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Abstract: Francisella tularensis (F. tularensis) is an intracellular pathogen that causes a potentially
debilitating febrile illness known as tularemia. F. tularensis can be spread by aerosol transmission
and cause fatal pneumonic tularemia. If untreated, mortality rates can be as high as 30%. To
study the host responses to a live-attenuated tularemia vaccine, peripheral blood mononuclear
cell (PBMC) samples were assayed from 10 subjects collected pre- and post-vaccination, using
both the 2D-DIGE/MALDI-MS/MS and LC-MS/MS approaches. Protein expression related to
antigen processing and presentation, inflammation (PPARγ nuclear receptor), phagocytosis, and
gram-negative bacterial infection was enriched at Day 7 and/or Day 14. Protein candidates that could
be used to predict human immune responses were identified by evaluating the correlation between
proteome changes and humoral and cellular immune responses. Consistent with the proteomics
data, parallel transcriptomics data showed that MHC class I and class II-related signals important for
protein processing and antigen presentation were up-regulated, further confirming the proteomic
results. These findings provide new biological insights that can be built upon in future clinical studies,
using live attenuated strains as immunogens, including their potential use as surrogates of protection.
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1. Introduction

Francisella tularensis (F. tularensis), a gram-negative coccobacillus, is an intracellular pathogen of
humans and animals that causes a potentially debilitating febrile illness known as tularemia [1–3].
F. tularensis infection occurs after exposure to infected wildlife species (including rodents, hares and
rabbits), or through bites from infected ticks and deer flies, and causes disease of varying severity
dependent upon the portal of entry, the infectious dose, and the subspecies (biovar) of the infecting
strain [1–4]. Two biovars have been described: type A, F. tularensis biovar tularensis and type B, F.
tularensis biovar holarctica. The type A F. tularensis subspecies is the most infectious biovar (ID50 < 10
cfu), which is responsible for most cases of tularemia in North America. If untreated, this subspecies
has mortality rates approaching 30% [3–6]. F. tularensis can be spread by aerosol transmission to cause
fatal pneumonic tularemia and is therefore classified as a Tier 1 select agent of bioterrorism, indicating
its status as one of the most likely pathogens to be deliberately used in a bioterrorist attack [7,8]. Japan,
the U.S.A., and the U.S.S.R. have previously stockpiled F. tularensis as a potential bioweapon. Given
the dangers of F. tularensis infection, more research on both the vaccination and molecular-level effects
of F. tularensis on human health is needed [8–10].

The United States Army Medical Research Institute of Infectious Diseases—LVS (USAMRIID-LVS)
live-attenuated vaccine has been used under an investigational new drug (IND) application for
decades [11]. However, supply is limited and aging. Thus, the U.S. Department of Defense contracted
with Dynport Vaccine Company (DVC) to produce new lots of live vaccine strain (LVS) using current
good manufacturing practices (cGMP). It is worth noting that the USAMRIID and DVC-LVS are
the same vaccine, that is filed under the same IND application. A phase 1 trial of escalating doses
of the new DVC-LVS lot (lot 17) administered to 70 subjects concluded that vaccine delivery by
scarification was safe, tolerable, and produced superior antibody responses relative to subcutaneous
delivery [12,13]. The data from the phase 2 trial directly compared the new DVC-LVS lot (lot 20) to
USAMRIID-LVS in 228 subjects defining the kinetics of antibody responses, comparing injection site
reactions following scarification, and correlating antibody responses with take [14]. The availability of
pre- and post-vaccination samples from this trial offers a unique opportunity to better characterize host
immune responses to this live-attenuated vaccine, to improve vaccine development. As a first step
towards this goal, PBMC gene expression responses were previously assessed based on microarrays,
following vaccination with two tularemia vaccines [14,15].

In this study, the goal was to comprehensively study protein changes that occur in response
to Tularemia DVC-LVS vaccination. Proteomics encompasses the large-scale quantification and
identification of the entire set of cellular proteins, as well as the characterization of their modifications,
functions, and interactions. It is a powerful tool for studying the host responses to infection
and immunization. With the advent of mass spectrometry, microcapillary chromatography, and
genome-assisted data analysis, the number, speed, and sensitivity of the proteins and post-translational
modifications identified in samples has increased significantly [16]. More importantly, the development
of two-dimensional difference gel electrophoresis (2D-DIGE) technology significantly improved
reproducibility and accuracy in quantifying proteins expressed within two sets of samples [17,18].
However, one limitation of this technology is its relatively low throughput. To overcome this
problem, different quantitative LC-MS/MS methods have been developed, with various advantages
and disadvantages. They include spectral-counting, stable isotope labeling by amino acids in cell
culture (SILAC), iTRAQ, isotope-coded affinity tag (ICAT) and tandem mass tag (TMT), which have
allowed for both absolute and relative quantification of proteins in complex samples [19,20]. Protein
microarrays have been developed to track the interactions and activities of pre-determined numbers of
proteins in parallel [21,22].

To study the host responses post-vaccination with a live-attenuated tularemia vaccine, 2D-DIGE
and LC-MS/MS analyses were performed using PBMC cell lysates from 10 subjects collected pre-
vaccination (Day 0) and post-vaccination (Days 7 and 14). PBMC samples were assayed by two different
laboratories using two different proteomics protocols. RNA-Seq based transcriptomics, metabolomics
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and lipidomics experiments on the same cohort and timepoints which are cross-referenced in the
discussion section (23 and unpublished data) were also performed. Here, we report the novel
findings regarding the activation of PBMC protein expression related to antigen processing and
presentation, inflammation (PPARγ receptor), phagocytosis, and gram-negative bacterial infection
following DVC-LVS vaccination.

2. Materials and Methods

2.1. Study Design

The tularemia vaccine clinical trial (ClinicalTrials.gov identifier NCT01150695) was designed
as a double-blind, randomized study of a single, undiluted dose of the F. tularensis DVC-LVS lot
produced by DynPort Vaccine Company via scarification, versus a single, undiluted dose of the
USAMRIID-LVS vaccine via scarification (multiple puncture technique) on Day 0 [12–14]. Both
vaccines were administered in the ulnar aspect of the volar surface (palm side) of the forearm midway
between the wrist and the elbow [12–14]. Blood samples were taken from enrolled subjects at multiple
timepoints. This proteomics pilot study included 10 subjects who had agreed to future-use and had
available samples from the DVC-LVS vaccine group, with 30 total samples collected from subjects
at Days 0 (prior to vaccination), 7, and 14. In one case, 2D-DIGE methodology for all samples and
MALDI-QIT-TOF mass spectrometry to identify proteins within differentially abundant (DA) gel
spots were sequentially applied. In parallel, a LC-MS/MS approach was carried out on PBMC lysates
after trypsin digestion, followed by protein identification and relative abundance calculation using a
label-free quantification method to determine differential protein abundance. Samples from the same
subjects were also studied by microarrays [15], RNAseq (unpublished data) and metabolomics [23], as
well as lipidomics [23], to determine changes in gene expression, lipids, and metabolites (results of
these other omic platforms are reported separately).

2.2. Protein Spike-in Controls

A spike-in control protein mixture of bovine beta-lactoglobulin (Sigma L-5137), horse myoglobin
(Sigma M-9267), and bovine ribonuclease A (Sigma R-6513) was prepared in 8 M urea. Stock solutions
of each protein were prepared in Milli-Q grade water, quantified by UV absorbance spectrum, and
combined to make 50 mL of 8 M urea solution containing 300 ng/mL of each protein.

2.3. Shared Protein Sequence Database and Protein Families

The combined human subset (organism restricted to Homo sapiens), defined by both the
UniProtKB/Swiss-Prot and UniPro- tKB/TrEMBL Release 2016-03 databases, was used as a reference for
proteomics searches. The CD-HIT software (Version 4.0 beta, La Jolla, USA) was used to derive protein
clusters at a 50% protein sequence identity level (henceforth, 50% CD-HIT protein clusters are referred
to as protein families). Prior to proteomic searching, identical protein sequences were collapsed, and
the three spike-in control protein sequences were added to the protein sequence database (UniProt
Accession P02754: Beta-lactoglobulin (Bovine), UniProt Accession P68082: Myoglobin (Horse), and
UniProt Accession P61823: Ribonuclease pancreatic (Bovine)).

2.4. LC-MS/MS Proteomics Experiment and Data Processing

One mL of ice-cold PBS was added to each sample and the samples were centrifuged for 10 min
at 400× g. Afterwards, 1.5 mL of supernatant was removed and discarded. An additional 500 µL of
ice-cold PBS was added and the samples were spun again at 1000× g for 10 min. The supernatant was
removed, and the pellet was resuspended in 300 µL of urea lysis buffer (8M Urea spiked with 3 protein
spike-in controls), including a 3 µL (100× stock) HALT protease and phosphatase inhibitor cocktail
(Pierce). The entire mixture was then sonicated (Sonic Dismembrator, Fisher Scientific) 3 times for 5 s,
with 15 s intervals of rest at 30% amplitude to disrupt nucleic acids and was subsequently vortexed.
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Protein concentration was determined by the bicinchoninic acid (BCA) method, and samples were
frozen in aliquots at −80 ◦C. Protein homogenates (100 µg) were diluted with 50 mM NH4HCO3 to a
final concentration of less than 2M urea and then treated with 1 mM dithiothreitol (DTT) at 25 ◦C for
30 min, followed by 5 mM iodoacetamide (IAA) at 25 ◦C for 30 min in the dark. Protein was digested
with 1:100 (w/w) lysyl endopeptidase (Wako Chemicals USA, Inc.) at 25 ◦C for 2 h and further digested
overnight with 1:50 (w/w) sequencing grade trypsin (Promega Corporation) at 25 ◦C [17]. Resulting
peptides were desalted with a Sep-Pak C18 column (Waters) and dried under vacuum.

Dried peptides were resuspended in 100µL of loading buffer (0.1% formic acid, 0.03% trifluoroacetic
acid, 1% acetonitrile). Peptide mixtures (2 µL) were separated on a self-packed C18 (1.9 µm Dr. Maisch,
Germany) fused silica column (25 cm × 75 µM internal diameter (ID); New Objective, Woburn, MA)
by a Dionex Ultimate 3000 RSLCNano and monitored on a Fusion mass spectrometer (ThermoFisher
Scientific, San Jose, CA). Elution was performed over a 140 min gradient, at a rate of 300 nl/min,
with buffer B ranging from 3% to 80% (buffer A: 0.1% formic acid in water, buffer B: 0.1% formic
in acetonitrile). The mass spectrometer cycle was programmed to collect at the top speed for 3-s
cycles. The MS scans (400–1600 m/z range, 200,000 AGC, 50 ms maximum ion time) were collected
at a resolution of 120,000 at m/z 200 in profile mode and the HCD MS/MS spectra (2 m/z isolation
width, 30% collision energy, 10,000 AGC target, 35 ms maximum ion time) were detected in the ion
trap. Dynamic exclusion was set to exclude previous sequenced precursor ions for 20 s within a 10
ppm window. Precursor ions with +1, and +8 or higher charge states were excluded from sequencing.
RAW data for samples were analyzed using MaxQuant v1.5.3.30, with Thermo Foundation for RAW
file reading capability. The search engine Andromeda, integrated into MaxQuant, was used to build
and search a concatenated target-decoy human reference protein database (20,157 target entries plus
245 contaminant proteins from the common Repository of Adventitious Proteins (cRAP) built into
MaxQuant). Methionine oxidation (+15.9949 Da), asparagine and glutamine deamidation (+0.9840
Da), and protein N-terminal acetylation (+42.0106 Da) were variable modifications (up to 5 allowed
per peptide); cysteine was assigned a fixed carbamidomethyl modification (+57.0215 Da). Only fully
tryptic peptides were considered, with up to 2 miscleavages in the database search. A precursor mass
tolerance of ±20 ppm was applied prior to mass accuracy calibration and ±4.5 ppm after internal
MaxQuant calibration. Cofragmented peptide search was enabled to deconvolute multiplex spectra.
The false discovery rate (FDR) for peptide spectral matches, proteins, and site decoy fraction was
set to 1 percent. Quantification settings were as follows: re-quantify with a second peak finding
attempt after protein identification has completed; match MS1 peaks between runs; a 0.7 min retention
time match window was used after an alignment function was found with a 20-min RT search space.
Label-free quantification of proteins and normalization was performed using the MaxLFQ algorithm,
as implemented in MaxQuant. The quantitation method only considered razor plus unique peptides
for protein level quantitation. Protein group signals were filtered to retain groups, for which at
least two unique peptides were identified. Zero intensity values were set to missing. The leading
protein in a protein group (the protein with the highest number of identified peptides) was used as
the representative protein for each group. Information about other proteins in a protein group was
retained and integrated when presenting lists of differentially abundant proteins.

2.5. 2D-DIGE/MS Proteomics Experiment and Data Processing

PBMC cell pellets were prepared by the controlled thawing of cryopreserved cells in order to
maximize viability, which was assessed by trypan blue stain. Cells were counted by hemocytometer
and washed twice with PBS buffer, prior to freezing in aliquots of 2 million viable cells per vial. Cell
pellets were lysed, proteins precipitated, and total protein quantified using a Pierce 660 nm protein
assay. Prior to carrying out DIGE sub-stoichiometric Cy Dye labeling, an equal protein quantity was
taken from each lysate to create a pool for normalization of fluorescence intensity for all analytical 2D
gels. This pool was labeled with Cy2 dye, and individual samples were labeled with either Cy3 or Cy5
(Lumiprobe, MD), using a dye ratio of 8 pmol per µg protein [17]. The samples were analyzed by 2D
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gel electrophoresis using pH 3–11 NL IPG strips (GE Healthcare) and Criterion XT 4–12% SDS-PAGE
gels (BioRad Laboratories, CA). Fluorescence imaging was carried out using a Typhoon 9410. Raw
data files were cropped and filtered using ImageQuant TL 8.1 and analyzed using DeCyder 6.5, to
determine protein spot relative abundance for Days 7 or 14 versus Day 0. Spots corresponding to
spiked proteins were identified using MALDI-TOF mass spectrometry. Forty-one 2D-DIGE gel spots
were linked to 68 reference sequence database entries (UniProt IDs).

2.6. Statistical Analysis

2.6.1. Normalization

Median normalization was performed to account for systematic differences in protein signal
distributions, by aligning the medians of the 30 log2 protein signal distributions, which involved the
following steps:

(1) for each sample, the median of the log2 protein signal distribution was determined.
(2) the global median of all 30 sample medians calculated in (1) was obtained.
(3) a sample specific scaling factor was then calculated as the difference (log2 scale) between the

global median obtained in (2) and the sample-specific median obtained in (1).
(4) the log2 protein signal distribution for each sample was then median normalized by adding the

scaling factor (log2 scale), determined in (4).

Local regression (LOESS)-based normalization, as implemented in the affy R package (Version
1.48.0), was used to correct systematic signal-dependent non-linear bias observed for Cy5, versus
Cy3-labeled 2D-DIGE data samples.

2.6.2. Missing Value Imputation and Log Fold Change from Baseline Calculation

Missing observations were imputed using the k-nearest neighbors algorithm implemented in
the impute R package (Version 1.44.0). Only proteins/spots with at least 24/30 (80%) non- missing
observations were used as input for imputation and downstream analysis. The number of neighbors
to be used as part of the imputation step was set to 8. Subject-specific log2 protein fold changes
from baseline were calculated based on normalized imputed log2 signals for each subject and
post-vaccination day (Days 7 and 14), by subtracting baseline (Day 0) protein signals from each of the
subject’s post-vaccination day signals.

2.6.3. Identification of Differentially Abundant Proteins

Proteins that significantly differed in their response from baseline were identified by using a
two-sided permutation paired t-test, comparing post-vaccination (Day x) to baseline (Day 0) protein
signals (H0:µ(dayx − day0) = 0, H1:µ(dayx − day0) , 0; on the log2 scale). Proteins with an individual
p-value <0.05 and baseline fold change ≥1.2 were considered significantly differentially abundant
(DA) proteins.
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2.6.4. Pathway Enrichment Analysis

Pathway enrichment analysis was carried out separately for each post-vaccination day, using 5850
known gene sets obtained from the KEGG Pathway (Version 79.0, 07/16/2016) and MSigDB (Version 5.1,
01/19/2016 including MSigDB Reactome Pathways and MSigDB Immunologic Signatures) databases.
Prior to pathway enrichment, proteins in the proteomics protein database were mapped to Ensembl
Gene IDs (Ensembl release 84, March 2016), using the biomaRt R package (Version 2.26.1), based on
their UniProt protein accessions. If a UniProt protein accession mapped to multiple Ensembl Gene
IDs, multiple Ensembl Gene IDs were assigned to that protein. Following the mapping step, genes in
gene sets without any UniProt protein accession mappings were excluded from the gene set collections.
Gene set statistics after filtering are provided in Table S1.

For each of the filtered gene sets, enrichment was evaluated using the goseq R package (Version
1.12.0), using the hypergeometric distribution to assess statistical significance. To adjust for testing
multiple gene sets per category type, the Benjamini–Hochberg procedure was applied to each list.
Pathways with an FDR ≤0.1 were considered to be significantly enriched. For significantly enriched
KEGG pathways, color-coded KEGG pathway maps were generated (KEGG KGML pathway layout
information Version 81.0, 01/06/2017). Node background was color-coded by mean log2 fold change
from pre-vaccination (red: up-regulated from baseline, green: down-regulated from baseline). For
the 2D-DIGE/MS data, the largest mean log2 fold change was used for UniProt IDs with multiple gel
spot IDs. If nodes in the pathway referred to multiple genes, the median log2 fold change was used
to set the background color of that node (red: up-regulated from baseline, green: down-regulated
from baseline). If one of the genes of a multi-gene node was significantly enriched, the node label and
border was color-coded (red: up-regulated, green: down-regulated, blue: conflict if one gene was up
but another was down-regulated for the same pathway node).

2.6.5. Identification of Protein Responses that Best Predicted Humoral and Cellular Responses

Regularized linear regression models were fit to determine the 2D-DIGE and LC-MS/MS
protein log2 fold change responses that best predicted peak percent activated CD4+ T-cells
(CD3+CD4+CD38+HLA-DR+ cells), peak percent activated CD8+ T-cells (CD3+CD8+CD38+HLA-DR+

cells), and peak microagglutination titer, using the glmnet R package (Version 2.0–13). T-cell and
microagglutination data was taken from [14]. T-cell variables were encoded as peak percent activated
cells across Days 7, 14, and 28, while tularemia-specific microagglutination was encoded as the log2

of the peak titer across Days 14 and 28. Leave-one-out cross validation was used to determine the
optimum regularization parameters α and λ, that minimized the model mean squared error. Models
were considered to fit the data well if they achieved an R2 of at least 0.7. Correlation networks were
for selected proteins were constructed using Pearson correlation (r ≥ 0.4) and visualized using the R
igraph package (Version 1.2.2).

2.7. Transcriptomics Data

Transcriptomics data from parallel study were used to assess transcriptome-wide gene expression
in PBMCs using RNA-Seq for subjects analyzed in this study (GEO Accession GSE149809).

3. Results

In this study, PBMC cell lysates from 10 subjects collected at pre-vaccination (Day 0) and
post-vaccination (Days 7 and 14) with a live attenuated tularemia vaccine were assayed by two different
laboratories. Each laboratory used a different proteomics protocol. On average, 748 gel spots were
identified for each 2D-DIGE gel, while 1872 proteins and 1517 protein families were identified in each
sample when using LC-MS/MS (Tables S2–S8).
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3.1. Technical Assessments and Method Comparisons

Using MALDI-TOF based identification, 2D gels were characterized, resulting in 41 DA gel spots
linked to 68 UniProt reference sequence database entries, of which 59 were unique. Thirty-five of these
were included in the LC-MS/MS imputed analysis dataset. A listing of all gel spot IDs with protein
identifications are provided in Table S4. The agreement of protein abundance for the 35 shared proteins,
as measured in log2 label-free quantification (LC/MS/MS) and gel spot volume ratios (2D-DIGE), as
well as the agreement between log2 fold change from baseline, was evaluated. The mean Pearson
correlation between 2D-DIGE log2 spot volume ratios and the LC-MS/MS log2 label-free quantification
for these 35 shared proteins was 0.28 (based on 30 samples). The mean Pearson correlation between
baseline log2 fold changes was 0.10 (based on 20 samples).

Boxplots that contrast spike-in protein (beta-lactoglobulin (bovine), myoglobin (horse), and
ribonuclease pancreatic (bovine)) variability across the 30 samples, within and between proteomics
methods, are displayed in Figure S14. In the 2D-DIGE analysis, RNaseA could not confidently be
assigned to a spot in the master gel. Thus, only beta-lactoglobulin and myoglobin were summarized for
the 2D-DIGE data. For the LC/MS/MS analysis, RNaseA was identified, but at a much lower abundance
than either beta-lactoglobulin or myoglobin (Figures S2–S19). For each proteomics experiment, the
coefficient of variation (CV) and robust median absolute deviation (MAD) were calculated (see x-axis
labels in Figure S14). To compare the variability more directly between experiments, log2 mean-centered
protein signals were used. For both experiments, the beta-lactoglobulin (bovine) spike-in protein
showed higher variability compared to myoglobin (horse). While beta-lactoglobulin (bovine) was
similar in variability (as assessed by MAD) between experiments following normalization, differences
were more pronounced for myoglobin (horse). This was also observed when contrasting interquartile
ranges for mean-centered protein signals between experiments (Figure S14, bottom right). Overall, the
MAD was lower for the 2D-DIGE experiment compared to the LC-MS/MS experiment, with an 8%
reduction in MAD for bovine beta- lactoglobulin (0.58 vs. 0.63) and a 33% reduction in MAD for horse
myoglobin protein (0.35 vs. 0.52) (Tables S22–S25 and Figures S2–S14).

3.2. DA Proteins and Enriched Pathways

A permutation paired t-test to identify vaccine-responsive proteins was performed (Tables S5–S8).
Overall, the 2D-DIGE experiment yielded 88 gel spot identifications, that showed DA signals at
any post-vaccination day (Day 7 or 14) relative to pre-vaccination (Day 0) (Figure S1). Twenty were
shared between post-vaccination days. Notably, 60% percent were upregulated from pre-vaccination
(Figure 1 and Figures S20–S29). For the LC-MS/MS experiment, 92 proteins were DA compared to
pre-vaccination with 10 being shared between post-vaccination days. Moreover, 96% were up regulated
from pre-vaccination (Figure 1 and Figures S20–S29). For both experiments, more DA proteins were
identified at day 14 compared to day 7. Four of the 35 (11.4%) shared proteins were DA for both
methods (Table 1). For these 4 shared DA proteins, LC/MS/MS data tended to have higher fold changes
compared to 2D-DIGE for most proteins. The directions of fold changes for all four DA proteins
matched between experiments (all were upregulated from pre-vaccination), ranging from 1.3 to 2.2
-fold increase at Days 7 or 14 compared to pre-vaccination (Table 1). These proteins included TPI1,
which plays an important role in energy production/glycolysis (source UniProt) and is related to CD8+

T cell activation [24,25], as well as 3 antigen presentation-related proteins comprising KIF5B (involved
in MHC class II antigen presentation, source UniProt), HSP90AA1 (involved in chaperoning peptide
antigens to be loaded onto MHC I molecules, source: KEGG), and CAPZA1 (involved in MHC class
II antigen presentation, source UniProt). The strongest fold change following vaccination for both
experiments was observed for the HSP90AA1 chaperone at Day 14 (2.2-fold increase for LC-MS/MS
data and 2.0-fold increase for 2D-DIGE data) (Table 1).
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Figure 1. Venn diagrams summarizing overlap in differentially abundant (DA) proteins between
post-vaccination days (LC-MS/MS and 2D-DIGE/MS). In red: up-regulated compared to pre-vaccination,
in green: down- regulated compared to pre-vaccination.

To evaluate the functional context of DA proteins, pathway enrichment analysis was carried out
for each experiment (LC-MS/MS and 2D-DIGE/MS data) and post-vaccination day (Days 7 and 14).
Significantly enriched KEGG pathways are provided in Table 2. All enrichment results, including those
for MSigDB reactome pathways and MSigDB immunologic signatures, are listed in Tables S9–S19.
KEGG Pathway enrichment analysis of the 2D-DIGE data showed that the antigen presentation and
processing pathway was enriched in DA upregulated proteins on Day 7 and Day 14 (Figure 2). The
protein processing in the endoplasmic reticulum pathway was enriched in DA upregulated proteins
on Day 14 (Figure 3). Stronger upregulation on Day 14 indicated that there was an increase in antigen
presentation response over time. The phagosome pathway was also enriched in DA upregulated
proteins on Day 14 (Figure S34). For the LC-MS/MS data, the ribosome pathway was enriched in
upregulated DA proteins on both Days 7 and 14, with a stronger enrichment at Day 14 (Figures S30
and S31), while the proteasome pathway was enriched in upregulated DA proteins at Day 14 (Figure 4,
Figures S32 and S33). Within the proteasome pathway, the proteins important for the formation of
immunoproteasomes, which play a role in preprocessing antigens for presentation on MHC class I
molecules, were upregulated (Figure 4, Figures S32 and S33).
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(B) Day 14 2D-DIGE results. Node color gradient encodes fold change from pre-vaccination (for
multi-gene nodes, the median fold change is used). In red: up-regulated compared to Day 0, in blue:
down- regulated compared to Day 0, in black: fold change close to 1, in dark grey: proteins were
not identified, light grey: gene missing database mapping. Statistically significant fold changes are
highlighted using red and blue label colors.

Among immunologic signature gene sets, 5 and 6 signatures were enriched in DA results from
LC-MS/MS and 2D-DIGE/MS data, at Day 7 and 14, respectively (Table 3 and Tables S11, S14, S16 and
S19). Both F. tularensis and A. phagocytophilum are intracellular gram-negative bacteria, which survive
and propagate within the host cells. Immunologic signature gene sets related to A. phagocytophilum
infection were enriched in DA proteins in the data generated from both experiments (Table 3 and
Tables S11, S14, S16 and S19). At Day 14, 20 protein families were overlapping for the LC/MS/MS data,
with the A. phagocytophilum infection set, and 8 protein families were overlapping for the 2D-DIGE
dataset (Figures S39–S41 and Table 4 and Tables S10, S13 and S18). These gene sets are based on
published human transcriptomic responses in human polymorphonuclear leukocytes following A.
phagocytophilum infection [26,27]. These latter enrichment results are highly relevant, based on the
live-attenuated F. tularensis vaccine used for this study.
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Table 1. Overlapping differentially abundant proteins (LC-MS/MS and 2D-DIGE/MS). Protein annotations are based on UniProt annotations (March 16, 2016).

Protein ID Gene Name Protein Description 50% Protein Cluster ID
(Gene Name)

LC-MS/MSTime
Point

2D-DIGE/MS
Time Point

LC/MS/MS Log2
Fold Change

2D-DIGE Log2
Fold Change

P33176 KIF5B Kinesin-1 heavy chain Q12840 (KIF5A) Day 7 Day 7 1.11 0.33
P33176 KIF5B Kinesin-1 heavy chain Q12840 (KIF5A) Day 7 Day 14 1.11 0.35
P07900 HSP90AA1 Heat shock protein HSP 90-alpha P07900 (HSP90AA1) Day 14 Day 7 1.12 1.00
P60174 TPI1 Triosephosphate isomerase P60174 (TPI1) Day 14 Day 7 1.12 0.58
P07900 HSP90AA1 Heat shock protein HSP 90-alpha P07900 (HSP90AA1) Day 14 Day 14 1.12 1.02
P52907 CAPZA1 F-actin-capping protein subunit alpha-1 P52907 (CAPZA1) Day 14 Day 14 0.56 0.58

Table 2. Enriched KEGG Pathways (LC-MS/MS and 2D-DIGE/MS). Results within assay and day are sorted by false discovery rate and Jaccard similarity coefficient.

Assay Day Pathway Pathway
Genes #

Significant Genes
(%) [Protein

Families]
Genes Up (%) Genes

Down (%)

Jaccard
Similarity
Coefficient

p FDR-Adjusted P

LC-MS/MS Day 7 Ribosome 127 5 (3.9) [5] 5 (3.9) 0 (0) 0.036 <0.0001 0.003
Day 14 Ribosome 127 13 (10.2) [14] 13 (10.2) 0 (0) 0.0798 <0.0001 <0.0001

Proteasome 44 4 (9.1) [4] 4 (9.1) 0 (0) 0.0449 0.0003 0.0473

2-DIGE/MS Day 7 Pathogenic Escherichia coli infection 54 3 (5.6) [3] 3 (5.6) 0 (0) 0.2273 0.0001 0.0287
Antigen processing and presentation 64 3 (4.7) [2] 3 (4.7) 0 (0) 0.046 0.0002 0.0287

Estrogen signaling pathway 97 3 (3.1) [2] 3 (3.1) 0 (0) 0.0333 0.0006 0.0653

Day 14 Protein processing in endoplasmic
reticulum 159 8 (5) [7] 8 (5) 0 (0) 0.0481 <0.0001 <0.0001

Antigen processing and presentation 64 5 (7.8) [4] 5 (7.8) 0 (0) 0.0745 <0.0001 0.0002
Pathogenic Escherichia coli infection 54 4 (7.4) [4] 4 (7.4) 0 (0) 0.2133 <0.0001 0.0023

Estrogen signaling pathway 97 4 (4.1) [3] 4 (4.1) 0 (0) 0.0388 0.0002 0.0175
Legionellosis 48 3 (6.2) [2] 3 (6.2) 0 (0) 0.0366 0.0005 0.0279
Phagosome 142 4 (2.8) [4] 4 (2.8) 0 (0) 0.0982 0.001 0.0498
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Table 3. Overlapping enriched MSigDB Immunologic Signature Sets (LC-MS/MS and 2D-DIGE/MS).

LC-MS/MS 2D-DIGE/MS

Category Name Category Genes Sig. Genes (%)
[Protein Fam.]

Jaccard Similarity
Coefficient FDR Sig. Genes (%)

[Protein Fam]
Jaccard Similarity

Coefficient FDR

Day 7

GSE41978 KLRG1 HIGH VS LOW EFFECTOR
CD8 TCELL DN 186 5 (2.7) [5] 0.0244 0.0101 3 (1.6) [3] 0.0234 0.0543

GSE41978 ID2 KO VS ID2 KO AND BIM KO
KLRG1 LOW EFFECTOR CD8 TCELL DN 190 5 (2.6) [5] 0.0239 0.0101 5 (2.6) [5] 0.0324 0.0006

GSE2405 0H VS 9H A PHAGOCYTOPHILUM
STIM NEUTROPHIL DN 192 5 (2.6) [5] 0.0237 0.0101 5 (2.6) [5] 0.0321 0.0006

GSE3982 EOSINOPHIL VS MAST CELL DN 186 4 (2.2) [4] 0.0194 0.0999 3 (1.6) [3] 0.0186 0.0543

GSE2405 0H VS 24H A PHAGOCYTOPHILUM
STIM NEUTROPHIL UP 193 4 (2.1) [4] 0.0188 0.0999 3 (1.6) [3] 0.0226 0.0543

Day 14

GSE2405 0H VS 9H A PHAGOCYTOPHILUM
STIM NEUTROPHIL DN 192 20 (10.4) [20] 0.0813 <0.0001 8 (4.2) [8] 0.0485 <0.0001

GSE2405 0H VS 24H A PHAGOCYTOPHILUM
STIM NEUTROPHIL UP 193 17 (8.8) [17] 0.068 <0.0001 4 (2.1) [4] 0.0302 0.029

GSE41978 ID2 KO VS ID2 KO AND BIM KO
KLRG1 LOW EFFECTOR CD8 TCELL DN 190 12 (6.3) [12] 0.0476 <0.0001 5 (2.6) [5] 0.0306 0.0045

GSE22886 NAIVE CD8 TCELL VS DC DN 187 5 (2.7) [5] 0.0195 0.0598 4 (2.1) [4] 0.0264 0.029

GSE29618 BCELL VS MDC DAY7 FLU VACCINE
DN 191 5 (2.6) [5] 0.0192 0.0598 5 (2.6) [5] 0.0304 0.0045

GSE23114 PERITONEAL CAVITY B1A BCELL VS
SPLEEN BCELL DN 194 5 (2.6) [5] 0.019 0.0601 4 (2.1) [4] 0.0213 0.029
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Table 4. Proteins overlapping with enriched A. phagocytophilum infection and PPARγ receptor MSigDB
Immunologic Signature Sets. (LC-MS/MS and 2D-DIGE/MS, Day 14).

GSE2405_0H_VS_24H_A_PHAGOCYTOPHILUM_STIM_NEUTROPHIL_UP

Assay Gene UniProt ID Day 14 Fold Change

2D DIGE/MS ACTB;ACTG1 P60709 2.271;2.004
TUBA1A;TUBA1B;TUBA1C;TUBA3D;TUBA3E;TUBA8 P68363 2.046

HSPA8 P11142 1.629
HSPA5 P11021 1.522

LC MS/MS NPM1 P06748 2.02
TKT P29401 1.784

RPS21 P63220 1.702
RPL30 P62888 1.638
RPL4 P36578 1.602
RPL5 P46777 1.559
RPL7 P18124 1.555

RPL22 P35268 1.526
RPS29 P62273 1.503
RPL3 P39023 1.495

RPL17 P18621 1.449
EEF1B2 P24534 1.433
RPS18 P62269 1.428
RPS27 P42677 1.349
RPL6 Q02878 1.327
EIF3I Q13347 1.309
BRK1 Q8WUW1 1.271

GSE2405_0H_VS_9H_A_PHAGOCYTOPHILUM_STIM_NEUTROPHIL_DN

Assay Gene UniProt ID Day 14 Fold Change

2D DIGE/MS ACTB;ACTG1 P60709 2.271;2.004
TUBA1A;TUBA1B;TUBA1C;TUBA3D;TUBA3E;TUBA8 P68363 2.046

HSP90AA1;HSP90AB1 P07900 2.036
TUBB;TUBB2A;TUBB2B;TUBB3;TUBB4A;TUBB4B P07437 1.857

YWHAZ P63104 1.848
CAPZB;CEP128;PSME1 P47756 1.674

HSPA8 P11142 1.629
VCP P55072 1.498

LC MS/MS HSP90AA1 P07900 2.183
NPM1 P06748 2.02
EIF4A1 P60842 1.838

TKT P29401 1.784
HMGB1 P09429 1.75
RPS21 P63220 1.702
RPL30 P62888 1.638
RPL4 P36578 1.602
RPL5 P46777 1.559
RPL7 P18124 1.555

CHTOP Q9Y3Y2 1.539
RPL22 P35268 1.526
RPS29 P62273 1.503
RPL3 P39023 1.495
RPL17 P18621 1.449

EEF1B2 P24534 1.433
RPS18 P62269 1.428
RPS27 P42677 1.349
RPL6 Q02878 1.327
EIF3I Q13347 1.309
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Table 4. Cont.

GSE25123_WT_VS_PPARG_KO_MACROPHAGE_DN

Assay Gene UniProt ID Day 14 Fold Change

2D DIGE/MS ARHGDIB P52566 1.504
LC MS/MS SYNCRIP O60506 2.136

SAMHD1 Q9Y3Z3 2.118
PSMA4 P25789 1.814
PTBP1 P26599 1.635
PSMA5 P28066 1.595
RPL5 P46777 1.559
RPL7 P18124 1.555

EEF1B2 P24534 1.433
SNX3 O60493 1.247

GSE37532_TREG_VS_TCONV_CD4_TCELL_FROM_LN_UP

2D DIGE/MS HSP90B1 P14625 1.636
LC MS/MS ATIC P31939 2.222

NOP56 O00567 2.169
CCT3 P49368 2.018
HDGF P51858 1.801
EEF1D P29692 1.578
NOP58 Q9Y2X3 1.525
SMAP O00193 1.452

GSE37532_TREG_VS_TCONV_PPARG_KO_CD4_TCELL_FROM_LN_DN

2D DIGE/MS LCP1 P13796 2.293
CALR P27797 1.558
HSPA5 P11021 1.522
P4HB P07237 1.505

GSE37532_WT_VS_PPARG_KO_VISCERAL_ADIPOSE_TISSUE_TREG_UP

2D DIGE/MS YWHAZ P63104 1.848
LC MS/MS HDGF P51858 1.801

HMGB2 P26583 1.757
TCEA1 P23193 1.661
PPP6C O00743 1.638

The peroxisome proliferator-activated receptor gamma (PPARγ) protein is a major player in
resolving inflammation. Lipids 5-HETE, OEA and AEA have all been shown to be ligands for the
PPARγ. The LC- MS/MS DA results at Day 14 showed enrichment in published PPARγ-related
immunologic signature gene sets, including GSE25123 (gene expression signals in macrophage-specific
PPARγ knockout mice) [28,29] with 9 overlapping protein families, GSE37532 (gene expression signals
in T cells in mice) [30,31] with 7 overlapping protein families, and GSE37532 (gene expression signals
in T-cells obtained from visceral adipose tissue in mice) [31,32] with 5 overlapping protein families
(Table 4 and Table S14). The Day 14 2D-DIGE DA data also showed an enrichment in PPARγ-related
GSE37532 gene set (gene expression signals in T cells from PPARγ knockout mice) [31,33], with 4
overlapping protein families (Table 4 and Table S19).
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3.3. Identification of Protein Responses that Best Predicted Humoral and Cellular Responses

To assess the relationship between proteome changes and humoral and cellular responses
post-vaccination, we utilized CD4+, CD8+cell activation and tularemia-specific microagglutination
titer we collected previously [14]. We applied regularized linear regression models and visualized
results using correlation networks (Figure 5). At both days, peak CD4+ and tularemia-specific
microagglutination titer were correlated with changes in proteins. At Day 7, a change in proteasome
subunit alpha type-2 (PSMA2), known to be involved in MHC Class I antigen presentation, was increased
from pre-vaccination and was associated with the tularemia-specific microagglutination titer. The same
was observed for ribonuclease inhibitor 1 (RNH1), a ribonuclease/angiogenin inhibitor potentially
involved in redox homeostasis, which was also increased and correlated with microagglutination titer
at both Day 7 and 14 (Figure 5). An increase in spectrin alpha 1 (SPTA1), keratin 1 (KRT1), solute
carrier family 4, anion exchanger, member 1 (SLC4A1), proteolytic signal containing nuclear protein
(PCNP) and coactosin-like F-actin binding protein (COTL1) was positively associated with peak CD4+

activation (Figure 5).
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titer across Days 14 and 28 (orange circles). Edges represent the Pearson correlation between log2

protein fold changes and peak CD4+, CD8+ percent T-cell activation, or log2 microagglutination titer.
Protein nodes are color-coded by log2 fold change for the respective post-vaccination day. Edges
are color coded and edge widths are scaled by Pearson correlation. Nodes were filtered based on
Pearson correlation ≥ 0.4 and inclusion as predictors, as part of regularized linear regression models.
No correlations were identified for peak CD8+ T-cell activation.

4. Discussion

This study expands the efforts to comprehensively characterize immune responses to Tularemia
vaccination [14,15,23]. Using both 2-DIGE and LC-MS/MS, changes in proteins in 10 subjects following
vaccination were assessed. Three non-human proteins were used as spiked-in controls for both
methods for the evaluation of the variability between experiments. Spike-in control protein signals
and variability metrics for 3 controls showed that both assays had difficulties with quantifying RNaseA
levels. We attribute the lower recovery of RNaseA protein/peptides in the LC/MS/MS analysis to the
abundance of cysteine residues and low complexity regions, yielding few proteotypic peptides for
sequencing [34]. For the 2-DIGE experiment, we hypothesize that the missing signal of RNaseA was
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related to its high isoelectric point value (pI = 9.6). On the other hand, bovine beta-lactoglobulin
and horse myoglobin were detected in, on average, 72% and 82% of samples, and showed similar
variability for both methods.

The analysis of non-control proteins confirmed that the two different proteomic assays, as expected,
produced complementary results [35,36]. This was evident by the small number of shared DA proteins
and weak correlation between protein abundance and fold change metrics. In addition, 41% of DA spot
proteins identified using MALDI-QIT-TOF were not identified by LC-MS/MS, with a reasonable sample
coverage (i.e., ≥80% non-missing values) indicating that missing protein identifications/false negatives
play a substantial role. These findings can be explained by multiple factors. First, the proteomics
strategies used are technologically very different [36,37]. 2D-DIGE performs analysis on intact proteins,
while shotgun LC-MS/MS uses digested peptides. In 2D-DIGE, a mixture of intact proteins is surface
labeled with fluorophores, such that the ratio of sample to control fluorescence intensity is proportional
to the change in abundance. The labeled proteins are separated by 2-dimensional electrophoresis,
which has relatively high resolving power and fluorescence dynamic range but is limited in the total
protein applied to the gel, which favors the recovery of high abundance proteins. In LC-MS/MS
methods, a chromatographic separation of tryptic peptides is carried out, concurrent with MS/MS
sampling of the eluted peptides at high frequency to extract peptide sequence information. These
data were analyzed using MaxQuant software to identify proteins in the original lysate and to obtain
relative quantifications [37]. These significant differences in the read outs are very likely to affect
which proteins are identified from a complex mixture. Thus, it is not surprising that different results
in terms of DA protein overlap and abundance and fold change metrics were seen. Second, the
preparation of PBMC cell lysates was carried out differently for the two experiments, which may
have contributed to the observed differences. Sample preparation methods prior to the lysis of the
cells could affect the results, including thawing temperatures, speed of thawing, and cell viability
assessments that were not performed for LC- MS/MS analysis. There may be additional differences
between the two experiments that are less obvious, and which could affect outcomes. When comparing
the data, a higher level of albumin contamination/background was observed in the LC-MS/MS samples.
While the 2D-DIGE method separated the albumin out as a single spot (Spot ID: S0522, Table S4), for
LC-MS/MS, the resulting albumin peptides were oversampled throughout the gradient. This led to
fewer identified peptides and lower quantitative signals for the proteins (peptides) that co-elute. This
was evidenced by a strong negative correlation between the abundance of albumin protein and the
median protein abundance per sample (Pearson Correlation r = −0.88) in the LC-MS/MS data. This
implies that albumin contributed to false negatives and lower fold change accuracy in the LC-MS/MS
experiment, by pushing other protein abundances below or near the detection limit. The analysis
accounted for this systematic abundance effect using median normalization (scaling up abundances
for samples with relatively low medians and scaling down abundances for samples with relatively
high medians). However, this median-normalization approach is not designed to correct for missing
proteins or the inaccuracy of protein abundances that are pushed close to the detection limit, due to
albumin oversampling.

Both proteomic assays indicated that processes related to antigen processing and presentation,
and A. phagocytophilum infection, were enriched in DA proteins at Day 7 and/or Day 14. The
antigen presentation signal at Day 14 showed an increase in the abundance of proteins essential for
immunoproteasome formation and an increase in the chaperone protein abundance which is important
for MHC class I loading. For the latter, the 2D-DIGE results showed an increasing signal between
Days 7 and 14 (both in the number of DA proteins involved in this process as well as in fold change,
Figure 3), indicating that MHC class I antigen loading increased during that time. It is known that
phagosomes will be formed by antigen presenting cells (APCs) to engulf bacterial pathogens. The
phagosomal contents will then be processed after phagolysosomal fusion, and the resulting fragments
presented to the antigen specific T lymphocytes in the context of major histocompatibility complex
(MHC) surface molecules. Phagocytosis plays a traditional role in providing ligands for MHC-II, but
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recent studies suggest that phagosomes might alter the conventional pathway for MHC-II antigen
processing in yet undefined ways. MHC-I molecules are normally loaded with peptides derived
from cytosolic proteolysis. Although F. tularensis shows an extracellular phase during bacteremia in
mice, survival and replication within host cells is thought to rely on physical escape from its original
phagosome and replication in the host-cell cytosol. As expected, the data revealed that, in addition
to the upregulated phagosome pathway, the MHC class I antigen processing and presentation, and
proteins related to MHC class II antigen presentation (KIF5B, APZA1) and CD8+ T cell activation (TPI1)
were also upregulated post-vaccination. These findings suggest that the LVS is likely to be partially
inactivated, and the associated antigens are processed in the phagolysosomes. Processed antigens then
enter the MHCI-II antigen presentation pathway, wherein F. tularensis antigens surviving in the cytosol
of host cells are later processed by the proteasomes for endogenous MHC class I antigen processing.

To further assess these proteomics results in context with the corresponding transcriptomics
results based on RNA-Seq (unpublished data), pathway maps were generated that were color-coded
by gene expression for KEGG pathways enriched in DA proteins for the complete time course (Days
1,2, 7, and 14) (Figures S42–S73). These results indicated that gene expression within the MHC I sub
pathway was significantly up-regulated for PA28 (immunoproteasome subunit), HSP70, and TAP1/2
at Day 2 post-vaccination. These gene expression results returned to near pre-vaccination levels by
Day 7. The gene expression of HSP70 remained significantly upregulated from pre-vaccination at Day
7 and Day 14, matching the proteomics results for Day 7 and Day 14. However, in contrast to those
proteomic findings, peak levels were observed at Day 2 and increases in gene expression levels for the
MHC 1 sub pathway between Days 2 and 14 were not observed. Gene expression signatures related to
immunoproteasome formation were up-regulated throughout Days 1–14, but the strongest responses
were detected at Day 2 post-vaccination (Figures S46–S49). This indicates that, as expected, peak
transcriptomic responses for MHC 1 antigen processing and presentation preceded the corresponding
proteomic responses seen at Day 7 (Figures S58–S61) (note, Day 2 samples for proteomics were not
tested).

In addition, on the transcriptomics level, there was evidence of an MHC II sub pathway signal,
including a significant upregulation of the gene encoding for the MHCII molecule at Day 7 (Figure S60)
and the CIITA gene at Day 14 (MHC class II transactivator). While none of the proteins in the MHC II
sub pathway showed differential responses at the proteomics level (Figures S35 and S36), the KIF5B and
APZA1 proteins that are known to play a role in MHC class II antigen presentation were upregulated
in the proteomics experiment at Day 14. Together, these results imply a staggered activation with MHC
I presentation to CD8 T cells being activated, first followed by MHC II presentation to CD4 T cells
being activated second.

Moreover, both proteomic assays also showed that DA proteins were enriched in PPARγ-related
gene sets at day 14 (Tables S14 and S19, Table 4). PPARγ is a ligand-activated transcription factor of the
nuclear receptor superfamily, that controls the expression of a variety of genes involved in fatty acid
metabolism [38]. Endogenous ligands of PPARγ include fatty acids and eicosanoids [39]. PPARγ can
alter macrophage trafficking, and increases efferocytosis and phagocytosis. It also plays a role in the
adaptive immune response, particularly regarding B cells [40]. In addition, the activation of PPARγ
can shift production from pro- to anti-inflammatory mediators [40]. Interestingly, lipidomic analyses of
plasma samples derived from the same subjects revealed increased metabolism (decreased abundance)
of the pro-inflammatory 5-hudroxyeicosatetraenoic acid (5-HETE, an eicosanoid) lipid by Day 7
post-vaccination, associated with an apparent compensatory increase in dihydroxyeicosatetraenoic
acid (DHET) lipid levels [23]. The pro-inflammatory function of 5-HETE is known to be regulated
through conversion to its inactive and less active metabolites, DHET lipids by the Cytochrome P450F
family of proteins. Related transcriptomic analyses demonstrated that gene CYP4F22 was upregulated
on Day 2 post-vaccination (1.7-fold increase), Day 7 post-vaccination (1.5-fold increase), and Day 14
post-vaccination (1.8-fold increase). Several Cytochrome P450 family genes, including CYP1B1 and
CYP4V2, were also differentially expressed [23]. Because cytochrome P450 genes are important for the
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conversion of pro-inflammatory 5-HETE into inactive DHET metabolites, the transcriptomic results
further supported the conclusion that 5-HETE is induced early in the acute response to live tularemia
vaccination, followed by the induction of Cytochrome P450 gene expression and the subsequent
conversion of 5-HETE into inactive DHET species. Consistent with these findings, Muktha et al.
found that Tularemia DVC-LVS vaccination induced the production of IFN-gamma detectable in
plasma, a signature proinflammatory cytokine, resulting in a statistically significant increase at Day
1 and Day 2 relative to pre-vaccination [15]. Taken together, the data from proteomics, lipidomics
and transcriptomics provided interesting new insights into the interplay between Cytochrome P450
family genes, the pro-inflammatory eicosanoid lipids and PPARy in resolving the Tularemia vaccine
induced inflammation.

In addition, at least eight identified proteins were positively associated with peak tularemia-specific
microagglutination titer or peak CD4+ activation following vaccination. To our knowledge, this is the
first report linking these proteins to human immune responses except for PMSA2 and COTL1. PMSA2
is a subunit of the immunoproteasome which is known to be able to enhance the repertoire of peptides
presented by MHC-I molecules [41]. In line with this observation, an increase in PSME1 and PSME2
(Proteasome activator complex subunit 1 and 2) protein following AS03 adjuvanted H5N1 influenza
vaccination was observed in monocytes at Day 3, predicting later seroprotection status (based on
protective levels of HAI titter) [42]. Furthermore, COTL1, a member of the actin depolymerizing factor
(ADF)/cofilin family, is related to the actin-binding protein coactosin, and has been identified as a
potential regulator of T cell activation by Kim J. et al. [43] Whether these proteins can be used as novel
biomarkers to predict human immune responses remains to be established in larger studies using well
established methods, including ELISA, western blot analysis or multiplexed quantitative assays.

5. Conclusions

Overall, the analysis confirmed that the two different proteomics assays, as expected, produced
complementary results. Some commonalities between the results were identified at the pathway level,
including antigen presentation, phagocytosis, inflammation (PPARγ receptor), and gram-negative
bacterial infection (A. phagocytophilum infection) signals. These results support the biological
conclusion that, 14 days following vaccination with a live attenuated tularemia vaccine, abundance
for proteins involved in both MHC class I and class II antigen presentation were increased compared
to pre-vaccination, including immunoproteasome formation proteins and chaperones for MHC
class I loading. In addition, the immunoproteasome subunit protein PMSA2 was associated with
tularemia-specific microagglutination titer, linking the MHC class I-related response to the later peak
humoral response. Consistent with the proteomics data, our transcriptomic alterations showed that
MHC class I and class II-related signals were up-regulated at the gene expression level in a staggered
fashion, most likely related to differential timing of transcription first, followed by new protein
production, and then increased antigen presentation activity.

The corroborating and complementary data from three ‘omics technologies (proteomics, lipidomics,
and transcriptomics) provide evidence of how inflammatory response pathways are activated and
resolved following live attenuated Tularemia vaccination [15,23]. Although this study was based
on a small sample size (10 subjects), the observed DA protein and pathway responses provide new
biological insights that can be built upon in future studies, using live attenuated Tularemia strains or
other LVS as immunogens, including the assessment of their potential as surrogates of protection.
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LOESS normalization (2D-DIGE/MS), Figure S9: ECDF plots of log2 LFQ intensity before and after median
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