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The ability to adaptively minimize not only motor but cognitive symptoms of neurological

diseases, such as Parkinson’s Disease (PD) and obsessive-compulsive disorder (OCD),

is a primary goal of next-generation deep brain stimulation (DBS) devices. On the basis of

studies demonstrating a link between beta-band synchronization and severity of motor

symptoms in PD, the minimization of beta band activity has been proposed as a potential

training target for closed-loop DBS. At present, no comparable signal is known for

the impulsive side effects of PD, though multiple studies have implicated theta band

activity within the subthalamic nucleus (STN), the site of DBS treatment, in processes of

conflict monitoring and countermanding. Here, we address this challenge by recording

from multiple independent channels within the STN in a self-paced decision task to

test whether these signals carry information sufficient to predict stopping behavior on

a trial-by-trial basis. As in previous studies, we found that local field potentials (LFPs)

exhibited modulations preceding self-initiated movements, with power ramping across

multiple frequencies during the deliberation period. In addition, signals showed phasic

changes in power around the time of decision. However, a prospective model that

attempted to use these signals to predict decision times showed effects of risk level did

not improve with the addition of LFPs as regressors. These findings suggest information

tracking the lead-up to impulsive choices is distributed across multiple frequency scales

in STN, though current techniques may not possess sufficient signal-to-noise ratios to

predict—and thus curb—impulsive behavior on a moment-to-moment basis.

Keywords: STN, DBS, impulsivity, balloon analog risk task (BART), decision making, local field potential (LFP)

INTRODUCTION

The well-attested success of deep brain stimulation (DBS) in ameliorating the symptoms
of neurological disorders, such as Parkinson’s Disease (PD) and essential tremor has
brought with it an intense interest in DBS as a treatment modality for other conditions,
including obsessive-compulsive disorder (OCD) and treatment-resistant depression (Johansen-
Berg et al., 2008; Malone et al., 2009; de Koning et al., 2011; Figee et al., 2013). This
enthusiasm has also extended to an effort to identify biomarkers relevant to DBS targets
for the cognitive symptoms of PD, in the hopes that alleviation of these symptoms
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could also be addressed by next-generation DBS devices (Berney
et al., 2002; Hälbig et al., 2009; Abosch et al., 2011; Hoang et al.,
2017). These impulsive dimensions of the disease are thought
to arise from the interaction between cortical planning areas,
such as pre-SMA/SMA and the subthalamic nucleus (STN), the
site of DBS stimulation, via the so-called “hyperdirect” pathway
(Nambu et al., 2002; Aron and Poldrack, 2006; Frank, 2006;
Cavanagh et al., 2011; Zavala et al., 2014). Studies have shown
that oscillations in the theta band (4–8Hz) play a key role in
mediating the influence of frontal cortical areas on decisions
in the basal ganglia and likely represent cognitive, top-down
aspects of the decision process (Frank et al., 2007; Ballanger
et al., 2009; Cavanagh et al., 2011; Zavala et al., 2014, 2015). This
complements an extensive literature on the role of beta band
oscillations (13–30Hz) in the pathophysiology of Parkinson’s
Disease, where it is known that such oscillations are suppressed
by dopaminergic medication and effective DBS stimulation (Levy
et al., 2002; Bronte-Stewart et al., 2009; Jenkinson and Brown,
2011; Whitmer et al., 2012). Similarly, power at these frequencies
is reduced prior to voluntary movement, suggesting that such
suppression is necessary for movement initiation (Jenkinson and
Brown, 2011; Brittain et al., 2012).

However, while beta band activity has shown promising
results as a biomarker suitable for training closed-loop DBS
devices (Feng et al., 2007; Rosin et al., 2011; Santaniello et al.,
2011), much less is known about the potential efficacy of
stimulation targeting theta band. This stems, at least in part,
from the more complex modulatory role posited for these
oscillations in decision-making, where higher theta band power
does not drive impulsivity but rather interacts with motivational
signals entering the basal ganglia from the striatum and cortex
(Cavanagh et al., 2011; Cavanagh and Frank, 2013; Zavala et al.,
2014, 2015). Moreover, typical studies of these conflict-driven
signals only report group averages, leaving open the question
of variability across subjects and the robustness of these effects
at the single subject level. Thus, the question of whether these
signatures can be used and exploited at the level of individual
subjects to predict and improve impulsive decisions in the face
of conflict is a key one for the feasibility of next-generation DBS
devices aiming to target and minimize cognitive side effects.

Here, we asked whether information about upcoming
decisions might be disparately encoded by oscillations across
the frequency spectrum by analyzing multi-channel intracranial
recordings performed while patients with Parkinson’s Disease
underwent implantation of DBS. We asked patients to perform
a version of the balloon analog risk task (BART) (Lejuez et al.,
2002), which is often used to model impulsive choice behavior
(Lauriola et al., 2013). In contrast to standard perceptual decision
tasks (cf. also Zavala et al., 2014), decisions in our experiment
took place over a time scale of several seconds, allowing us to
track neural correlates of the deliberative process as they occurred
preceding decisions. We report that both single units and LFP
signals altered their activity over time during the decision period,
with LFP power in multiple frequency bands ramping over
the course of the final seconds preceding decision, with phasic
changes following the response. We also found evidence at the
group level for separate roles for theta band activity in regulating

the decision process and beta band power in motor execution
of the decision, consistent with prior studies. However, these
patterns displayed wide variability at the group level, and a
classifier trained to predict upcoming decision times failed to
improve with the addition of field potential data. Together,
these findings imply that decision-related information in the face
of conflict is encoded at multiple frequencies within the basal
ganglia, but development of additional, more reliable biomarkers
may be needed as critical input for next-generation DBS devices
designed to target impulsive decision-making.

MATERIALS AND METHODS

We conducted intraoperative recordings in 15 patients
undergoing implantation of DBS devices in the subthalamic
nucleus for treatment of Parkinson’s Disease. This study was
carried out in accordance with the recommendations of the
Duke University Medical Center Institutional Review Board with
written informed consent from all subjects. All subjects gave
written informed consent in accordance with the Declaration
of Helsinki. The protocol was approved by the Duke University
Medical Center Institutional Review Board. Patients were
introduced to the study by a member of their treatment team.
If interested, they were given further information by a study
coordinator separate from the research team and afforded time
to discuss with family prior to consent. Patients gave written
consent preoperatively, either the morning of surgery or during
a prior clinic visit. All patients who met the inclusion/exclusion
criteria for DBS surgery were offered the opportunity to
participate.

Surgical Procedures
All patients participating in the study (N = 15, 5 female, 10 male)
underwent DBS implantation in the subthalamic nucleus (STN)
for treatment of Parkinson’s Disease (see Table 1 for details).
Patients were off Parkinson’s medication (i.e., sinemet, dopamine
agonists) for >12 h preceding surgery and during the surgical
procedure to enhance their symptoms as part of the routine
clinical care.

Patients underwent detailed MRI scanning, typically followed
by Leksell frame placement, with a high resolution CT scan used
to localize the surgical target. A subset of patients underwent
frameless implantation following placement of fiducial markers
in the skull later referenced to MRI scans. In all cases, STN
was identified by first mapping out indirect target coordinates
(i.e., X = 11–12mm off the midline, Y = 2mm behind AC-PC
midpoint, Z = 4mm below AC-PC line) and then refining these
initial coordinates by the area of decreased FLAIR density on
sagittal and coronal reconstructions corresponding to STN, with
small adjustments (typically 1–2mm) in X and Y dimensions for
best fit. Single-unit recordings were first performed to define the
borders of the STN, according to standard electrophysiological
criteria, with the goal of attaining at least 5.5–6mm of typical
STN multi-unit firing. Typically, 2–3 passes were performed.
Localization was performed using single-channel tungsten
microelectrodes (Frederick Haer, Brunswick, ME).
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TABLE 1 | Patient characteristics.

Age Disease duration (years) LEDD Surgery side

66–70 2.5 245 Unilateral, R

61–65 10 2,930 Bilateral

56–60 3 700 Bilateral

61–65 7 1,098 Bilateral

66–70 22 800 Bilateral

61–65 12 898.5 Bilateral

66–70 5 925 Bilateral

56–60 6 560 Unilateral, R

46–50 5 0 Unilateral, L

51–55 6 965 Bilateral

41–45 5 0 Unilateral, L*

66–70 14 510 Bilateral

56–60 9.5 1674.5 Bilateral

51–55 13 991 Bilateral

61–65 4 800 Bilateral

*Previous R sided DBS.

M: male; F: female; LEDD: levodopa equivalent daily dose; R: right; L: left.

In most patients, data were collected during the process of
STN localization. In some patients, data were collected from both
sides of a bilateral DBS implantation (subjects 14, 16, 17). Once a
well-isolated single unit was identified, the electrode would be left
in place as the patient performed the behavioral task. Once data
collection was complete, STNmapping would resume. In a subset
of patients (N = 7; datasets 16.2, 17.2, 18.1, 20.1, 22.1, 23.1, 30.1),
after full STN mapping, a 32-channel Pt/Ir microwire (35µm
diameter) array (Ad-Tech Medical Instruments, Racine, WI) was
passed to the STN via an outer cannula (Patil et al., 2004) to a
depth at which significant activity had been noted during initial
localization. After allowing a fewminutes for initial recordings to
stabilize, the microwire array was slowly advanced through the
cannula. Channels corresponding to putative single units were
then selected and sorted, following which patients performed the
behavioral task.

Following completion of the behavioral task, the DBS
treatment electrodes were implanted. Patients undergoing
bilateral DBS implantation were offered the opportunity to
participate in the research twice, once for each implantation
target. As a clinical routine, a brain computed tomography scan
was performed within 12 h of the surgery procedure, and in no
instance was a hemorrhage or other complication noted. Hence,
the clinical risks of temporary placement of the 32 channel
microwire array were demonstrated to be very low, as previously
reported (Patil et al., 2004; Hanson et al., 2012).

Behavioral Task
We used a continuous time version of the BART (Lejuez et al.,
2002), in which subjects must balance risk and reward in an
attempt to maximize their score. In the original BART subjects
choose whether to inflate a balloon, increasing its point value
but also its risk of popping, or stop inflating and thereby add
the current value of the balloon to their accumulated score. In

the original task, each balloon had a maximal number of times it
could be inflated (e.g., 10 or 20) and an equal chance of popping
on each trial. If the balloon popped, a subject would receive no
points for that balloon.

Our variant modified this task to the constrained setting of
the patient population in the operating theater. We designed a
continuous-time version of the BART in which patients pressed
a button to start inflating each balloon and pressed the button
a second time to stop inflating and add its point value to their
score (Figure 1A). In this version, balloons were divided into
three risk levels, indicated by color. Each color corresponded to
a distribution of maximal inflation (pop) times, with standard
deviation proportional to the mean. This version proved much
easier for patients to learn (pop times are more predictable) while
preserving the cost/benefit tradeoff of the original task. Each
balloon began with a value of 0 points, with its value increasing by
30 points/s. Pop times were drawn from a normal distribution on
each trial (red: mean: 3 s, std: 0.9 s; orange: mean: 6.5 s, std: 1.95 s;
yellow: mean: 10 s, std: 3 s). When patients successfully stopped
the trial, the balloon turned green, a cash register sound played,
and the balloon’s point value was added to the accumulated score.
If patients did not stop the trial in time, the balloon popped,
resulting in a flash and a pop sound, and no points accrued.

For a subset of patients, two types of control conditions were
added. In the first, 25% of balloons constituted forced trials.
On these trials, a gray ring appeared at a fixed distance from
the balloon, its radius drawn from the balloon’s color-specific
pop time distribution. That is, patients were explicitly shown a
representative pop time of the balloon. On these trials, patients
could not stop the balloon’s inflation, and when the balloon’s
radius met the gray ring, the cash register sound played and
patients received the current point value of the balloon. This
subset of trials thus informed patients about the statistics of the
task and attempted to control for motor anticipatory effects—
since the outcome of the trial is certain and there is no need for
stopping movement, motor planning should not play a role.

The second type of control trials involved gray (no-reward)
balloons. Like the first type of control trial, these gray balloons
were surrounded by a gray ring (with radius drawn from the
intermediate/orange distribution). They functioned exactly as the
first type of control trials, save that these balloons were worth
no points. As a result, these trials control for effects of reward
anticipation in the task.

Subjects were paid based on performance in the task, up to
a maximum of $40. Subjects were informed in advance of the
rank order of risk for each balloon color (yellow, orange, red),
to minimize the need for within-task learning. Subjects were also
given the opportunity to familiarize themselves with the task
prior to the experimental session.

The task itself was coded in Matlab (The Mathworks, Natick,
MA) using PsychoPhysics Toolbox (Brainard, 1997). These
scripts are available online at https://github.com/jmxpearson/
bart.

Data Acquisition and Preprocessing
Data were recorded using a Plexon MAP system (Plexon,
Inc., Dallas, TX) and the FHC Guideline 4000 (FHC, Inc.,
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FIGURE 1 | Task design and performance. (A) Participants pressed a button to begin inflating a virtual balloon onscreen. The value of the balloon grew with its size.

Participants either clicked the joystick a second time, banking the balloon’s value, or the balloon popped, earning no points. Balloons came in three colors, indicating

different distributions of pop times and thus differing levels of risk. (B) Subject performance by risk condition. Each subject’s mean inflate time is plotted for each risk

condition and for control trials. Triangles indicate the mean of the actual pop time distribution, unknown to subjects. Control trials, in which the computer stopped the

trial, show a tight cluster around the mean. (C) Fraction of pop trials for each subject. Each subject’s fraction of popped balloons is plotted for each trial type.

Bowdoin, ME). For single electrode recording, both high-pass
and low-pass (local field potential; LFP) signal were recorded,
with spikes extracted from the high-pass signal offline (see
below). For multielectrode recording, LFP was recorded from
all 32 channels and high-pass signal from the 16 most active
channels, though all spike detection, and sorting was performed
offline.

Prior to analysis, spike detection and sorting were performed
via the WaveClus package (Quiroga et al., 2004) using a 4
standard deviation threshold based on robust (median-based)
estimation of the noise. Putative units with <5 or >100
spikes/s average firing over the session were rejected based
on established physiology of STN. Single units were identified
based on reliability of spike waveforms (Tankus et al., 2009),
with the remainder of units classified as multi-unit activity.
Local field potentials (LFPs) were downsampled to 200Hz.
Recording artifacts were identified via either an aberrant increase
in power or a sustained maximal amplitude (“railing”) and
epochs containing these artifacts removed in subsequent analysis.

Statistical Analysis
Behavioral Analysis
To calculate optimal behavior in the task, we made use of the fact
that pop times in each condition were Gaussian distributed with
known mean and variance, while rewards were proportional to
elapsed time. That is, τ ∼ N(µ, σ 2) andR = αt, which implies an
expected reward at time t proportional to both the elapsed time
and the survival probability:

E[R|t] = αt(1 − CDF(t; µ, σ 2)) with CDF (t) the
cumulative distribution function of the Gaussian with given
mean and variance. For each risk level, we then numerically
calculated topt by maximizing expected reward.

Spiking Model
We modeled spike data as arising from a Generalized Linear
Model with Poisson distribution and log link function:

N ∼ Poisson(f1t)

log f = β0 + βX + γlog(t − t0 + 1)
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That is, counts in each 1t = 50ms bin were assumed to be
Poisson distributed with rate f . Task variables were modeled as
contributing linearly to the logarithm of f , such that the baseline
firing rate of the cell is f0 = eβ0 and the effect of adding a binary
regressor xi is a multiplicative gain eβi . As a result, our model
predictors were time series, incorporating each bin for the entire
experiment into a single regressor.

In addition to baseline spiking rate, our model includes an
indicator term for the entire trial period (equivalent to the
contrast between trial and inter-trial baseline), separate binary
indicators for the inflation and outcome periods, a categorical
regressor for outcome type (banked reward vs. no points),
and a categorical regressor for trial type (risk levels high,
medium, low, and control). Note that these regressors are not
orthogonalized and suffer from multicollinearity, which we treat
using regularization methods (see below). Finally, we include
an effect of elapsed time within each trial, such that if t is the
elapsed time and t0 the trial start time, the firing rate increases
as f = α(t − t0 + 1)γ , with α including the effects of all other
variables.

We fit this model using elastic net regularization via the
glmnet package in R (Friedman et al., 2010). In our results,
we used 10-fold cross-validation to choose the values of λ and
α. That is, we fit the model using 90% of the available data
(time bins) and used the remaining 10% of data to assess its
predictive performance. We then repeated this method 10 times
using distinct random partitions of the data. For λ, we used the
largest value (returned by glmnet) within one standard deviation
of the value that produced the best performance, on average,
for the cross-validation procedure. That is, we used the most
parsimonious model (highest λ) statistically indistinguishable
from the best-performing model. To determine α, we repeated
the entire glmnet fitting 11 times, testing values of between 0.1
and 1 in steps of 0.1.

In addition, for comparison, we also calculated effect sizes
for other regularization choices. These include the same model
without regularization (more exactly, set to the minimum
value used by the elastic net algorithm), with the value of
lambda producing the best predictive performance, and the
parsimonious model described above fit to shuffled data. In the
last case, spikes counts for each time bin were randomly shuffled,
removing any temporal correlations in the data that might be
explained by our regressors.

Local Field Potentials
LFPs were preprocessed by first subtracting the mean across all
channels at each time point from each channel to remove global
artifacts, followed by bandpass filtering into typical frequency
bands of interest as follows (frequencies in Hz): delta: (0.1, 4),
theta: (4, 8), alpha: (8,13), beta: (13, 30), gamma: (30, 80).
These signals were subsequently downsampled to 200Hz and
instantaneous power calculated via the square of the Hilbert
transformed signal. Finally, time series for each channel were
censored to remove microphonics, amplifier saturation, and
other artifacts.

For peri-event LFP analyses, summary traces were computed
by collecting samples around each event of interest (trial

starts, trial stops, etc.), taking the median at each time point
across events, and (for plotting purposes) standardizing the log
power for each channel to have mean zero and unit variance.
This last step allowed us to compare dynamics of the signal
across channels despite variability in channels’ dynamic range.
Broadband signals were processed in the same manner, omitting
the step of bandpass filtering. In some plots, traces were
subsequently averaged across channels on the logged and z-
scored scale. For instantaneous power analyses that collapsed
across subjects, the group mean of subject means on the logged
and z-scored scale was used. By normalizing prior to averaging,
both of these choices give equal weight to each channel, rather
than favoring channels with higher overall power. However,
we also consider the case of average across channels without
z-scoring in Supplementary Results.

Time-frequency plots were constructed via continuous
wavelet transforms of the data. For analyses that collapsed
across channels and subjects, individual channels were z-scored
prior to averaging, so that channels with widely varying power
contributed equally. We used a complex Morlet wavelet with
w = 9 and logarithmically-spaced frequencies from 2.5 to 50Hz.
Power was calculated via the sum of squares of the real and
imaginary parts of the wavelet transform and plotted on a decibel
scale. To compensate for different levels of intrinsic power within
frequency bands, the plotted signal was normalized by frequency
band by the mean power present across all trials within that band
in the interval B = (−1.5, −0.5), that is, from 1.5 s before to 0.5 s
before the event of interest. Specifically, the plotted intensities are

given by I = 10log10
P(f ,t)
P0(f )

with P(f , t) = |s(f , t)|2, s(f, t)

the wavelet-transformed signal, and P0(f) the mean power in the
baseline interval. For time-frequency plots depicting the contrast
between two conditions, no normalization was performed, so that

the plotted intensities reflect I = 10log10
P1(f ,t)
P2(f ,t)

, the ratio of

power between the two conditions in decibels.
For contrast time-frequency plots, we determined significant

areas of relative activation via a cluster-based bootstrap algorithm
(Nichols and Holmes, 2001). For each pixel, we calculated
an F-statistic between the (decibel-scaled) power for the two
conditions, using a 5 × 5 pixel local smoother to improve
estimation of variance. We used p-value thresholds of 0.1 and 0.9
for these F-statistics to determine local clusters of activation. That
is, pixels in the uppermost and lowermost deciles of cumulative
probability density were selected for further analysis. Groups of
contiguous pixels exceeding this threshold constituted a cluster,
with cluster mass equal to the sum of log F-values for all pixels
in the cluster. Distributions of this mass statistic under the
null hypothesis were generated by randomly shuffling the labels
of the two conditions and then repeating the entire analysis
pipeline above (smoothing, F-statistic, thresholding, clustering).
All clusters withmass statistic significant at the p< 0.05 threshold
with respect to this null distribution were retained.

The LFP prediction algorithm made use of a modified
sparse proportional hazards model. Inputs to the classifier were
determined as follows: for each dataset, LFP in each channel
was bandpass filtered into delta, theta, alpha, beta, and gamma
bands as defined above, then decimated to 40Hz, converted
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to instantaneous power via the Hilbert transform, censored
for artifacts, log scaled, and standardized to 0 mean and unit
variance. Regressors were the logged mean power for each
(channel, band) combination for 0.5 s preceding each time point
of interest. True positive events (coded as 1 s) were chosen as the
response time for trials in which participants successfully stopped
balloon inflation and received a reward. All other data points
were non-events (coded as 0 s). We assumed these binary counts
to be Poisson distributed within each time bin with instantaneous
rate (at risk level i):

λi(t) = hi(t) exp(µ + X(t) · β)

with hi(t) the hazard function for the normal distribution with
(fitted) parameters mi and si, X(t) the regressors (LFP power in
each band, channel) at time t, and µ and β model parameters
distributed according to a horseshoe prior (Carvalho et al.,
2009). The utility of the horseshoe prior lies in its privileging
of sparse solutions for the regression weights, allowing us to
simultaneously perform inference and model selection. That is,
channels and frequency bands are parsimoniously shrunk to 0,
as in the LASSO model above. Note in particular that the use of
instantaneous log power for X(t) implies that the event rate is the
equal to the hazard ratemodulated by a weighted geometricmean
of momentary power.

We fit these models using the Stan probabilistic programming
language (Carpenter et al., 2016) using four chains of 2,000
iterations each with a burn-in period of 1,000 samples (half the
total) and a thinning fraction of five. Convergence was assessed
bymeans of effective sample sizes and the Gelman-Rubin statistic
(Gelman and Rubin, 1992).

RESULTS

As expected, subjects balanced risk and reward, with longer
inflation times for less risky balloons. In addition, nearly all
subjects exhibited risk aversion across each of the categories, with
mean trial times below optimal for the low and medium risk
conditions (but above in the high risk condition; Figure 1B).
This is consistent with behavior observed in the standard
BART (Lejuez et al., 2002; Lauriola et al., 2013), where the
level of risk aversion is the measure of interest, since it has
been shown to correlate inversely with real-world measures
of risk-taking. This is also consistent with Figure 1C, which
shows the fraction of trials for each subject that resulted
in no points (i.e., popped balloons). In the standard BART,
where the total number of trials is fixed, optimal strategy
dictates that subjects should inflate balloons to half their
maximal size—that is, on average, half of trials should result
in pops. In our modified paradigm, by contrast, the number
of trials was time-limited, with the result that subjects were
incentivized to adopt a strategy of shorter, more numerous
trials with higher probability of reward. However, what is
most important for our subsequent analysis of neural data is
not whether subjects pursued behaviorally optimal strategies
but the fact that varying risk levels in the task resulted in a
range of decision times, varying (roughly) between 1 and 12 s.

Most importantly, these responses were self-initiated. Rather
than rapid responses to external cues, they were the result
of deliberative behavior, permitting us to examine the time
evolution of signals underlying the process of decision formation
within STN.

We recorded 56 (N = 48 single, 8 multi-) units from our
patient population. All but one of these units was determined to
lie within STN boundaries based on results of the intraoperative
mapping process and pre-surgical MRI-based targeting. (One
unit, with regular baseline firing rate of 150 spikes/s and an
absence of bursting, was most likely sampled from the nearby
substantia nigra pars reticulata.) We analyzed spiking activity of
the STN units via a regularized, cross-validated GLM approach
that incorporated all task variables into a single model. Figure 2A
shows the effect sizes for each unit and task variable, color-
coded as a percent change from baseline firing. Individual cells
show differences in firing between risk levels, as well as between
reward and no-reward trials and between standard (free choice)
and control (no reward) trials. That is, local firing rates are
sensitive to risk and the reward, as well as to the difference
between trials on which a motor action must be made and
those in which passive viewing alone is required. Clearly, the
effects are sparse throughout the population, as is typical for
neurons in basal ganglia. However, it is also important to note
that the regularization and cross-validation approach we have
used is extremely conservative; a similar approach using the
best-performing (not most parsimonious) regularization found
similar effects much more strongly represented, with roughly
80% of cells exhibiting each effect. Along the same lines, a
shuffle-corrected version of the same analysis produced zero false
positive responses (Figure S1). That is, multiple checks indicate
that the sparse effect matrix above represents robust effects in our
data, not statistical artifacts of our analysis.

We found neurons responsive to a variety of task-related
variables, including those active for the difference between task
and baseline (N = 4/56, 7%) and in the contrast between
risk levels (Figure 2B; N = 11/56, 20%). We likewise found a
range of effect strengths, with the effect of task vs. baseline and
popped balloons largest (Figure 2C). Most intriguingly, the most
commonly represented effect in our neural sample was the effect
of elapsed time on neural firing. Roughly 14% (N = 8/56) of cells
in our population showed small tomoderate changes in firing rate
over the course of balloon inflation, with effects on the order of a
few percent to 20% changes in gain for a representative inflation
time of 5 s (Figure 2D). These findings are consistent with
previous reports of increased oscillatory power in STN in tasks
requiring rapid responses (Cavanagh et al., 2011; Frank et al.,
2015), but to our knowledge, this is the first single unit evidence
of this mechanism operating over longer decision timescales in
humans.

Intrigued by these findings in single units, we looked for
further evidence of ramping activity at the population level
preceding decisions. LFP are thought to measure voltages due
to the summed activity of neurons in a local region around
the electrode tip (potentially including some long-range effects)
(Kajikawa and Schroeder, 2011). As such, they offer a glimpse
into the rate and magnitude of local neural processing in a
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FIGURE 2 | Single units in STN show sparse responses to task variables. (A) Effect sizes for each unit and task variable in the firing rate model. Neutral colored tiles

indicate no effect. Colors indicate percent change in firing relative to inter-trial baseline. (B) Fraction of units exhibiting each effect. (C) Mean absolute effect size

(percent change from baseline) across units in which that effect was present in the model. (D) Change in firing rate over time. Histogram of firing rate effect, expressed

as percent change relative to baseline. Effects are calculated for a representative elapsed time of 5 s, based on the fitted exponent gamma in the power-law growth

model f = α(t − t0 + 1)γ .

region. We recorded LFPs simultaneously with our single units,
in some cases from up to 32 channels simultaneously. We asked
whether these signals contained information about upcoming
stop decisions, and whether patterns of local activity might serve
to predict these decisions in a data-driven way.

Figure 3 explores this question by depicting LFP power in the
theta frequency band (4–8Hz) as a function of time on each trial
for a single subject. Theta band activity measured by scalp EEG
has been shown to be correlated with reaction times in a learned
stimulus association task (Cavanagh et al., 2011; Zavala et al.,
2013, 2014), where it was hypothesized that this is due to the
influence of mediofrontal cortex on integration of information in
STN via the hyperdirect pathway. Here, in a self-paced decision
context, we see a similar pattern recapitulated in theta-band
power within the STN. Each line of the image in Figure 3A

represents a single trial. The vertical line marks the start of each
trial, while each black dot marks its end. Trials have been grouped
by outcome, and ordered by duration. For successful stops, theta
band power clearly increases preceding stop movements, with

some activation lasting into the outcome period. By contrast,
this pattern is largely absent prior to unexpected stops (popped
balloons). Like the data from single units, this suggests that
local activity in STN begins to rise during the decision interval,
peaking around the time of movement.

Figure 3B extends this analysis to other frequency bands,
depicting the trial- and channel-averaged power surrounding
trial starts and successful stops for the same subject as in
Figure 3A. Clearly, power ramps over the 2 s preceding stops
across frequency bands (N = 7/7 subjects, p < 0.05, t-test
for regression slope), with alpha and theta power exhibiting a
sustained rise. Intriguingly, for this subject, beta and gamma
power begin their rise relatively late, <500ms prior to the stop
and coincident with a local peak in delta power. This is consistent
with the idea that, for instance, beta band power increases
precede motor movement (Jenkinson and Brown, 2011; Brittain
et al., 2012) and that theta band power is related to a threshold
for evidence accumulation (Cavanagh et al., 2011; Frank et al.,
2015), though clearly peri-event activity is not confined to only
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FIGURE 3 | Changes in local field potential over the course of the trial. (A) Raster plot of power in the theta frequency range (4–8Hz) for each trial in a single dataset

(18.1). Each line represents one trial, with trials ordered vertically by duration. Successful stops are plotted below unsuccessful stops (balloon pops). Left vertical black

line indicates trial start. Black dots indicate trial stops. Color indicates theta-band power in dB. A clear increase in theta power precedes successful stops.

(B) Normalized LFP power rises preceding stops. Traces depict mean (across channels) of medians (across successful stop trials) LFP power in delta, theta, alpha,

beta, and gamma frequency bands, as well as broadband signal, aligned to the time of the stop (t = 0). Power in theta band rises preceding the stop, falling gradually

thereafter, whereas power in alpha and beta bands dips prior to the stop, rises sharply thereafter, and falls abruptly during the outcome period. (C) Normalized theta

band LFP power in each channel aligned to trial start (t = 0). Traces indicate medians across trials (one trace per channel). Theta power dips just prior to trial onset

and begins to rise as the balloon inflates. (D) Normalized theta band power in each channel aligned to trial stop. Traces represent medians across successful stop

trials (one trace per channel). Power increases until the stop, following which it declines toward its pre-trial baseline. (E) Grand mean (averaged across datasets)

trajectory of power in different frequency bands preceding voluntary stops (t = 0). Conventions are as in (A). Note that multiple frequency bands exhibit changes in

power preceding stops. (F) Grand mean (averaged across datasets) trajectory of power in different frequency bands preceding involuntary stops (i.e., pops; t = 0).

Conventions are as in (A). Note the sharp rise in power during the outcome phase, similar to the rise in power preceding voluntary stops.

a single frequency band. In Figures 3C,D, for the specific case
of theta band, we see that this rise in power begins well before,
at trial onset, and that a dip in power precedes the initiation of
the trial. As a result, rises in theta begin well before the time of
movement, suggesting that this process pertains to planning, not

simply movement initiation. Likewise, at the population level,
ramping activity preceded stops, and sharps increases in power
followed pops, consistent with previous findings (Figures 3E,F;
Cavanagh et al., 2011; Tan et al., 2014; Zavala et al., 2014,
2015).
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FIGURE 4 | Time-frequency contrasts show dissociable roles for different frequency bands in stopping. (A) Time-frequency plot of power on successful stop trials

aligned to time of stop (t = 0) for a single subject. Color depicts change normalized change in power relative to pre-trial baseline in decibels (see Methods). Increases

in both low-frequency power and beta band activity precede the stop. (B) Significance-thresholded time-frequency contrast plot depicting differences in power

between successful and unsuccessful stop (pop) trials for a single subject. Conventions and subject are as in (A). Clusters represent statistically significant changes in

activity between conditions (see Methods). Here again, voluntary stop decisions are marked by early increases in low-frequency power and peri-stop increases in beta

band power more proximal to movement. (C) Equivalent of (A) using all trials across all subjects. (D) Equivalent of (B) using all trials across all subjects.

Observing that population averages in Figures 3E,F exhibited
ramping activity across multiple frequencies, we asked whether
such an integrative signal corresponded specifically to theta-
band activity or whether it might involve oscillations at
multiple scales. Figure 4A is a time-frequency plot showing
channel- and trial-averaged LFP power preceding successful
stops for a single subject. Clearly, power increases both at
frequencies below 15Hz and within the beta band in the
second preceding decision, peaking just after decision at the
time of reward. Indeed, this pattern remains when we consider
the contrast between successful stops and unanticipated stops
(popped balloons) (Figure 4B). Again, significant increases
in low-frequency (<15Hz) and beta band power distinguish
between the two conditions, suggesting that decisions to stop
require an increase in theta- and alpha-band activity along with
a concomitant increase in beta power, as has been reported
elsewhere (Bronte-Stewart et al., 2009; Jenkinson and Brown,
2011;Whitmer et al., 2012; Bastin et al., 2014). In fact, very similar
results hold for a population-level analysis based on the average
across all trials and all subjects (Figures 4C,D).

It may be considered surprising that Figure 4 depicts an
increase in beta-band power, as opposed to the decrease reported

in, e.g., Cavanagh et al. (2011) and elsewhere. In fact, this results
from our choice of normalization. In Figure 4, we have first
normalized the variance within each recording channel prior to
averaging, which treats each signal on an equal footing. However,
a raw average across, without normalization, shows a decrease in
beta around the time of stops (Figure S3). This suggests that the
largest modulations of LFP power in STN are negative, though
weaker positive modulations may be widespread.

There is also suggestive evidence for this interpretation from
a subset of participants who performed control conditions with
both voluntary and forced stops. Figure S2A shows that in this
case, voluntary stops, which involve both decision and motor
movement on the part of participants, exhibit greater power in
the beta and theta bands preceding stops. That is, the LFP effects
noted above are related to the decision and movement process,
not simply the temporal structure of the trial. Similarly, when
comparing two identical motor actions, the movements at trial
start and trial stop (Figure S2B) the differences in power between
the two conditions appear to be quite similar to the overall
activity for end-of-trial stops, suggesting that these effects pertain
to the decision process itself. Thus, converging evidence supports
the notion that gradual increases in low-frequency power are
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FIGURE 5 | Results from a Bayesian proportional hazards regression model. (A) Risk level (balloon color) modulates hazard rate. Plot of estimated mean parameter

for a hazard function based on a normal distribution of event (stop) times. Dots indicate median of the posterior distribution, lines indicate 95% posterior credible

intervals. (B) Posterior estimates of regression coefficients (one per frequency band, channel pair) for the model. Effect sizes are measured in percent change in

hazard rate per standard deviation of the regressor (regressors were standardized to have variance 1). Conventions are as in (A). For all coefficients, the 95% credible

interval includes 0, indicating that local field power did not improve predictions of stop time. These plots are for a single representative dataset (18, 1).

reflective of the deliberative decision process, while beta power
changes precede movement initiation, followed by a rapid rise in
beta post-movement and a fall across all bands after reward.

Therefore, we asked whether activity across multiple channels
might collectively be harnessed to predict trial stops at the single-
subject level. Using a survival analysis approach, we modeled the
time to event (voluntary stop) as dependent upon an increasing
hazard rate. Trials on which the balloon popped were treated
as censored data, with the voluntary stop time unobserved.
Most importantly, we assumed that the instantaneous probability
of stopping was modulated by a weighted geometric mean of
momentary power within each frequency band and channel.
That is, the probability of a stop increased with time in a
manner specific to each balloon color, modulated by a weighted
combination of local neural activity. As depicted in Figure 5A,
models for most subjects exhibited different hazard rates for the
different risk levels, resulting in earlier stops for riskier balloons.
However, with only a single exception, the coefficients encoding
neural effects on stopping were not appreciably different from 0
for any subject, frequency band, or channel (95% credible interval
for β overlapping 0; e.g., Figure 5B). Thus, while STN activity
appears to track the deliberative process by ramping power
across multiple frequency bands, this activity does not appear to
be specifically predictive of the stop decisions themselves on a
single-trial basis.

DISCUSSION

By recording directly from humans undergoing invasive brain
surgery, we have demonstrated not only the presence of single
units within the basal ganglia that increase firing over the course
of the decision process, but that population measures like the
local field potential also exhibit ramping activity during the

process of deliberation. This finding is consistent with previous
experimental (Frank et al., 2007, 2015; Cavanagh et al., 2011;
Brittain et al., 2012; Zavala et al., 2013, 2014) and modeling
(Frank, 2006) work positing a role for the mediofrontal-
hyperdirect pathway in stopping behavior, but extends these
findings beyond the realm of cued reaction time tasks to
the longer timescale of deliberative decisions, confirming the
applicability of experimental andmodeling predictions to human
cognitive tasks.

We likewise found single units and LFP signals responsive at
the time of reward or negative outcomes, with stronger effects
for balloon pops than rewards. This is consistent with single
unit studies in animals showing responses to both rewards and
error trials (Isoda and Hikosaka, 2008; Lardeux et al., 2009;
Baunez and Lardeux, 2011), and likely reflects widespread neural
activity in response to reinforcing outcomes across the brain.
However, the most prevalent single unit response was to elapsed
time in the trial, suggesting that STN not only plays a role in
stopping behavior, but also encodes critical information related to
upcoming choice during more prolonged deliberative processes.

Likewise, much debate has focused on the role and relative
importance of oscillatory activity within STN and the basal
ganglia more broadly. Activity within the beta band is
known to be related both to upcoming motor movement,
with desynchronization preceding movement onset (Jenkinson
and Brown, 2011), and to the particular pathophysiology
of Parkinson’s Disease, where beta activity is known to be
enhanced, while medications and effective DBS can suppress
beta activity with symptomatic treatment (Bronte-Stewart et al.,
2009; Jenkinson and Brown, 2011; Whitmer et al., 2012). In
addition, theta band activity recorded in scalp EEG, thought to
originate over medial frontal cortex, perhaps in pre-SMA/SMA,
has been linked to cortical control over stopping in the basal
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ganglia (Aron and Poldrack, 2006; Cavanagh et al., 2011; Zavala
et al., 2013, 2014), consistent with single-unit studies in non-
human primates (Isoda and Hikosaka, 2007, 2008). Previous
work in a cued response task showed both theta enhancement
and beta suppression prior to responses, with theta linked via
computational modeling to decision threshold in a drift diffusion
model (Cavanagh et al., 2011; Zavala et al., 2014; Frank et al.,
2015). Our findings complement this work by demonstrating
a gradual increase in LFP power across multiple frequency
bands preceding self-paced decisions, reflecting widespread STN
activity. Thus, while beta desynchronization does occur before
motor movement, antecedents of the decision output occur
within multiple frequency bands after the decision process is
activated. Furthermore, we provide additional evidence for a
posited dissociation between beta/motor and theta/cognitive
inputs to STN, consistent with the hypothesis that these signals
reflect decision-related information from cortical afferents, likely
in primary, associative motor, and midline limbic areas.

Several previous studies have delineated a specific role for
theta-band activity in STN as setting a threshold for stopping
behavior in the context of the drift-diffusion model (Frank, 2006;
Cavanagh et al., 2011; Zavala et al., 2013). Evidence suggest that
this activity represents top-down inputs from medial prefrontal
cortex, with stronger theta activity present in the case of increased
conflict. However, in our data, theta activity clearly increases
over the course of the trial, favoring a role for theta in tracking
the decision process rather than setting a threshold. Several
observations may explain this discrepancy. First, theta may
indeed play a dual role in both the accumulation process and
threshold-setting, one which our design did not have sufficient
power to detect. Second, the distinct demands of our task,
which required neither a speeded response nor a forced choice,
might have resulted in qualitatively different patterns of network
activity. Likewise, our task offered only a single response option,
asking participants a question of “when” rather than “which,” and
so likely failed to recruit mechanisms responsible for mediating
response conflict. Finally, another study of response conflict in
STN on somewhat longer timescales (Zavala et al., 2014) found
no correlation between theta band activity and response time,
consistent with our results. However, we are agnostic as to
whether these early onset signals represent conflict or some other
psychological construct, since many similar ideas like dread, risk,
or reward anticipation may plausibly rise during the course of
our task, and none constitutes a mechanistic explanation. Future
studies will no doubt be needed to elucidate the specific function
or functions of theta-band activity in STN.

However, there are several limits to the current study. First,
as noted above, there remains some uncertainty as to the exact
role played by frontal theta in conjunction with the STN. While
the focus has often been on conflict and stopping, Brittain and
Brown (2014) have also suggested a relationship with attention.
Huebl et al. (2011) found a link between alpha band activity
and emotional state. Indeed, the signals we have identified as
part of the deliberative phase span frequency bands and are no
doubt involved in multiple processes, many of which are difficult,
if not impossible to dissociate in a single study. Finally, the
positions of our microwire electrodes are distributed at random

throughout STN but may not sufficiently span the more medial
areas associated with limbic and motivational inputs that we
expect to contribute to impulsive decisions. Nonetheless, what
is important for our purposes is that our task successfully elicits
activity typically observed in studies designed to study impulsive
decisions and so we are in a position to ask whether such signals
are capable of predicting behavior at a single-trial level.

Most importantly, our results underscore the need for
identifying additional high-quality biomarkers for closed-loop
DBS systems aiming to treat impulsive side effects of PD. A
number of closed-loop systems have focused on suppression
of beta-band activity as a marker for motor pathophysiology,
but an endogenous electrophysiological surrogate marker for
impulsivity remains elusive (Jenkinson and Brown, 2011; Rosin
et al., 2011). Even with a much higher channel count than
possible with typical DBS devices, we were unable to effectively
predict stopping (that is, to improve our probabilistic prediction
of the stop time) on a single trial basis by incorporating
neural signals from all channels and all frequency bands. Given
the multiply attested relationship between beta band activity
and stopping, this is perhaps surprising, but can perhaps be
explained by two observations: First, our experiment used high
impedance microelectrode wires as opposed to larger DBS
contacts, resulting in less averaging and more spatially local
signals. It is possible that this coarse-graining may be helpful
in mitigating noise and deriving more predictive biomarkers in
other DBS studies. Second, most studies report signals averaged
over a larger number of trials. While reliable, such signals may
be dwarfed by noise on an individual trial basis and thus of
little utility for prediction. This single trial limitation could
be overcome by averaging across several trials for improved
predictions, which may still be feasible to implement in a
slower cognitive feedback system. Finally, more sophisticated
algorithms, equipped with larger training data sets like those
being collected from already implanted DBS devices, may be able
to extract more reliable signals from numerous cross-channel
correlations. Clearly, further work is needed to identify such
signals for the next generation of closed-loop DBS devices.
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