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Objectives: This study aims to develop and evaluate multiparametric MRI (MP-MRI)-
based radiomic models as a noninvasive diagnostic method to predict several biological
characteristics of prostate cancer.

Methods: A total of 252 patients were retrospectively included who underwent radical
prostatectomy and MP-MRI examinations. The prediction characteristics of this study
were as follows: Ki67, S100, extracapsular extension (ECE), perineural invasion (PNI), and
surgical margin (SM). Patients were divided into training cohorts and validation cohorts in
the ratio of 4:1 for each group. After lesion segmentation manually, radiomic features were
extracted from MP-MRI images and some clinical factors were also included. Max
relevance min redundancy (mRMR) and recursive feature elimination (RFE) based on
random forest (RF) were adopted to select features. Six classifiers were included (SVM,
KNN, RF, decision tree, logistic regression, XGBOOST) to find the best diagnostic
performance among them. The diagnostic efficiency of the construction models was
evaluated by ROC curves and quantified by AUC.

Results: RF performed best among the six classifiers for the four groups according to
AUC values (Ki67 = 0.87, S100 = 0.80, ECE = 0.85, PNI = 0.82). The performance of SVM
was relatively the best for SM (AUC = 0.77). The number and importance of DCE features
ranked first in the models of each group. The combined models of MP-MRI and clinical
characteristics showed no significant difference compared with MP-MRI models
according to Delong’s tests.

Conclusions: Radiomics models based on MP-MRI have the potential to predict
biological characteristics and are expected to be a noninvasive method to evaluate the
risk stratification of prostate cancer.
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INTRODUCTION

Prostate cancer (PCa) is the highest incidence cancer and the
second leading cause of death among men according to the latest
statistics in 2021 (1). Early and precise detection of prostate
cancer and subsequent appropriate treatment decisions play an
essential role for patients (2, 3).

Nowadays, some tumor biomarkers and biological
characteristics have been proved to be useful for evaluating the
malignant potential of prostate cancer and may influence the
treatment decision-making (4–6). Ki67 as a biomarker of cell
proliferation, which is expressed in all phases except resting (G0)
phase of the cell cycle, has been demonstrated to be an
independent prognostic factor in low volume and grade
prostate cancer (7). According to the results of the Mayo
model, when the expression of Ki67 increased by 1%, the
cancer-specific mortality would increase by1 2% after radical
prostatectomy (RP) accordingly (8). S100 is a family of acidic
calcium-binding proteins and was found to be upregulated in
various tumors (9). Aberg et al. revealed two subtypes of S100
were significantly correlated with short progression-free survival
in prostate cancer patients with metastases (10). Extracapsular
extension (ECE) could be used as an indication of local advanced
prostate cancer (cT3). The positive ECE would increase the risk
of death to 5 times than the negative ECE for patients after
undergoing radical prostatectomy (11). Surgical margin (SM) is
determined by pathological staining of RP specimens. Numerous
studies have disclosed that positive SM increased cancer-specific
mortality and the likelihood of biochemical recurrence of
patients significantly (12–14). Prostate cancer tends to invade
and grow along nerves, and it is also considered to be a potential
metastatic route, which is called perineural invasion (PNI) (15,
16). PNI has been documented to be associated with biochemical
recurrence (BCR) and promoting tumor aggressiveness (16, 17).
Therefore, judging these biological characteristics before
operation can better evaluate the invasiveness of tumor and
may change the clinical decision-making patterns in the future.

Definitely, biopsy can solve some of the above problems to a
certain extent and is still the mainstream method. It is reported
that the combined technique of fusion targeted and systematic
biology has been proved to be helpful to improve the diagnostic
accuracy (18). However, the defects of sampling errors and a
series of subsequent complications, such as pain and hematuria
(19), limit the real-time monitoring and accurate evaluation of
biological characteristics by biopsy. Multiparametric-magnetic
resonance imaging (MP-MRI) is one of the most accurate
noninvasive methods to evaluate local lesions, which contains
T1 and T2 sequences that provide anatomical and disease
information, as well as other sequences that provide functional
information, such as diffusion-weighted imaging (DWI),
dynamic contrast enhanced (DCE), and magnetic resonance
spectroscopy (MRS) (20). As a routine screening method for
prostate cancer, MP-MRI can reflect the phenotype and
heterogeneity of prostate cancer by signal intensity and
enhancement features (21, 22). Furthermore, MP-MRI images
may contain many clinically valuable information related to the
Frontiers in Oncology | www.frontiersin.org 2
different biological characteristics above, such as ECE (23),
which may be hard for radiologists to dig out in clinical practice.

Currently, radiomics serves as a novel approach that extracts
abundant quantitative features with high throughput, and
through machine learning methods to establish prediction
models, which were proved to effectively provide more
potential useful information for the clinical practice in urology
(24, 25). Radiomics of prostate cancer has been widely used in
tumor identification, staging, and prognosis evaluation (26, 27).
However, more comprehensive and accurate prediction models
that can determine the risk stratification and provide references
for clinical decision-making for prostate cancer still need to
be explored.

Thus, in the present study, we attempted to establish and validate
the radiomic predictive models for five biological characteristics
related to aggressiveness (Ki67, S100, ECE, PNI, SM) of prostate
cancer based on MP-MRI. In addition, some clinical information
was also added to establish the corresponding combined models.
MATERIALS AND METHODS

Patients, Pathological Evaluation, and MRI
Acquisition
This work was approved by the Institutional Review Board (IRB)
of Shanghai General Hospital (2021KY107), and the patient’s
informed consent was authorized to be waived according to the
nature of the research. This retrospective study collected patients
who underwent radical prostatectomy from May 2013 to January
2020. The exclusion criteria are as follows: (1) Preoperative
DCE-MRI were unavailable (n = 149); (2) No mass lesion found
on MRI image (n = 9); (3) Missing DWI (n = 3); (4) Poor imaging
quality (n = 10); (5) Missing clinical information (n = 5);
(6) Biopsy before MRI leading to unclear lesions (n = 32); and
(7) Previous treatment before MRI examinations (n = 12). Finally,
we recruited 252 patients as our subjects.

The clinical and pathological information we collected in this
study is as follows: age, prostate serum antigen (PSA), white blood
cell (WBC), red blood cell (RBC), hemoglobin, lymphocyte, platelet,
albumin, alkaline phosphatase (ALP), platelet-to-lymphocyte ratio
(PLR), fibrinogen, surgical Gleason score, immunohistochemistry
(Ki67, S100, AR), SM, ECE, PNI, seminal vesicle invasion (SVI), and
lymphatic vascular invasion (LVI). Details of the above indicators
can be found in Supplementary Table S2. Considering the
importance of biological characteristics of prostate cancer
mentioned above, and the routine indexes of pathological
examination, as well as data distribution (balanced or
imbalanced), we selected five of them (Ki67, S100, ECE, PNI, SM)
as our research indicators. Each of these indicators was classified as
a group, and we divided each group into training cohort and
validation cohort in the ratio of 4:1. All indicators were divided
into positive and negative in the form of binary classification, except
Ki67, which was divided into high expression and low expression
with 10% as the threshold according to previous studies (7). The
gold standard references of this research were based on the results of
radical prostatectomy.
February 2022 | Volume 12 | Article 839621
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Three MRI sequences were included in this study: T2, DWI,
DCE (arterial phase), and this combination also meets the PI-
RADS v2 (Prostate Imaging-Reporting and Data System, Version
2) standard of MP-MRI (28). The protocols of MRI examinations
are described in Supplement A.

Tumor Segmentation
The patient’s images and clinical data were imported into the
Darwin research platform (https://arxiv.org/abs/2009.00908) for
subsequent tumor lesion delineation and model establishment.
The work flow is shown in Figure 1. The boundary of the volume
of interest (VOIs) on each axial-DWI picture was manually
delineated by radiologist 1 (JC, 5 years of experience in urinary
imaging). The ROIs on DWI were then copied to the sequences
of T2 and DCE. If some of the copied results of the two sequences
were not ideal, further modifications were made. Next,
radiologist 2 (RC, 8 years of experience in urinary imaging)
would review the segmentation results. If there was any objection
to the results, the results would be discussed and resegmented
until a consensus was reached.

Feature Extraction
After finishing segmentation, the feature extraction of lesions was
carried out by PyRadiomics package. The original feature classes
contain first-order, shape, and texture features. First-order features
refer to the distribution of voxel intensities through general and basic
metrics, such as range,mean, variance, and kurtosis. Texture features
embody:Gray-LevelCooccurrenceMatrix (GLCM);Gray-LevelRun
Length Matrix (GLRLM); Gray-Level Size Zone Matrix (GLSZM);
Neighboring Gray-Tone Difference Matrix (NGTDM); and Gray-
Frontiers in Oncology | www.frontiersin.org 3
LevelDependenceMatrix (GLDM). Furthermore, we use eightfilters
and the original images were derived into eight kinds of filtered
transformed images: Laplacian of Gaussian (LoG), wavelet, square,
square root, logarithm,exponential, gradient, and localbinarypattern
(LBP). Except shape features, the first-order and texture features
mentioned above can also be extracted from the derived images. Due
to a single MRI sequence containing 1,781 features, MP-MRI
produced 5,343 features in total for this study. The detailed
description of the image features mentioned above can be found in
https://pyradiomics.readthedocs.io/en/latest/features.html.

Feature Selection
Firstly, the extracted feature data were subtracted by the mean and
then divided by the variance to achieve data normalization for
subsequent comparison. Next, in order to reduce the over fitting of
data and find the optimal correlation features, max relevance min
redundancy (mRMR) was adopted to find the top 20 features for
ECE, PNI, and SM groups and 15 features for Ki67 and S100 groups
in the training cohort. Due to some machine learning, classifiers
themselves can evaluate the importance of features and find the best
feature combination through multiple iterative calculations.
Therefore, the recursive feature elimination (RFE) based on
random forest (RF) was applied to find the best feature
combination step by step based on accuracy.

Model Construction
In this study, six classifiers were included to find the best
diagnostic performance among them: support vector machine
(SVM), K-nearest neighbor (KNN), random forest, decision tree,
logistic regression, and XGBOOST. Support vector machine was
FIGURE 1 | The general workflow of this study.
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based on polynomial kernel function, and the tolerance for
misclassified samples was set by the specific penalty coefficient
C (from 0.0001 to 1,000). The best k value (number of neighbors)
for KNN was found by training in the range of 3–10. For random
forest, decision tree, and XGBOOST, the maximum tree depth
was constrained to avoid overfitting. To find out whether the
clinical data improved the diagnostic performance, several
clinical data (age, PSA, WBC, RBC, hemoglobin, lymphocyte,
platelet, albumin, ALP, PLR, fibrinogen) were selected to build
the clinical models. Meanwhile, they were integrated into the
corresponding MP-MRI radiomic models to construct the
combined models. The parameters used in the model
construction are described in Supplementary Table S1.

Model Evaluation and Statistical Analysis
The diagnostic efficiency of the models was demonstrated by
receiver operating characteristic (ROC) curves and quantified by
the area under the curve (AUC). The calibration curve shows the
consistency between the prediction model and the actuality.
What is more, the decision curve analysis (DCA) illustrated
the clinical net benefits brought by the prediction model.

The diagnostic ability of MP-MRImodels and combined models
was compared by DeLong’s test. The overall comparison of PSA in
each group was through Mann-Whitney U test. The case
distribution between validation cohorts and training cohorts was
compared by Chi-square test. All statistical analysis was performed
by R (version 4.0.2). The statistically significant level was set at 0.05.
RESULTS

Demographics
In this study, a total of 252 PCa patients were included, and the
flowchart of patients’ recruitment is depicted in Supplementary
Frontiers in Oncology | www.frontiersin.org 4
Figure S1. The baseline characteristics of PCa patients could be
found in Supplementary Table S2. The mean age of the included
patients was 68.4 years (50–84 years), and their surgical Gleason
score is mainly distributed in 7 (64.7%). According to their
pathological results, the included patients were divided into 5
groups: Ki67 (n = 140), S100 (n = 158), ECE (n = 232), PNI (n =
225), and SM (n = 248). As shown in Table 1, the expression of
PSA was significantly different in ECE (p < 0.01), PNI (p = 0.03),
and SM (p < 0.01) groups, and it was relatively not significant in
Ki67 (p = 0.08) and S100 (p = 0.12) groups. Meanwhile, the case
composition between the cohort training and validation cohort
was roughly the same in each group (p > 0.05).

Feature Selection
After applying mRMR to the features extracted from MP-MRI,
the top 20 features in ECE, PNI, and SM groups and 15 features
in Ki67 and S100 groups were obtained in the training cohort.
RFE-RF then selected the resulting features and achieved the best
performing feature combination as shown in Figures 2A–D:
Ki67 (n = 13), S100 (n = 13), ECE (n = 15), PNI (n = 8), and SM
(n = 20). For SM, all its figures are placed in Supplementary
Figure S2 for a better result demonstration. Next, principal
component analysis (PCA) was performed to extract principal
components of features in each group and reduce the
dimensions, which made the division of cases in each group
more intuitive according to their feature values. As displayed in
Figures 2E–H, the selected features could satisfactorily
distinguish the positive and negative cases on PCA (for Ki67,
they were ≥10% and <10%), especially in the ECE and PNI
groups, which successfully divided the cases with different labels
into left sides and right sides. According to the heat maps in
Figure 3, the color of positive cases or high Ki67 expression cases
was generally darker, and the color in heatmaps referred to the
values of the selected feature. This also proved the ability of the
TABLE 1 | Patient profiles of each group.

Characteristic PSA (ng/ml) Training cohort Validation cohort

Ki67 n = 112 n = 28
≥10% 19.0 ± 15.4 38 (33.9%) 9 (32.1%)
<10% 15.6 ± 15.4 74 (66.1%) 19 (67.9%)
p-value 0.08 0.86
S100, n (%) n = 126 n = 32
Positive 16.0 ± 11.9 67 (53.2%) 17 (53.1%)
Negative 14.7 ± 14.4 59 (46.8%) 15 (46.9%)
p-value 0.12 1.00
ECE, n (%) n = 185 n = 47
Positive 25.2 ± 22.5 40 (21.6%) 10 (21.3%)
Negative 13.9 ± 14.5 145 (78.4%) 37 (78.7%)
p-value <0.01 0.96
PNI, n (%) n = 180 n = 45
Positive 18.3 ± 18.9 96 (53.3%) 24 (53.3%)
Negative 13.9 ± 14.3 84 (46.7%) 21 (46.7%)
p-value 0.03 1.00
SM, n (%) n = 198 n = 50
Positive 22.7 ± 22.8 129 (65.2%) 32 (64%)
Negative 12.4 ± 10.6 69 (34.8%) 18 (36%)
p-value <0.01 0.88
February 2022 | Volume 1
The comparison of PSA in each group was by Mann-Whitney U test. The case distribution between validation cohorts and training cohorts was compared by Chi-square test. ECE,
extracapsular extension; PNI, perineural invasion; SM, surgical margins.
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features themselves to distinguish the biological characteristics of
patients. Supplementary Figure S3 showed that the correlation
among radiomics features was weak, indicating there was low
redundancy among selected features.

Comparison of Different Classifiers
The six classifiers (SVM, KNN, random forest, decision tree,
logistic regression, and XGBOOST) and their AUC in each group
are listed in Table 2. In general, the performance of random
forest was the best according to AUC values, and we chose
random forest as the prediction models for the four groups (Ki67 =
0.87, S100 = 0.80, ECE = 0.85, PNI = 0.82). As for SM, the
performance of SVM was relatively the best (AUC = 0.77), so
SVM with polynomial kernel function was selected as the optimal
classifier for SM.

Performance of MP-MRI and Combined
Prediction Models
The optimal MP-MRI models of the five groups performed
satisfactorily both in the training cohorts and validation
cohorts (Figure 4; Table 3). The prediction model of Ki67
performed best among the five groups, whose AUC value
reached 0.88 in the validation cohort. The second-best model
was ECE with AUC value = 0.85. The AUC values of the three
remaining models in the validation cohort were 0.80 for S100,
0.82 for PNI, and 0.77 for SM.

As for clinical factors, after REF-RF selection, 2 characteristics
were included for Ki67 (PSA, PLR), 1 for S100 (PSA), 4 for ECE
(PSA, WBC, PLR, and ALP), 5 for PNI (PLR, age, fibrinogen,
Frontiers in Oncology | www.frontiersin.org 5
PSA, and albumin), and 4 for SM (PSA, fibrinogen, albumin, and
lymphocyte). This displayed the level of PSA might be helpful to
distinguish five biological characteristics to some extent. Clinical
characteristics were then added to the MP-MRI model to form
the combined models. As a result, in the training cohort, the
combined model was significantly better than the MP-MRI
models except the Ki67 group based on Delong’s tests (p <
0.05). Nevertheless, in the validation cohort, there was no
significant difference between the two groups (p > 0.05).

Furthermore, the importance of the features in the combined
models is demonstrated in Figure 5. The number and
importance of DCE features ranked first in models of each
group, followed by DWI, and finally T2. This also revealed that
DCE sequences could provide more information for predicting
the malignant degree of prostate cancer. In addition, in Figure 6,
calibration curves displayed the consistency between the
prediction model and the actuality was favorable, and when
the risk threshold is greater than about 0.1, the prediction model
could bring more clinical net benefits according to the DCA.
Finally, we provide the examples of VOI delineation on MP-MRI
and the corresponding 3D constructions images in Figure 7.
DISCUSSION

In this study, we constructed the machine-learned radiomic
models based on six classifiers for the five biological
characteristics (Ki67, S100, ECE, PNI, and SM) related to the
invasiveness of prostate cancer. ROC curves showed that the
A B C D

E F G H

FIGURE 2 | The feature selection of RFE-RF and the distribution of different cases on PCA. RFE-RF (A–D) was applied to find the best feature combination step by
step, and the combinations with the highest accuracy will be incorporated into the models. PCA (E–H) showed the selected features could satisfactorily distinguish
the division of cases in each group intuitively according to their feature values. The corresponding figures for SM are shown in Supplementary Figure S2.
February 2022 | Volume 12 | Article 839621
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diagnostic abilities of these models were ideal with AUC values
all greater than 0.8 in the validation cohorts (except SM = 0.77).
Meanwhile, we added several clinical characteristics to make the
combined models, though they barely improved the accuracy
of prediction.

For traditional diagnostic methods, like serum PSA test,
digital rectal examinations (DREs), and prostate biopsy, they
inevitably have many major deficiencies (19, 29–31). The main
deficiencies are that they may lead to overdiagnosis of prostate
cancer and missed diagnosis of clinically significant cancer (32–
34). As shown in Supplementary Table S2, 22.6% of patients
showed Gleason score 6 or less, suggesting that a relevant
number of cancers below the threshold which is currently
considered clinically significant cancer and leading to
overdiagnosis and overtreatment. MP-MRI as a noninvasive
method has been recommended as a routine examination of
prostate cancer and proved to be beneficial in the detection of
Frontiers in Oncology | www.frontiersin.org 6
clinically significant cancer (21, 22). Recently, the NCCN
guidelines clearly pointed out that MP-MRI was helpful to the
staging and risk stratification of prostate cancer, and its
combination with several biomarkers could reduce unnecessary
biopsy (35). Moreover, MP-MRI contains much clinically
valuable information, which has not attracted enough attention
in clinical practice. Recently, artificial intelligence, such as
radiomics, has shown great potential for evaluating the
aggressiveness of urological tumors (36). Therefore, radiomics
could be used as a novel and efficient way to dig out the
information (24). Radiomics has been applied to predict many
aspects of prostate cancer, such as cancer diagnosis, Gleason
score, treatment response, and early biochemical recurrence (37).

Nowadays, using radiomics to predict multiple biological
characteristics of tumors simultaneously has become a trend.
In the research of Meng et al. (38), they proposed the radiomic
models based on MP-MRI have the ability to predict multiple
FIGURE 3 | Heat maps of the selected features. The color of the maps represented the value of the selected features. The color of positive cases or high Ki67
expression cases was generally darker. This proved the ability of the features themselves to distinguish the biological characteristics of patients.
February 2022 | Volume 12 | Article 839621
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biological characteristics (HER-2, Ki67, differentiation, lymph
node metastasis, and KRAS-2) of rectal cancers. However, to the
best of our knowledge, there were fever researches to
comprehensively predict various biological characteristics of
Frontiers in Oncology | www.frontiersin.org 7
prostate cancer using radiomics and achieved good diagnostic
results. Bai et al. (39) reported their radiomic model could
predict the presence of ECE preoperatively, but the AUC value
of their integrated model was only 0.71, much lower than ours
TABLE 2 | Diagnostic performance of optimal models for each group.

Different models Training cohort Validation cohort

AUC SEN SPE ACC p-value AUC SEN SPE ACC p-value

Ki67
MP-MRI 0.91 0.92 0.76 0.81 0.59 0.87 1.00 0.58 0.71 0.60
Clinical 0.73 0.53 0.84 0.73 0.63 0.67 0.74 0.71
Combined 0.91 0.92 0.76 0.81 0.88 0.78 0.84 0.82
S100
MP-MRI 0.88 0.81 0.81 0.81 <0.01 0.80 0.82 0.71 0.75 0.58
Clinical 0.85 0.82 0.69 0.76 0.66 0.62 0.53 0.63
Combined 0.94 0.84 0.92 0.87 0.81 0.94 0.60 0.78
ECE
MP-MRI 0.93 0.88 0.86 0.86 0.01 0.85 1.00 0.62 0.70 0.91
Clinical 0.86 0.98 0.57 0.65 0.57 0.50 0.84 0.77
Combined 0.95 0.88 0.88 0.88 0.85 0.80 0.73 0.74
PNI
MP-MRI 0.87 0.84 0.79 0.82 <0.01 0.82 0.67 0.95 0.80 0.19
Clinical 0.81 0.88 0.68 0.78 0.58 0.67 0.52 0.60
Combined 0.89 0.85 0.80 0.83 0.84 0.71 0.90 0.80
SM
MP-MRI 0.87 0.83 0.78 0.80 0.01 0.77 0.72 0.72 0.72 0.97
Clinical 0.84 0.83 0.74 0.77 0.65 0.71 0.47 0.64
Combined 0.94 0.96 0.81 0.86 0.77 0.61 0.81 0.74
February
 2022 | Volum
e 12 | Article
The p-values were derived from DeLong’s test, and they compare the AUCs of the MP-MRI models with the corresponding combined model. The models of SM were based on SVM; the
others were based on RF.
A B C D

E F G H

FIGURE 4 | The ROC curves of the MP-MRI, clinical and combined models in the training cohort (A–D) and validation cohort (E–H).
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(AUC = 0.85). He et al. (40) used MP-MRI radiomics to predict
ECE (AUC = 0.728, also lower than ours) and SM (AUC = 0.76,
similar to ours), yet they did not comprehensively evaluate the
aggressiveness of prostate cancer as ours. Therefore, our
comprehensive radiomic models made it possible to predict
more critical biological characteristics of prostate cancer and
improve the prediction accuracy of some biological
characteristics compared with the other published AI models.

In the present study, we extracted as many features as the
recent literature documented. We then adopted an efficient
feature selection method—mRMR, which has been proved
advanced in a majority of researches (38, 41), to obtain the
Frontiers in Oncology | www.frontiersin.org 8
most relevant and least redundant features. In addition, the low
redundancy of selected features could be testified by the
correlation maps in Supplementary Figure S3. RFE-RF then
ensured the best combinations of the included features. More
and more studies use RFE-RF to select the best feature
combinations, yet it needs a large amount of computation so
that it is suitable for low-dimensional data after primary
selection (42).

For the resulting radiomic features of each group, wavelet
features account for larger proportions: 6/13 for Ki67, 5/13 for
S100, 9/16 for ECE, 2/8 for PNI, and 7/20 for SM. Wavelet
features are derived from the wavelet transform and represent
TABLE 3 | AUCs of different MP-MRI radiomic classifiers for predicting the five biological characteristics in the validation cohorts.

Classifiers Ki67 S100 ECE PNI SM

Random forest 0.87 0.80 0.85 0.82 0.72
Decision tree 0.75 0.76 0.77 0.72 0.75
SVM 0.84 0.79 0.84 0.78 0.77
KNN 0.74 0.70 0.82 0.72 0.72
Logistic regression 0.75 0.80 0.82 0.81 0.68
XGBOOST 0.76 0.70 0.74 0.73 0.67
February 20
22 | Volume 12 | Article 83
The bold values represent the AUC of the classifiers that perform best in each subgroup.
SVM, support vector machine; KNN, K-nearest neighbor.
FIGURE 5 | The inbuilt feature importance in each combined model.
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A B C D

E F G H

FIGURE 6 | The calibration curves and decision curve analysis of the MP-MRI models. The calibration curves (A–D) show the consistency between the prediction
model and the actuality. The dotted reference line indicated perfect calibration. The DCA (E–H) illustrated the clinical net benefits brought by the prediction model.
The gray line indicated “treat all,” and the black horizontal line indicated “treat none”.
A B C D

E F G H

FIGURE 7 | The examples of VOI delineation on MP-MRI. (A–D) A 66-year-old patient was pathologically diagnosed as PNI positive with a typical abnormal signal
lesion in the right front of the prostate. (E–H) A 70-year-old patient was diagnosed as PNI negative with a lesion located in the left peripheral zone, and the DCE
sequence showed moderate enhancement. (D, H) represent the 3-dimensional reconstruction of the VOI.
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high-dimensional features that cannot be easily deciphered by
humans (43). Wavelet features could show the heterogeneity of
tumors, and multiple studies have proved its strong prediction
ability (38, 44). In addition, DCE sequences occupied a large part
of the models. The reason may be that prostate cancer has strong
ability of neovascularization, and the morphology and density of
neovascularization are closely related to metastasis and prognosis
of patients (45, 46). DCE-MRI is exactly a fairly adequate way to
demonstrate neovascularization. Also, because of the increased
vascular permeability of prostate cancer, we chose the arterial
phases of DCE sequences to delineate the lesions (28).

Classifiers play an essential role in machine learning. The six
classifiers that were included in this study: SVM, KNN, random
forest, decision tree, logistic regression, and XGBOOST. As a
result, the classification performance of random forest was
generally the best among them. Random forest is composed of
a large number of decision trees, and its prediction result is
averaged by all the tree predictions, so it can effectively avoid
over fitting. It has been documented that random forest occupied
a large part of the Kaggle Data Science Competitions and ranked
first among 179 classifiers (47).

It is inevitable that there are some coexisting prostatic diseases in
patients with prostate cancer. In our study, coexisting diseases
contained benign prostatic hyperplasia, chronic prostatitis,
prostatic cyst, etc. However, they did not have a great impact on
our study and our models still achieved favorable distinguishing
ability. The reasonmay be that the features selected by our screening
methods have strong specificity for the corresponding biological
characteristics, and many of them reflect the complexity of the
lesions, such as texture features (48). For coexisting diseases like
prostatic hyperplasia, the density of lesions was relatively more
consistent on MP-MRI and they would not make a remarkable
difference to the accuracy of our models. The established model
should be more applicable to clinical reality. If they were only
applied to target diseases and excluding coexisting diseases, the
clinical application of the models would be seriously limited.

Although radiomics shows huge potential for the improvement
of clinical diagnosis and risk stratification, its practical clinical
application is still subject to many difficulties, and its real benefits
are required to be further confirmed in prospective cohort studies
(49). However, radiomics plays an increasingly important role in
medical imaging, and it provides a unique basis for personalized
precision treatment (50). In our study, we proved the applicability of
radiomics in predicting the multiple biological characteristics of
prostate cancer, and we also provided relatively detailed protocol for
MP-MRI and key machine-learning parameters to offer a reference
for the standardization work in the future (51). The next main steps
of radiomics could be to take advantage of deep learning methods
(for example, U-Net) to delineate the ROI automatically and to
prove the robustness of the radiomic models through multicenter,
prospective, randomized-controlled trials (52).

This study had the following limitations: Firstly, this study
was a retrospective and single-center study, and this inevitably
led to selection bias and lack of samples and external verification.
Secondly, some valuable biological characteristics or biomarkers
were not included in the model due to incomplete data, for
Frontiers in Oncology | www.frontiersin.org 10
example, gene mutation data, which had great guiding
significance for clinical treatment. Thirdly, our models were
not as intuitive as a nomogram due to the algorithm of
random forest and SVM with polynomial kernel function.
Fourthly, the delineation of lesions was performed manually
instead of computer-aided, which may lead to inconsistencies in
clinical practice. Therefore, our next research focus will be put on
multicenter, prospective, more clinically feasible, large-scale, and
valuable indicator-based studies.
CONCLUSION

The present work associated the radiomics features of MP-MRI
with five biological characteristics related to the aggressiveness of
prostate cancer. The established comprehensive models made it
possible to predict more critical biological characteristics of
prostate cancer and achieved favorable prediction abilities.
Therefore, the models are expected to noninvasively evaluate
the risk stratification of prostate cancer and provide valuable
guidance for clinical decision-making.
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