, and uncoupled endothelial NO synthase (eNOS) as potential
sources of enzymes may be responsible for increased ROS [55]. Mitochondria [56] react with
membrane-related NADPH oxidase [57] to produce ROS. The increase in ROS production
will dwindle the bioavailability of NO, thus promoting vasoconstriction, weakening the
inhibition of platelet aggregation, as well as inducing the adhesion between neutrophils
and ECs, while NO reacts with ROS to produce a strong oxidant—peroxynitrite (ONOO-).
When NO reacts to peroxynitrite, NO no longer has normal physiological functions. These
changes will provoke ED and perhaps cause alteration in intracellular signal pathways
and transcription factor-mediated gene expression in ECs. OS caused by reduced NO
production or increased ROS plays an important role in ED [58,59]. OS increases the
phosphorylation of tyrosine kinases, such as focal adhesion kinase, post protein, and p130
cas in ECs, accompanied by increased stress fiber formation and neutrophil-endothelial cell
adhesion [60,61]. Therefore, increased ROS and RNS levels and vascular OS is associated
with ED [62,63]. The persistence of this condition probably induces endothelial contraction
and death, increased permeability, and exposure of basement membrane components,
which further amplifies the situation of vascular inflammation [48,62,64], causing significant
damage to cells.

Vascular ROS act as significant intracellular signaling messengers, which could reg-
ulate vascular contractility, cell growth, and vascular remodeling [65]. Under normal
physiological conditions, the majority of hazardous ROS are eliminated by the cellular
antioxidant system. However, OS can trigger the pathogenesis of associated cardiovascular
diseases [66]. Increased ROS production in blood vessels may result in pathologies associ-
ated with hypercholesterolemia, hypertension, diabetes, and aging [57]. It is well known
that excess ROS contribute to lipid peroxidation and oxidative modifications of proteins and
nucleic acids, which can cause ED [67]. OS and correlated oxidative damage are mediators
of vascular damage and inflammation in numerous cardiovascular diseases, particularly
in the setting of complications such as hypertension, hyperlipidemia, and diabetes [68,69].
The main source of OS in the arterial wall is NADPH oxidase (NOX) [70], which is involved
in the production of ROS and the scavenging of NO [71]. In the endothelium, increased
levels of ROS will reduce the bioavailability of NO, leading to vasoconstriction and ED.
Other sources of ROS in the vascular wall include the mitochondrial respiratory chain and
other enzymatic reactions, such as cyclooxygenases (COX), xanthine oxidase (XO), lipoxy-
genases (LOX), cytochrome P450, and dysfunctional eNOS [72–74]. Furthermore, the blood
vessel wall is enriched with multiple enzymes, which could alleviate the ROS overload and
act as an antioxidant defense system. These bio-enzymes include superoxide dismutase
(SOD), catalase, glutathione peroxidase (GPx), hemoglobin oxygenase (HO), thioredoxin
peroxidase (TPX), paraoxonase (PON) [72,75,76]. OS can be responsible for the oxidation
of low-density lipoprotein (LDL), which inhibits the release of endothelium-derived NO
or closely related molecules even more than natural or unoxidized LDL [24]. In addition,
oxidized LDL (ox-LDL) exerts a multitude of biological effects, such as cytotoxicity to ECs,
chemotaxis to monocytes, and the accumulation of inflammatory cells and ROS in the
vascular system [77,78].

Interestingly, studies have confirmed that correcting hypercholesterolemia or treating
cell cultures and experimental animals with SOD or SOD simulants can reduce vascular
O2•-levels and restore endothelial function [79]. It has been reported that XO inhibitors
hydroxypurinol or allopurinol can improve ED in hypercholesterolemia [80]. Therefore,
XO may become a significant source of ROS production in vascular ECs and is related to ED
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in some vascular diseases. Moreover, the reduction of NO-dependent dilation induced by
OS and alterations in vascular smooth muscle function directly contribute to microvascular
dysfunction in major depressive disorder (MDD) [81].

La Favor et al. [82] exploited a novel microdialysis technique that allows simulta-
neous measurement of ROS levels and microvascular endothelial function in vivo. They
discovered that elevated levels of NADPH oxidase-derived ROS in obese subjects were as-
sociated with microvascular ED, such as impaired acetylcholine-induced increases in blood
flow. Interestingly, Gray et al. [83] demonstrated that NADPH oxidase 4-derived H2O2
provides vasoprotective effects in a mouse model of diabetic atherosclerosis. However,
Gutterman’s laboratory has proposed a new mechanism for microvascular dysfunction, in
which various atherosclerotic conditions and metabolic disorders lead to the conversion of
endothelium-dependent relaxing mediators from NO to H2O2 (ceramide-induced reduction
in mitochondrial telomerase activity has been shown to cause this conversion) [84,85]. As a
consequence, the pathological levels of H2O2 act similar to a double-edged sword, which
results in microvascular dysfunction and the development of coronary artery diseases [86].
Deficiency of eNOS caveolin-1 negative regulator or overexpression of eNOS will dis-
rupt the physiological balance of EDH factors (e.g., NO, H2O2) in the microcirculation,
which contributes to the overproduction of endothelial NO in mice with cardiovascular
lesions [87]. Among the redox-regulated proteins, endothelial thioredoxin reductase 2
has been demonstrated to play a role in maintaining the healthy endothelial function [88],
while peroxisome proliferator receptor-γ coactivator 1α is also considered to be a princi-
pal regulator of endothelial function, including the prevention of OS, inflammation, and
atherosclerosis [89].

Hyperhomocysteinemia (HHcy) is an independent risk factor for cerebrovascular,
cardiovascular, and peripheral arterial disease [90]. HHcy-related ED is a complex mecha-
nism, whereby HHcy increases ROS production by a variety of mechanisms (e.g., HHcy
autoxidation), which induces OS and an inflammatory state triggering the secondary car-
diovascular disease, including atherosclerosis, hypertension, and neurodegeneration [91].
HHcy could cause an imbalance between antioxidant and oxidative enzymes by inhibiting
SOD or activating NADPH oxidase [92]. Furthermore, auto-oxidation of the free thiol
group of HHcy will generate H2O2, ROS, HO•, and O2

−, with which NO could react to
compose ONOO-, thereby reducing the bioavailability of NO [93]. Both in vitro and in vivo
experiments have reported that HHcy can block GPx activity and HO-1, which promote
ROS accumulation and exacerbate damage to ECs [94,95]. In addition, high plasma levels
of HHcy induced apoptosis in ECs, due to endoplasmic reticulum stress, and increased
ROS production and HHcy–thiolactone production [96].

Cells perceive and respond to the mechanical properties and cues of the microenviron-
ment [96,97]. For example, this “mechanical sensing” allows vascular ECs to change the
morphology, function, and gene expression in response to shear stress [98,99]. Mechanical
stress, such as periodic tensile or shear stress, also stimulates NADPH oxidase activity in
ECs [100,101]. However, elevated blood pressure (BP) itself can trigger damage to endothe-
lial function and vascular remodeling [102]. The chronic presence of high BP was found
to elicit increased arterial superoxide production by activating directly a protein kinase
(PK) C-dependent NADPH oxidase pathway but also, in part, via activation of the local
renin–angiotensin system [103].

5. The Role of Endothelial Dysfunction in Neurodegenerative Diseases in Central
Nervous System

ED plays a key role in the pathogenesis of insufficient blood supply to various organs
and tissues, including the brain [104], heart [105], and eyes [106], resulting in increased
blood pressure [107,108] and insulin resistance [109]. Many neurodegenerative diseases
have been shown to have pathological changes in ED, such as atherosclerosis, cancer, sepsis,
Alzheimer’s disease (AD), and multiple sclerosis [110]. ED, at the junction of blood vessels
and peripheral nerves, is involved in a variety of diseases through different mechanisms,
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including decreased levels of NO, increased expression of pro-inflammatory factors, and
changes in endothelial cell permeability [111]. ECs in the brain form the blood–brain
barrier (BBB), which strictly regulates the solute exchange between the vascular lumen
and brain parenchyma. The destruction of BBB leads to the accumulation of blood-derived
neurotoxic proteins (such as fibrinogen, thrombin, hemoglobin, ferritin, and free iron) in
the brain parenchyma, which leads to neurodegenerative changes [112,113]. The patients
and animal models of AD have demonstrated that the decrease in BBB tension is due
to Aβ accumulation, leading to dysfunction of ECs and decreased expression of tight
junction proteins in brain ECs [114–118]. Recently, some studies have shown that brain
microvascular ECs produce amyloid-β peptide, which is perhaps a potential endothelium-
dependent pathway that participates in Aβ deposition [119]. A potential pathway is the
activation of proinflammatory cytokines induced by stress, which have been shown to
induce the expression of adhesion molecules on the surface of vascular ECs [120].

6. The Pivotal Role of Endothelium Underlying Pathophysiology of
Neurodegenerative Diseases in Retina

The central retinal artery provides nutrition and oxygen for neurons in the retina [121].
ECs are arranged in the lumen of microvessels as physical barriers between blood and
surrounding tissues and play key roles in regulating retinal homeostasis [122]. Pericytes
wrap around retinal capillaries and regulate the function of ECs [123]. In addition to main-
taining the structural support of the vascular wall, peripheral cell coverage also regulates
the expression of tight junction protein in adjacent ECs [123]. The basement membrane
separates pericytes from ECs; however, the pores in this membrane matrix allow the for-
mation of intercellular junctions between pericytes and ECs [124,125]. Outer blood–retinal
barrier (oBRB) composed of retinal pigment epithelium (RPE) and internal BRB (IBRB)
consisting of ECs protect retinal nerve cells from harmful molecules in circulation [126].
Tight junctions between adjacent RPE cells and ECs play regulatory roles in the strict control
of fluid and solute crossing the blood–retinal barrier, which prevents toxic molecules and
plasma components from entering the retina [126]. In a recently conducted meta-analysis
investigating levels of oxidative stress markers and antioxidants in patients suffering from
conical cornea for the first time, the authors reviewed 36 articles, published until 1 June
2020, with a total of 1328 conical cornea patients and 1208 healthy controls. Compared
with healthy controls, patients with keratitis presented with an overall increase in oxidative
stress markers (standard mean deviation (SMD) = 0.94; 95% confidence interval (95% CI)
0.55–1.33), accompanied by a decrease in antioxidants (−0.63, −0.89 to −0.36), which re-
sulted in a significant decrease in total antioxidant capacity/status (−1.65, −2.88 to −0.43).
Moreover, oxidative stress markers were found to increase in stromal cells, while antioxi-
dants were reduced in endothelial cells [127]. In order to achieve normal visual function,
highly coordinated activities of neurons, glial cells, microglia, and microvessels are essen-
tial. Ocular blood flow is adjusted by NO secreted by ECs and efferent nitroergic neurons.
ED impairs ocular hemodynamics by reducing the bioavailability of NO and increasing
the production of ROS. On the other hand, the production of NO by inducible nitric oxide
synthase (iNOS) under the action of inflammatory mediators leads to neurodegeneration
and cell apoptosis, which initiate serious eye diseases (Figure 2).
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The endothelium-derived NO possesses multiple complex physiological functions, such
as inducing vasodilation, reducing vascular resistance, decreasing blood pressure, inhibiting
platelet aggregation and adhesion, inhibiting leukocyte adhesion and migration, reducing
smooth muscle hyperplasia, and preventing atherosclerosis. Shear stress, vascular endothelial
growth factor (VEGF), insulin, or bradykinin can induce the phosphorylation of eNOS through
phosphatidylinositol-3 (PI3) kinase and downstream serine/threonine–protein kinase Akt
(protein kinase B), which leads to the enhancement of NO synthesis [128–130]. In the bovine
retina, shear stress stimulates NO release from bovine retinal ECs monolayer [131]. VEGF
increases retinal endothelial cell permeability through an eNOS dependent caveolae cell
transport mechanism [132] or directly increases NO release from bovine choroidal ECs [133].
Michelson et al. [134] demonstrated that NOS-dependent vascular tension in retinal arteries
and capillaries of patients with early hypertension is impaired. iNOS elicited a large amount
of NO production is related to inflammatory response, as well as increased OS caused by
hyperglycemia and ED, which is involved in the pathological changes in the retina and
associated tissues in glaucoma and diabetic retinopathy. In a double-blind crossover study
of healthy male subjects, Dallinger et al. [135] revealed that infusion of L-arginine (rather
than D-arginine) increased choroidal pulsatile blood flow, mean ophthalmic artery velocity,
and renal plasma flow, and that insulin infusion enhances vasodilation of L-arginine. They
concluded that this stereo-specific vasodilation may be due to the promotion of membrane
transport of L-arginine, which enhances the formation of intracellular NO or increases the
bioavailability of NO. Intravenous injection of L-arginine can reduce mean arterial pressure
and increase choroidal blood flow and retinal vein blood flow in healthy volunteers [136].

In healthy conditions, most ECs remain static and participate in the maintenance of
barrier function and tissue homeostasis [137]. However, hyperglycemia induces OS in
retinal endothelial cells (RECs), which further activates and interferes with a variety of
metabolic pathways, leading to the self-perpetuating cycle of harmful OS and promoting
the development of DR [138,139]; the ultimate consequence is to reduce the integrity of
the blood–retinal barrier [140]. The OS of REC induced by hyperglycemia results from
mitochondrial dysfunction [141]. Under the condition of hyperglycemia, the excessive
production of mitochondrial ROS leads to mitochondrial disruption and dysfunction,
which changes REC metabolism into hyperglycemia and reduces the ability of REC to
maintain DR barrier function and tissue homeostasis [142,143]. Delles et al. [144] propose
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that retinal vascular endothelial function is impaired in young patients with early primary
hypertension, but angiotensin AT1 receptor blockade can improve its function. However,
several studies have shown that vitamins could affect the process of common eye diseases.
Vitamins A, B9, C, and E are well-known antioxidants that prevent age-related eye diseases,
for instance, cataracts and age-related macular degeneration [145,146]. A meta-analysis
reported that dietary intake of vitamins A and C was beneficially correlated with OAG;
however, the results of studies on the levels of vitamins in blood failed to provide a
definitive relationship with OAG [147].

7. Schlemm’s Canal and Glaucoma

Elevated intraocular pressure (IOP) is a major risk factor of retinal ganglion cell
degeneration in glaucoma, which is caused by increased resistance to the outflow of
aqueous humor (AH). Trabecular meshwork (TM) and Schlemm’s canal (SC) endothelial are
key regulators of outflow resistance. In glaucomatous eyes, the TM–SC pathway is damaged
by accumulated oxidative stress arising from the microenvironment, vascular dysregulation,
and aging [148]. As the final filtration barrier of the AH outflow pathway, stiffness of SC
endothelia are crucial to the regulation of aqueous humor outflow resistance and control
of IOP [149]. Schlemm’s canal endothelial cells share morphological characteristics and
cell marker expression with both lymphatic and venous endothelial cells [150]. Similar
to that of other ECs, Schlemm’s canal ECs also respond to changes in substrate stiffness
or architecture. In particular, glaucomatous SC cells have an exaggerated and possibly
pathological response to increased substrate stiffness, compared with normal SC cells [149].
They alter their expression of genes implicated in outflow obstruction and glaucoma in
response to changes in substrate stiffness, particularly connective tissue growth factor
(CTGF), an agent which has been shown to cause ocular hypertension and glaucomatous
optic neuropathy in mice [151].

Thus, targeting SC cell stiffness seems to be a promising antiglaucoma therapy to
decrease outflow resistance at the location responsible for regulating the majority of outflow
resistance. Drugs targeting Rho-kinase inhibition, actin depolymerization, and nitric oxide
were recently introduced to reduce SC cell stiffness and reduce IOP [152–155].

8. Conclusions

It is widely accepted that endothelial dysfunction plays a crucial role in the devel-
opment of neurodegeneration. There is a potential pathological link between oxidative
stress, endothelial function, and neurodegenerative diseases of the retina. A better un-
derstanding of the roles of endothelial function may provide new treatments for retinal
neurodegenerative diseases.
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