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Mitochondrial‑nuclear epistasis 
underlying phenotypic variation 
in breast cancer pathology
Pierre R. Bushel1,2*, James Ward3,4, Adam Burkholder5, Jianying Li1,3,4 & Benedict Anchang2

The interplay between genes harboring single nucleotide polymorphisms (SNPs) is vital to better 
understand underlying contributions to the etiology of breast cancer. Much attention has been paid 
to epistasis between nuclear genes or mutations in the mitochondrial genome. However, there is 
limited understanding about the epistatic effects of genetic variants in the nuclear and mitochondrial 
genomes jointly on breast cancer. We tested the interaction of germline SNPs in the mitochondrial 
(mtSNPs) and nuclear (nuSNPs) genomes of female breast cancer patients in The Cancer Genome Atlas 
(TCGA) for association with morphological features extracted from hematoxylin and eosin (H&E)‑
stained pathology images. We identified 115 significant (q‑value < 0.05) mito‑nuclear interactions that 
increased nuclei size by as much as 12%. One interaction between nuSNP rs17320521 in an intron 
of the WSC Domain Containing 2 (WSCD2) gene and mtSNP rs869096886, a synonymous variant 
mapped to the mitochondrially‑encoded NADH dehydrogenase 4 (MT-ND4) gene, was confirmed in 
an independent breast cancer data set from the Molecular Taxonomy of Breast Cancer International 
Consortium (METABRIC). None of the 10 mito‑nuclear interactions identified from non‑diseased 
female breast tissues from the Genotype‑Expression (GTEx) project resulted in an increase in nuclei 
size. Comparisons of gene expression data from the TCGA breast cancer patients with the genotype 
homozygous for the minor alleles of the SNPs in WSCD2 and MT-ND4 versus the other genotypes 
revealed core transcriptional regulator interactions and an association with insulin. Finally, a Cox 
proportional hazards ratio = 1.7 (C.I. 0.98–2.9, p‑value = 0.042) and Kaplan–Meier plot suggest that 
the TCGA female breast cancer patients with low gene expression of WSCD2 coupled with large nuclei 
have an increased risk of mortality. The intergenomic dependency between the two variants may 
constitute an inherent susceptibility of a more severe form of breast cancer and points to genetic 
targets for further investigation of additional determinants of the disease.

Breast cancer has an enormous burden on the afflicted and other than heart disease, it is among the leading causes 
of death in women. Investigations have uncovered germline mutations and somatic variations that contribute 
to the etiology of breast  cancer1. Recently, there has been attention paid to the contribution of mitochondrial 
genome variants in the predisposition of breast  cancer2. However, little is known about the interplay of mito-
chondrial single nucleotide polymorphisms (mtSNPs) with nuclear SNPs (nuSNPs) in modifying phenotypes 
associated with breast cancer.

In this investigation, mitochondrial-nuclear (mito-nuclear) SNPs were associated with morphological fea-
tures extracted from images of hematoxylin and eosin (H&E) stained slides of breast cancer tissue from 286 
female subjects in The Cancer Genome Atlas (TCGA)3 and 259 non-diseased breast tissues from the Genotype-
Expression (GTEx)  project4. Significant mito-nuclear interactions only in the TCGA cohort were confirmed using 
genotype and morphological features extracted from 523 Molecular Taxonomy of Breast Cancer International 
Consortium (METABRIC)  cohort5 breast cancer tissue samples. Of the 115 statistically significant mito-nuclear 
interactions found in the TCGA data set, one nuSNP in an intron of WSC Domain Containing 2 (WSCD2) 
was found to interact with a mtSNP in the mitochondrially-encoded NADH dehydrogenase 4 (MT-ND4) gene 

OPEN

1Massive Genome Informatics Group, National Institute of Environmental Health Sciences, 111 T.W. Alexander 
Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA. 2Biostatistics and Computational Biology Branch, 
National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA. 3Integrative 
Bioinformatics Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, 
USA. 4Kelly Government Solutions, Research Triangle Park, NC 27709, USA. 5Office of Environmental Science 
Cyberinfrastructure, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, 
USA. *email: pbushel@yahoo.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-05148-4&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:1393  | https://doi.org/10.1038/s41598-022-05148-4

www.nature.com/scientificreports/

leading to a significant increase of as much as ~ 12% in the mean size of nuclei and was confirmed in the META-
BRIC breast cancer tissue cohort as an independent data set. None of the significant interactions were found 
in the non-diseased cohort. The hope is the mito-nuclear interaction that associates with the increase in breast 
cancer nuclei size will be of interest to investigators to determine dysregulated biological pathways manifested 
from coordinated mito-nuclear epistasis which would potentially serve as molecular targets for new therapeutic 
interventions and opportunities for devising a cure of the disease.

Results
Mito‑nuclear interactions affect nuclei size. Physicians and pathologists evaluate the size, shape and 
intensity of nuclei in biopsies of breast tissues as some of the characteristics for grading the severity of breast 
cancer. In this investigation, nuclear morphological features (nuclei number, nuclei size area, nuclei intensity 
and nuclei circularity) were extracted from images of hematoxylin and eosin (H&E) stained slides of 286 female 
patients breast cancer tissue in TCGA 3 (Supplementary Data 1), 523 female breast cancer tissue samples (Sup-
plementary Data 2) from  METABRIC5 and non-diseased breast tissues from 259 donors in the GTEx project 
(Supplementary Data 3)4. The majority of the TCGA patients (n = 222) had a primary diagnosis of infiltrating 
ductal carcinoma. We focused on ~ 12,400 nuclear SNPs in or near genes that encode mitochondrial proteins to 
assess the joint effect with mtSNPs on the morphological features. In a mixed linear model, resemblance of the 
individuals was accounted for by incorporating a kinship matrix as a random effect and population structure 
was adjusted by including the first five principal components (PCs) from the principal component analysis of the 
genotype data. From the scree plot (Supplementary Fig. 1), the elbow of the graph suggests that the first five PCs 
are sufficient to capture the cumulative variance of the population structure for the TCGA patients. A similar 
scree plot was generated for the GTEx data indicating that the first five PC are sufficient to account for popula-
tion structure (Supplementary Fig. 2). The METABRIC cohort did not have demographics on the race of the 
individuals. At q-value < 0.05 as a threshold of significance and post hoc test of the multiple pairwise compari-
sons of the means of the phenotypes for each genotype pair (FDR < 0.05), we identified 115 mito-nuclear inter-
actions (Supplementary Data 4) genetically linked to increase in nuclei size within the TCGA patients (Fig. 1a). 
The majority of the nuSNPs from the significant interactions map to introns of genes or intergenic regions 
(Fig. 1b). However, one nuSNP (synonymous substitution) maps to an exon of a gene and two other ones in 
untranslated region of genes. Figure 1c illustrates the location and variant allele frequencies of the mtSNPs from 
the significant interactions. Ten mito-nuclear interactions (Supplementary Data 5) were significantly associated 
with the nuclei size morphological feature extracted from the female donors in GTEx. However, given the GTEx 
donors with minor alleles for the SNPs in the two genomes, none of the 10 mito-nuclear interactions increased 
the nuclei size in comparison to the other genotypes.

Confirmation using an independent data set. To confirm the significant associations of the mito-
nuclear interactions with increased nuclei size in the TCGA data set, we analyzed the genotype data and mor-
phological features extracted from images of H&E stained slides of breast cancer tissue from the female subjects 
in the METABRIC cohort as an independent data set. The majority of the subjects (n = 422) had a primary diag-
nosis of invasive ductal carcinoma. As shown in Fig. 1d, a significant mito-nuclear SNP interaction overlapped 
with the TCGA hits (TCGA q-value = 0.029, METABRIC q-value 0.043). The nuSNP rs17320521 in an intron 
of the WSC Domain Containing 2 (WSCD2) gene interaction with mtSNP rs869096886 (a synonymous variant 
mapped to the mitochondrially-encoded NADH dehydrogenase 4 (MT-ND4) gene) is significantly associated 
with as much as a 12% increase in the size of the nuclei (Fig. 1e,f).

Comparison of two patches from images of H&E slides from a TCGA breast cancer patient (TCGA-AR-
A5QQ) homozygous for major alleles of the SNPs (Fig. 2a) and a TCGA breast cancer patient (TCGA-EW-
A1PB) homozygous for the minor alleles of the SNPs (Fig. 2b) visually depicts the morphological change in the 
size increase of the nuclei associated with the variants. As shown by the histogram of the Size Area of the nuclei 
(Fig. 2c) and analysis of the data (Supplementary Data 6), the mean Size Area per nuclei = 4.7 (SD = 1.02) for 
the image from TCGA-EW-A1PB which is about 23% larger than that of TCGA-AR-A5QQ (mean Size Area 
per nuclei = 3.6, SD = 1.26). Patch-wise, the TCGA-AR-A5QQ image tile #: 28943 Size Area per nuclei is 13.03 
whereas the TCGA-EW-A1PB image tile #: 6545 Size Area per nuclei is 26.90 (~ 52% larger).

Gene expression analysis reveals gene interactions. Analysis of RNA-Seq data from the TCGA 
Splicing Variants Database 6 shows a decrease in RNA-Seq by Expectation Maximization (RSEM) expression 

Figure 1.  Significant mito-nuclear interactions. (a) Shown is a heat map of -log10 p-values ordered by 
mitochondrial genome position on the y-axis and nuclear genome position (chromosome, position) on the 
x-axis. All p-values shown meet the FDR q-value threshold for statistical significance of < 0.05 and Bonferroni 
p-value < 0.05. The Heatmap was produced in R using ComplexHeatmap. (b) Genomic targets of nuSNPs. Syn: 
synonymous substitution, UTR: untranslated region. (c) Circos plot of the mitochondrial genome (chrM) with 
genes color coded and labeled and tRNAs denoted as yellow bands. Points outside of the genome represent the 
variant allele frequency (VAF) of the mtSNPs. Red circle: VAF < 0.1, Blue circle: 0.1 ≥ VAF < 0.2, Orange circle: 
0.2 ≥ VAF < 0.3, Green square: VAF ≥ 0.3. (d) Genomic information for the interacting SNPs significant in TCGA 
and METABRIC cohorts. The p-value and false discovery rate (FDR) q-value are from the TCGA data analysis. 
(e) Boxplot of TCGA log2 mean size area normalized by number of nuclei (y-axis) for the nuSNP rs17320521 
(WSCD2) by mtSNP rs869096886 (MT-ND4) interaction. The x-axis is the genotypes for the nuSNP by mtSNP 
allele pairs. (f) Same as (e) except for METABRIC data.
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Figure 2.  Biological impact of the significant mito-nuclear interaction. (a) Hematoxylin stain channel of image tile 
#28943 at 40X magnification from subject TCGA-AR-A5QQ with genotype: GG_AA for rs17320521 by rs869096886. 
(b) Hematoxylin stain channel of image tile #6545 at 40X magnification from subject TCGA-EW-A1PB with genotype: 
AA_GG for rs17320521 by rs869096886. (c) Histograms of log2 size area of the nuclei in the images from subject 
TCGA-AR-A5QQ with genotype: GG_AA for rs17320521 by rs869096886 and subject TCGA-EW-A1PB with 
genotype: AA_GG for rs17320521 by rs869096886. The x-axis is log2 size area and the y-axis is the density of the data. 
(d) Same as Fig. 1e except for TCGA WSCD2 gene log2 (RSEM + 1) on the y-axis and 284 of the 286 patients. p-values 
for the comparisons are from Mann–Whitney tests with the hypothesis that the median WSCD2 gene expression of 
the patients with genotype homozygous for the minor alleles is the same as the other genotypes and the alternative 
is that the median is less. The dotted line is the median expression of WSCD2 in TCGA normal patients. (e) Table 
with median values of WSCD2 gene log2 (RSEM + 1) for sample groups. (f) t-test comparisons of RNA-Seq FPKM 
gene expression data between TCGA patients with genotype homozygous for the minor alleles for of rs17320521 by 
rs869096886 versus all other genotypes. For each comparison, the number of differentially expressed genes (DEGs) 
is shown based on a false discovery rate < 0.05 and fold change >|1.5|. (g) Interaction networks derived from the 16 
genes from the overlap of the DEGs in (f), WSCD2 and MT-ND4 using the Ingenuity Pathway Analysis Knowledge 
Base content version 62,089,861. These focus genes are shaded gray. Square: cytokine, diamond: enzyme, triangle: 
kinase, horizontal oval: transcription regulator, horizontal rectangle: ligand-dependent nuclear receptor, double circle: 
complex, single circle: other. (h) Same as (g). except the interaction networks derived from the 9 of the 16 genes from 
the overlap of the DEGs in (f), WSCD2 and MT-ND4. Vertical rectangle: G-protein coupled receptor, vertical oval: 
transmembrane receptor, hexagon: translation regulator.
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of WSCD2 in the TCGA breast cancer patients that are homozygous for the minor alleles of the SNPs (Fig. 2d). 
However, only one comparison (AA_GG vs GA_GG) is significant (p-value < 0.05). The median expression for 
each sample group is shown in Fig. 2e. The median decrease of WSCD2 gene expression in the TCGA breast 
cancer patients that are homozygous for the minor alleles of the SNPs is ~ 1.7 fold versus the TCGA breast cancer 
subjects that are heterozygous for the nuSNP alleles and homozygous for the minor allele of the mtSNP (Fig. 2d).

To identify other genes that are differentially expressed in the TCGA patients homozygous for the minor 
alleles of the WSCD2 gene nuSNP rs17320521 interacting with MT-ND4 gene mtSNP rs869096886, we performed 
analysis of variance modeling with post-hoc pairwise t-tests of the genes to compare with those in the TCGA 
patients with the other genotypes (Fig. 2f). Differentially expressed genes (DEGs) were identified based on a false 
discovery rate < 0.05 and fold change >|1.5| with 16 genes in common between the comparisons (Supplementary 
Data 7). Network analysis of the DEGs revealed several core interactions (direct or indirect) with MT-ND4 that 
are related to growth factors and transcription factors (Fig. 2g), as well as those specifically associated with insulin 
(Fig. 2h). These findings are interesting, as recently insulin resistance has been associated with breast cancer 
incidence and  mortality7. Of the 286 TCGA patients, 130 had Agilent microarray gene expression data in the 
U.S. National Institutes of Health National Cancer Institute Genomic Data Commons legacy archive. Based on 
8 of the 16 RNA-Seq DEGs that were on the array (Supplementary Data 8), we validated that 7 of the genes have 
comparable expression to the RNA-Seq data in terms of fold change direction (Fig. 3a and Supplementary Data 
9). In all but one of the comparisons, the glutamate ionotropic receptor AMPA type subunit 3 (GRIA3) gene fold 
change is in the opposite direction of the RNA-Seq data. In addition, the Agilent gene expression fold change 
values for cornulin (CRNN), pipecolic acid and sarcosine oxidase (PIPOX), ELAV like RNA binding protein 4 
(ELAVL4), and crystallin beta A2 (CRYBA2) are higher than that of the RNA-Seq.

Low expression of WSCD2 coupled with large nuclei is associated with an increased risk of 
mortality. To assess the impact of WSCD2 gene expression and the size of the nuclei in terms of survival, 
we perform a Cox regression analysis of the right censored, time-to-event survival outcome from 277 of the 286 
TCGA female breast cancer patients (Supplementary Data 10). The data for each patient was grouped according 
to high WSCD2 gene expression and small nuclei, if the gene expression is > the 75th percentile and the mean 
Size Area is < the 25th percentile, otherwise grouped as low WSCD2 gene expression and large nuclei. The Cox 
proportional hazards ratio = 1.7 (confidence interval: 0.98–2.9) with a p-value = 0.042 suggests that having low 
WSCD2 gene expression and large nuclei can be interpreted as a 70% increase in risk of death. The Kaplan–
Meier plot of the data reveals a borderline significant (p-value = 0.057) increased risk of mortality for the TCGA 
patients with low WSCD2 gene expression and large nuclei versus those with high WSCD2 gene expression and 
small nuclei (Fig. 3b). When age of the patients at diagnosis (dichotomized into four groups) and estrogen recep-
tor (ER) status were added as covariate to the Cox regression model, the hazard ratio = 1.57 (confidence interval: 
0.91–2.7) and was not significant (p-value = 0.108) for low WSCD2 gene expression and large nuclei (Fig. 3c).

Discussion
Mitochondria evolved over time to communicate with the nuclear genome in order to perform critical biologi-
cal functions such as cellular energy production, oxidation–reduction processes and modulation of  apoptosis8. 
The human and rodent mitochondrial genomes are circular, double-stranded DNA, of approximately 16.5 kb 
in length and contains 37 genes coding for rRNAs, tRNAs and polypeptides. The nuclear genome encodes for 
several mitochondrial  proteins9 and conversely, the mitochondria has been shown to impact epigenetic marks 
or mutations in the nuclear  genome10. In fact, mito-nuclear interactions have been shown to contribute to the 
regulation of genes as part of the cell’s inter-organelle  communication11 and that these interactions are not ran-
dom occurrences nor merely  incidental12. Hence, maintenance of unaltered mito-nuclear epistasis is paramount 
to optimal fitness in species. Nevertheless, mutations in one or both of the genomes lead to biological conditions, 
phenotypic changes and disease  states13.

In this study we sort out to investigate the epistatic relationship between nuSNPs in or flanking genes that 
encode mitochondrial “bioenergetic” proteins and mtSNPs in breast cancer. Using a mixed effect linear model 
with a kinship matrix as the covariance structure to capture the relatedness of the subjects, we identified a nuSNP 
and a mtSNP that jointly increased the size of nuclei in H&E images of breast cancer tissue from TCGA and 
METABRIC cohorts as much as 12% (Fig. 1e,f). Physicians and pathologist include the shape, size and amount 
of DNA in nuclei as part of grading the severity of breast cancer. Previously, nuclear morphological features have 
been correlated with ductal carcinoma in situ of the breast in Singapore women 14. Our results show that variants 
in genes in the mitochondrial genome may be playing a key role jointly with variants in the nuclear genome that 
could be further explored for assessing susceptibility to breast cancer.

The only significant mito-nuclear interaction that was confirmed to increase the size of nuclei is between 
nuSNP rs17320521 in an intron of the WSC Domain Containing 2 (WSCD2) gene and mtSNP rs869096886, a 
synonymous variant mapped to the mitochondrially-encoded NADH dehydrogenase 4 (MT-ND4) gene. Analy-
sis of bulk RNA-Seq revealed a decrease in WSCD2 gene expression in the samples from TCGA breast cancer 
patients with the genotype homozygous for the minor alleles (Fig. 2d,e) and core gene networks of transcrip-
tion factors, growth factors and insulin indirectly associated with MT-ND4 (Fig. 2g,h). Incidentally, a variant 
in WSCD2 has been found to be associated with insulin  sensitivity15. These findings are intriguing as recently 
insulin resistance has been associated with breast cancer incidence and  mortality7.

Interestingly, the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING)  database16 con-
tains several interactions with WSCD2 that are proteins functioning as either tumor suppressors, promotors of 
tumorigenesis or prognosticators of various forms of cancers (Fig. 3d). In fact, the expression of LDL receptor-
related proteins (LRPs) in solid malignancies has recently been shown to correlate with cancer  survival17. These 
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Figure 3.  Gene expression validation, survival analysis and proteins interacting with WSCD2. (a) Validation of 8 
of the 16 RNA-Seq DEGs using Agilent gene expression data (log2 lowess normalized (cy5/cy3) collapsed by gene 
symbol) from 130 of the 286 TCGA patients that were available in the U.S. National Institutes of Health National 
Cancer Institute Genomic Data Commons legacy archive. The y-axis is fold change and the x-axis is the gene colored 
according to the legend as well as grouped by the comparison using either data from RNA-Seq or Agilent microarray. 
(b) Kaplan–Meier plot of time-to-event survival from 277 of the 286 TCGA breast cancer female patients on their bulk 
RNA-Seq RSEM expression of WSCD2 and nucleus mean Size Area data. The x-axis is years and the y-axis is survival 
probability. The red curve is the data for patients with high WSCD2 gene expression (> the 75th percentile) and small 
nuclei (< the 25th percentile) and the blue curve is the data from the other patients (low WSCD2 gene expression and 
large nuclei). The dashed black lines are the medians of survival for each strata and p is the log-rank p-value from 
testing the null hypothesis that each strata has the same survival probability. The hazard ratio value and statistical 
inferences for the parameter is shown in the inset. (c) Forest plot for Cox proportional hazards model. N is the number 
of patients, the hazard ratio is represented by the square, its confidence interval in parentheses and is represented by 
the horizontal lines, the vertical line represents 1.0 and the p-value for each predictor variable is to the right of the plot. 
(d) Search Tool for the Retrieval of Interacting Genes/Proteins (STRING)  database16 network of proteins that interact 
with the WSCD2 protein. Nodes are filled to denote that the 3D structure of the protein is known or predicted. Pink 
interactions are experimentally derived whereas lime or black colored interactions are derived by text mining literature 
or by gene co-expression analysis respectively.
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associations, coupled with the increase in risk of death depending on low WSCD2 expression and large nuclei 
(Fig. 3b), warrants further research investigation of the gene and the potential role it may play in breast cancer.

To date, WSCD2 has no known function and there is not sufficient biological information to theorize about 
a possible mechanism of how the downregulation of WSCD2 gene expression may be playing a role in affecting 
nuclei size or in what way the mito-nuclear interaction is contributing to breast cancer pathogenesis. However, 
there are a few hypotheses about the mechanisms involved in regulating the size of nuclei in cancer. Jevtić and 
Levy (2014) provide a detailed review of molecular mechanisms controlling nuclear size in model system organ-
isms and they speculate how nuclear size might contribute to cancer development and  progression18. Recently, 
Mukherjee et al. (2020) used sea urchin embryos to discover that the perinuclear endoplasmic reticulum plays 
a role in scaling nuclear size independent of the size of the cell during early  development19. Additional research 
from the Levy lab suggested that the nuclear-to-cytoplasmic volume ratio was shown to increase in HeLa and 
MRC-5 cancer cell lines by manipulation of the levels of importin α2 (IMPα2) and nuclear transport factor 2 
(NTF2)20. As more investigation is dedicated to underlying the mechanisms of the mito-nuclear interaction of 
the variants in WSCD2 and NT-ND4 and its association with increased nuclei size, the closer we will be to a better 
understanding of the complexity of breast cancer and devising novel therapeutics to treat and/or cure the disease.

Methods
All experiments were performed in accordance with relevant named guidelines and regulations. Informed con-
sent was obtained from all participants and/or their legal guardians to analyze the contributed data and images 
as well as to publish the results of analyses and images in an online open-access publication. The databases used 
to access data are all publicly available but require authorization to obtain controlled data. TCGA data were 
in whole or part based upon studies approved and generated by the TCGA Research Network: https:// www. 
cancer. gov/ tcga. The GTEx Project data was based upon studies approved, supported and generated by the 
Common Fund of the Office of the Director of the National Institutes of Health (commonfund.nih.gov/GTEx). 
The METABRIC project data was based on studies approved, supported and funded in whole or part by Cancer 
Research UK, the British Columbia Cancer Foundation and Canadian Breast Cancer Foundation BC/Yukon. 
These data are publicly available upon authorized access and are approved for general research use by respective 
data access committees (TCGA: U.S. National Cancer Institute; GTEx: U.S. National Human Genome Research 
Institute; METABRIC: Cancer Research UK Cambridge Institute). Thus, an Institutional Review Board (IRB) 
was not required for data access and analysis.

Breast tissue images. Two hundred and ninety TCGA breast cancer H&E stained pathology whole slide 
image (WSI) .svs files of formalin-fixed paraffin-embedded sections of breast mammary tissue were downloaded 
from The Cancer Imaging Achieve (TCIA) associated with the data base of Genotypes and Phenotypes (dbGaP) 
accession phs000178.v11.p8. In addition, a set of 886 non-diseased GTEx project breast mammary tissue H&E 
pathology WSI .svs files were downloaded from the National Human Genome Research Institute (NHGRI) 
Analysis, Visualization and Informatics Lab-space (AnVIL) TERRA cloud workspace associated with dbGaP 
accession phs000424.v8.p2. As an independent data set, H&E stained pathology breast cancer .jpg image patches 
from WSIs of 564 breast cancer subjects as part of METABRIC were downloaded from the European Genome-
Phenome Archive (EGA) under dataset identifier EGAD00010000270. The WSIs are Aperio format, with the 
TCGA breast cancer and GTEx images containing single-file pyramidal TIFFs of 1024 × 768 pixels with tiles of 
size 240 × 240 pixels while the METABRIC patches were filtered for images of size at least 1986 × 1986 pixels.

Image processing to extract morphological phenotypes. The HistomicsTK python package v0.10 
was used to preprocess the images and extract morphological features of the tissues as phenotypic measure-
ments. Briefly, each tile within an image was checked to determine if it was overly black (85th percentile of the 
pixels < 15) or white (15th percentile of the pixels > 240) in order to exclude it. Then, each tile H&E stain color 
was deconvoluted to extract the hematoxylin stained channel and with a threshold of ½ the mean pixel values, 
the foreground (pixels with values ≥ threshold = 1) was delineated from background (pixels with values < thresh-
old = 0). Using a minimum radius of 10, a maximum radius of 15 and a local max search radius of 10, the fore-
ground was masked to filter out small objects and then segmented to detect nuclei that are resolved for overlap-
ping regions of interest and holes. For each tile, the following morphology features and estimates of the nuclei 
were extracted for computation of morphological phenotypes:

Number of nuclei = # of segment objects in the foreground.
Size Area = # of pixels of the objects in the foreground.
Intensity = mean pixel intensities of the objects in the foreground.
Circularity = (4*pi*area)/perimeter2, where perimeter is the contour line of each object in the foreground 

through the centers of border pixels using a 4-connectivity. That is, in terms of pixel coordinates, every pixel 
that has the coordinates (x ± 1, y) or (x,y ± 1) is connected to the pixel at (x,y).

The mean of the Size Area and Intensity were divided by the mean number of nuclei and then log2 
transformed.

Genotype data acquisition. TCGA breast cancer: Legacy genotype data for 2,263 TGCA breast cancer 
patients in birdseed format was downloaded from the Genomic Data Commons (GDC) associated with the 
dbGaP accession phs000178.v10.p8. The .txt files were converted to variant call format (vcf) files of SNPs from 
the Affymetrix GenomeWideSNP_6 human SNP chip array release n35 with the hg19 (GRCh37-lite) genome 
reference and dbSNP v141. There were 286 TGCA breast cancer female patients that had corresponding mor-
phological features extracted from the image data.

https://www.cancer.gov/tcga
https://www.cancer.gov/tcga
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GTEx: Genotype vcf files of SNPs (dbSNP v150) called via Illumina whole genome sequencing (hg38) of the 
nuclear genome and mitochondrial genome from 866 and 979 GTEx subjects respectively were downloaded from 
the AnVIL TERRA cloud workspace (dbGaP Study Accession: phs000424.v8.p2). There were 259 GTEx female 
donors that had corresponding morphological features extracted from the image data.

METABRIC: Affymetrix GenomeWideSNP_6 human SNP chip array release n35 (hg19 and dbSNP v141) 
.CEL files for 543 METABRIC BRCA subjects were downloaded from the EGA under dataset identifier 
EGAD00010000266. The genotypes were called using the apt-probeset-genotype executable in Thermo Fisher 
Scientific Analysis Power Tools release 2.10.2.2 and the Affymetrix GenomeWideSNP_6 chip description file, 
the precomputed birdseed-v2 SNP specific reads model as well as the following arguments: –set-gender-method: 
cn-probe-chrXY-ratio, –chrX-probes: GenomeWideSNP_6.chrXprobes, –chrY-probes: GenomeWideSNP_6.
chrYprobes, –special-snps: GenomeWideSNP_6.specialSNPs. There were 523 METABRIC female subjects that 
had corresponding morphological features extracted from the image data.

Genotype data filtering, analysis, annotation and visualization. Autosomal nuSNPs with a call 
rate < 95%, Hardy–Weinberg Equilibrium (HWE) < 0.001 or minor allele frequency (MAF) < 0.05 (according to 
the 1000 genomes phase 3 genotype as a reference) were removed. SNPs on the sex chromosomes were not 
considered for analysis. Any nuSNP with missing genotype data for a subject was imputed according to the 
frequency distribution of the alleles for that SNP from the other subjects. nuSNPs were coded according to 
the number of minor alleles (0,1,2). We focused on the ~ 12,400 nuSNPs that mapped within or flank genes 
that encode mitochondrial proteins as determined by the MitoMiner v4.021 and MitoCarta v2.022,23 databases. 
mtSNPs with variant allele frequency (VAF) < 0.05 were removed. mtSNPS were coded as to whether or not the 
minor allele was present (0 is not having the minor allele or 1 having the minor allele). SNPs were annotated 
with  SnpEff24 version 4.4 using the human hg38 genome version. A kinship matrix for each cohort containing 
the resemblance of the female subjects was generated from their nuSNP genotype data using the efficient mixed 
model association (EMMA) R package v1.1.225 with additive genetic effect.

Mito‑nuclear interaction test. The following mixed linear model constructed with the lmekin function 
in the COXME R package v2.2–10 was used to test the joint effect of nuSNPs and mtSNPs on each phenotype

where Yijkl is the log base 2 of the lth phenotype observation, β 0 is the grand mean, Ni is the ith genotype of the 
nuclear SNP, Mj is the jth genotype of the mitochondrial SNP, S0,k is a random effect for the kth subject fitted 
with a kinship matrix as the covariance structure to account for the relatedness of the subjects, Pc is the cth prin-
cipal component as a covariate to adjust the lth phenotype for population structure and eijkl is the error term. 
The null hypothesis  H0 is β3 = 0 and the alternative  Ha is β3 ≠ 0. Let the chi-square likelihood ratio test statistic 
D =  − 2(ln(likelihood null model)–ln(likelihood full model)) where the null model is the mixed model without 
the interaction term and the full model is the one with the interaction term. The p-value for each association 
of a mtSNP-nuSNP joint effect on a phenotype was obtained from the distribution of D≈χ2 with 1 degree of 
freedom. Multiple testing was controlled by false discovery rate (FDR) adjusted p-values (q-values26) where the 
proportion of true null hypotheses (pi0) was estimated by bootstrapping the p-values. Significant interactions 
(q-value < 0.05) were further evaluated with one-sided Mann–Whitney U post hoc tests of the population (U) of 
the phenotype for each genotype pair  (Ho: U1 = U2),  Ha: U1 > U2). The distribution of the phenotype of the samples 
with the minor alleles from the nuSNP and mt SNP (U1) was required to have 1) a Bonferroni p-value < 0.05 
for each comparison vs the distribution of the phenotype of the samples with the other genotypes (U2) and 2) a 
distribution stochastically greater than U2.

Cox proportional hazards analysis. The survival package in  R27,28 was used to perform a Cox regression 
analysis of the right censored, time-to-event survival outcome from 277 of the 286 TGCA breast cancer female 
patients on their bulk RNA-Seq RSEM expression of WSCD2 and nucleus mean Size Area data. The data for 
each patient was coded into a categorical predictor variable with two levels: high-expression and small-nuclei, if 
the gene expression is > the 75th percentile and the mean Size Area is < the 25th percentile, otherwise coded as 
low-expression and large-nuclei. The Cox proportional hazards likelihood ratio test statistic and a Chi-square 
distribution with 1 degree of freedom were used to assess the statistical significance of the model. In addition, a 
multivariate survival analysis was performed using the Cox regression model with the ER status of 275 patients 
(indeterminates not included) and their age at diagnosis (dichotomized into four groups according to quantiles) 
included as covariates, and significance based on a Chi-square distribution with 5 degrees of freedom.

Data availability
TCGA breast cancer genotype and gene expression data are available from the GDC associated with the dbGaP 
accession phs000178.v10.p8. TCGA breast cancer images are available from TCIA associated with the dbGaP 
accession phs000178.v11.p8. GTEx genotype and images are available from the AnVIL TERRA cloud workspace 
associated with dbGaP Study accession phs000424.v8.p2. The METABRIC genotype data files and images were 
downloaded from the EGA under dataset identifiers EGAD00010000266 and EGAD00010000270 respectively.

Yijkl = β0 + β1Ni + β2Mj + β3(NM)ij + S0k +

5∑

c=1

βPcPc + εijkl



9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:1393  | https://doi.org/10.1038/s41598-022-05148-4

www.nature.com/scientificreports/

Code availability
Python modules to extract morphological features from the H&E images are available in the HistomicsTK 
package. Software to call genotype data from Affymetrix GenomeWideSNP_6 human SNP chip array CEL files 
is available in the Thermo Fisher Scientific Analysis Power Tools. The code for mixed linear modeling of the 
mito-nuclear interaction data is available through the lmekin function in the COXME R package.
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