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Tissue-type plasminogen activator is a homeostatic 
regulator of synaptic function in the central nervous 
system

Introduction 
Tissue-type plasminogen activator (tPA) is a serine pro-
teinase that in the intravascular space has a fibrinolytic role 
mediated by its ability to catalyze the conversion of plas-
minogen into plasmin (Camiolo et al., 1971; Collen and 
Lijnen, 1991). Earlier studies found that tPA is abundantly 
expressed in the brain (Sappino et al., 1993), and although 
it was initially believed that endothelial cells were the only 
source of this tPA, later work indicated that tPA is also 
found in glial cells (Siao et al., 2003) and neurons (Nicole 
et al., 2001; Yepes et al., 2009). Since then tPA has been 
implicated in a plethora of functions in the brain including 
the development of synaptic plasticity (Qian et al., 1993; 
Madani et al., 1999; Oray et al., 2004; Yepes et al., 2016), 
the detection and adaptation to metabolic stress (Wu et al., 
2012), modulation of blood-brain barrier (BBB) permea-
bility (Yepes et al., 2003), and remodeling of the extracellu-
lar matrix (ECM) (Berardi et al., 2004).

A further advancement in the understanding of tPA’s 

function in the brain was attained by the observation that 
its release from the presynaptic terminal of glutamatergic 
neurons (Gualandris et al., 1996) triggers the synaptic 
vesicle cycle in cerebral cortical neurons (Wu et al., 2015). 
More specifically, it was discovered that membrane depo-
larization induces the rapid secretion of tPA at extrasyn-
aptic sites, and that by promoting the recruitment of the 
cytoskeletal protein βII-spectrin to the active zone (AZ), 
tPA enlarges the synaptic release site. At the same time, it 
was found that tPA also induces the phosphorylation of 
synapsin I, a protein that clusters glutamate-containing 
synaptic vesicles (SVs) in the reserve pool of the presyn-
aptic terminal. This effect is of pivotal importance for 
neurotransmision, because phosphorylation of synapsin I 
at serine 9 allows SVs to translocate from the reserve pool 
of synaptic vesicles to the synaptic release site, already en-
larged by tPA, where they release their load of excitatory 
neurotransmitters into the synaptic cleft (Wu et al., 2015). 
Remarkably, this effect does not lead to depletion of SVs 
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from the presynaptic terminal, because tPA also promotes 
their endocytic retrieval from the presynaptic membrane, 
via calcineurin-mediated dynamin I dephosphorylation 
and the formation of the actin scaffold necessary for the 
newly formed SVs to re-enter the synaptic vesicle cycle (Wu 
et al., 2015).

These observations originated two important questions 
about the synaptic effect of the release of tPA from the 
presynaptic terminal of cerebral cortical neurons: first, if 
tPA promotes the exocytosis and endocytic retrieval of 
glutamate-containing SVs, then is tPA an inductor of ex-
citotoxicity by perpetuating the synaptic release of gluta-
mate? Second, does tPA released from the axonal bouton 
have an effect on the postsynaptic terminal?

Effect of tPA on the Composition of the 
Post-Synaptic Density 
To address these questions, we used electron microsco-
py to study the effect of tPA on the postsynaptic density 
(PSD), an electron-dense structure attached to the post-
synaptic terminal that undergoes rapid changes in mo-
lecular composition, structure, and function in response 
to variations in synaptic activity (Dosemeci et al., 2001). 
We found that either treatment with recombinant tPA 
(rtPA) or the release of neuronal tPA is followed by a rap-
id increase in the thickness of the PSD (Jeanneret et al., 
2016). Then we used phosphoproteomics and biochemi-
cal studies with extracts of the PSD to identify the mech-
anism underlying this effect. Surprisingly, we found that 
treatment with rtPA in vitro or the endogenous release 
of neuronal tPA prompted by a brief episode of cerebral 
ischemia in vivo, causes a rapid and sustained increase in 
the expression of Ca2+/Calmodulin-dependent protein ki-
nase IIα phosphorylated at T286 (pCaMKII) in the PSD.

CaMKIIα is a serine-threonine kinase that is highly 
abundant in the PSD (Petersen et al., 2003). The influx 
of calcium into the post-synaptic terminal of the active 
synapse leads to calcium/calmodulin-mediated CaM-
KIIα activation that is followed by its translocation from 
the postsynaptic actin cytoskeleton to the PSD where it 
binds to N-methyl-D-aspartate receptors (NMDARs). 
Intriguingly, upon its phosphorylation at T286, CaMKIIα 
remains active even after calcium concentrations fall to 
baseline levels (Miller and Kennedy, 1986; Lisman et al., 
2012). This “autonomy” has led many to postulate CaM-
KIIα as a “memory molecule” with a pivotal role in learn-
ing and the development of synaptic plasticity (Lisman 
et al., 2012). Importantly, it was shown that tPA-induced 
CaMKIIα phosphorylation and accumulation in the PSD 
is independent of its effect on the presynaptic release of 
glutamate (Jeanneret et al., 2016).

Despite the relevance of these events for the development 

of synaptic plasticity under physiological conditions, it is 
also important to note that several groups have reported 
that cerebral ischemia causes pCaMKIIα phosporylation, 
and that its accumulation in the PSD leads to neuronal 
death (Coultrap et al., 2011; Liu et al., 2012; Lu et al., 2013). 
Thus, as stated above, it is conceivable to propose that by 
inducing its accumulation in the PSD, tPA has a neurotoxic 
effect. To study this possibility, we used a model in which 
either exogenous (rtPA), or endogenous (neuronal tPA), 
was added to neurons in which pCaMKIIα was already 
accumulated in the PSD. Surprisingly, we found that tPA 
does not cause a further increase in pCaMKIIα expres-
sion in the PSD of neurons with high baseline levels of the 
kinase, but that instead it decreases them to those found 
under baseline, non stimulated conditions (Jeanneret et al., 
2016). In summary, these findings indicate that tPA has a 
bidirectional effect on the phosphorylation and accumu-
lation of pCaMKIIα in the PSD that depends on the base-
line levels of the kinase. Thus, while in previously inactive 
neurons tPA increases pCaMKIIα expression in the PSD, 
in those that are already active tPA has the opposite effect, 
decreasing its accumulation in the postsynaptic terminal. 
Importantly, although the effect of tPA on pCaMKIIα is 
mediated by synaptic NMDARs, it does not require the 
conversion of plasminogen into plasmin (Jeanneret et al., 
2016).

tPA Regulates the CamKIIalpha/PP1 Switch in 
the Postsynaptic Density
CaMKII phosphorylation is tightly regulated by a family 
of serine/threonine protein phosphatases (PP) (Colbran, 
2004). There are different PPs, with PP1, 2A, 2B and 2C 
accounting for the most of the phosphatase activity in the 
brain. PP1 is the PP of the PSD, and our data indicate that 
tPA induces its phosphorylation at T320 via Cdk5 activa-
tion. Together, these results show that tPA has a bidirec-
tional effect on the PP1/CaMKIIα switch.

tPA is a Homeostatic Regulator of Synaptic 
Activity
To understand the physiological importance of this ef-
fect we used a proteomics approach to study the effect 
of tPA-induced CaMKIIα phosphorylation on synaptic 
function. We found that tPA induces CaMKIIα-mediated 
phosphorylation at S831 and its subsequent recruitment to 
the PSD of the α-amino-3-hydroxy-5-methyl-4-isoxazole-
propionic acid receptor (AMPAR) subunit GluR1. Again, 
as previously noted, this is a bidirectional effect in which 
tPA induces GluR1 phosphorylation (pGluR1) in previ-
ously inactive neurons and pGluR1 dephosphorylation 
in neurons with high baseline levels of synaptic activity 
(Jeanneret et al., 2016). The physiological importance of 
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these findings is underscored by the observation that 
glutamatergic synapses that contain NMDA but not 
AMPA receptors are “silent”. However, they become 
“active” following pCaMKIIα-induced phosphorylation 
and synaptic recruitment of AMPA receptors contining 
GluR1 subunits (Liao et al., 2001). Together, these data 
indicate that while tPA decreases the activity of those 
synapses that are already active, it increases it in those 
that are previously inactive. These results confirm our 
initial observation that tPA is a homeostatic regulator 
of synaptic function.

Homeostatic plasticity is the process whereby neural cir-
cuits maintain their activity levels within a constant range 
(Turrigiano and Nelson, 2000; Turrigiano, 2008). This is 
a mechanism that allows networks to develop compensa-
tory mechanisms aimed at maintaining the homeostatic 
balance of a population of synapses (Turrigiano, 2008). 
For instance, to maintain the equilibrium of the system, a 
prolonged decrease in neuronal activity activates compen-
satory mechanisms that increase the population of AMPA 
receptors and spine size on the postsynaptic terminal. The 
results discussed here indicate that tPA is an effective in-
ductor of homeostatic plasticity in cerebrocortical neurons 
during physiological and pathological conditions.

In summary, the data currently available allow to pro-
pose a model in which tPA is an inductor of homeostatic 
plasticity via its ability to bidirectionally regulate the PP1/

CaMKIIα switch (Figure 1). This is of particular impor-
tance for our understanding of the mechanisms under-
lying the development of synaptic plasticity and for the 
potential therapeutic use of rtPA to protect the synapse of 
patients with neurological diseases that such as cerebral 
ischemia are characterized by the presence of severe syn-
aptic dysfunction.
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